Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (650)

Search Parameters:
Keywords = gene clock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 (registering DOI) - 1 Aug 2025
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

33 pages, 2838 KiB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 1204 KiB  
Article
The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico
by Maria Gómez-Lazaga and Alejandro Espinosa de los Monteros
Insects 2025, 16(8), 785; https://doi.org/10.3390/insects16080785 (registering DOI) - 31 Jul 2025
Viewed by 138
Abstract
The goal of phylogeography is to explain how microevolutionary forces shape the gene pool of a lineage into the geography. In this study we have evaluated the amount of genetic variation in 13 populations of Dorymyrmex bicolor distributed in a mountainous region in [...] Read more.
The goal of phylogeography is to explain how microevolutionary forces shape the gene pool of a lineage into the geography. In this study we have evaluated the amount of genetic variation in 13 populations of Dorymyrmex bicolor distributed in a mountainous region in Central Veracruz, Mexico. To do so, we sequenced fragments from the mitochondrial COI, COII, and nuclear LWRh genes. Segregated sites were found only at the mitochondrial markers, recovering a total of 21 different haplotypes. The nucleotide diversity ranged from 0 to 0.5% at the different sampling sites. Phylogenetic and spatial analyses of molecular variance revealed a weak but significant phylogeographic structure associated with lowland and mountainous zones. Molecular clock analysis suggests that radiation in the mountain area started 7500 years ago, whereas lineage radiation in the lowland started more recently, around 2700 years ago. The phylogeographic structure is incipient, with nests from lowlands more closely related to mountain nests than to other lowland nests, and vice versa. This seems to be consistent with a model of incomplete lineage sorting. The obtained patterns appear to be the result of restricted gene flow mediated by a complex topographic landscape that has been shaped by a dynamic geologic history. Full article
(This article belongs to the Special Issue Ant Population Genetics, Phylogeography and Phylogeny)
Show Figures

Figure 1

19 pages, 4407 KiB  
Article
Mitochondrial Genome of Scutiger ningshanensis (Anura, Megophryidae, Scutiger): Insights into the Characteristics of the Mitogenome and the Phylogenetic Relationships of Megophryidae Species
by Siqi Shan, Simin Chen, Chengmin Li, Lingyu Peng, Dongmei Zhao, Yaqing Liao, Peng Liu and Lichun Jiang
Genes 2025, 16(8), 879; https://doi.org/10.3390/genes16080879 - 26 Jul 2025
Viewed by 268
Abstract
Background/Objectives: Scutiger ningshanensis (Fang, 1985) is an endemic Chinese amphibian species within the genus Scutiger (Megophryidae). Despite its ecological significance, its mitochondrial genome architecture and evolutionary relationships remain poorly understood. Given the high structural variability in Megophryidae mitogenomes and unresolved phylogenetic patterns [...] Read more.
Background/Objectives: Scutiger ningshanensis (Fang, 1985) is an endemic Chinese amphibian species within the genus Scutiger (Megophryidae). Despite its ecological significance, its mitochondrial genome architecture and evolutionary relationships remain poorly understood. Given the high structural variability in Megophryidae mitogenomes and unresolved phylogenetic patterns in Scutiger, this study aims to (1) characterize the complete mitogenome of S. ningshanensis, (2) analyze its molecular evolution, and (3) clarify its phylogenetic position and divergence history within Megophryidae. Methods: The complete mitochondrial genome was sequenced and annotated, followed by analyses of nucleotide composition, codon usage bias, and selection pressures (Ka/Ks ratios). Secondary structures of rRNAs and tRNAs were predicted, and phylogenetic relationships were reconstructed using maximum likelihood and Bayesian methods. Divergence times were estimated using molecular clock analysis. Results: The mitogenome of S. ningshanensis is 17,282 bp long, encoding 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and a control region, with a notable AT bias (61.05%) with nucleotide compositions of T (32.51%), C (24.64%), G (14.3%), and A (28.54%). All tRNAs exhibited cloverleaf structures except trnS1, which lacked a DHU stem. Phylogenetic analysis confirmed the monophyly of Scutiger, forming a sister clade to Oreolalax and Leptobrachium, and that S. ningshanensis and S. liubanensis are sister species with a close evolutionary relationship. Positive selection was detected in Atp8 (Ka/Ks > 1), suggesting adaptation to plateau environments, while other PCGs underwent purifying selection (Ka/Ks < 1). Divergence time estimation placed the origin of Megophryidae at~47.97 MYA (Eocene), with S. ningshanensis diverging~32.67 MYA (Oligocene). Conclusions: This study provides the first comprehensive mitogenomic characterization of S. ningshanensis, revealing its evolutionary adaptations and phylogenetic placement. The findings enhance our understanding of Megophryidae’s diversification and offer a genomic foundation for future taxonomic and conservation studies. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

19 pages, 2501 KiB  
Article
Genes Encoding Multiple Modulators of the Immune Response Are Methylated in the Prostate Tumor Microenvironment of African Americans
by Vinay Kumar, Tara Sinta Kartika Jennings, Lucas Ueta, James Nguyen, Liankun Song, Michael McClelland, Weiping Chu, Michael Lilly, Michael Ittmann, Patricia Castro, Arash Rezazadeh Kalebasty, Dan Mercola, Omid Yazdanpanah, Xiaolin Zi and Farah Rahmatpanah
Cancers 2025, 17(14), 2399; https://doi.org/10.3390/cancers17142399 - 19 Jul 2025
Viewed by 395
Abstract
Background/Objectives: Prostate cancer (PCa) is diagnosed at an earlier median age, more advanced stage, and has worse clinical outcomes in African American (AA) men compared to European Americans (EA). Methods: To investigate the role of aberrant DNA methylation in tumor-adjacent stroma [...] Read more.
Background/Objectives: Prostate cancer (PCa) is diagnosed at an earlier median age, more advanced stage, and has worse clinical outcomes in African American (AA) men compared to European Americans (EA). Methods: To investigate the role of aberrant DNA methylation in tumor-adjacent stroma (TAS), methyl binding domain sequencing (MBD-seq) was performed on AA (n = 17) and EA (n = 15) PCa patients. This was independently confirmed using the long interspersed nuclear element-1 (LINE-1) assay. Pathway analysis was performed on statistically significantly differentially methylated genes for AA and EA TAS. DNA methylation profiles of primary cultured AA and EA carcinoma-associated fibroblasts (CAFs) were compared with AA and EA TAS. AA and EA CAFs were treated with demethylating agent 5-Azacytidine (5-AzaC). Results: AA TAS exhibited higher global DNA methylation than EA TAS (p-value < 0.001). Of the 3268 differentially methylated regions identified (DMRs, p-value < 0.05), 85% (2787 DMRs) showed increased DNA methylation in AA TAS, comprising 1648 genes, of which 1379 were protein-coding genes. Based on DNA methylation levels, two AA subgroups were identified. Notably, AA patients with higher DNA methylation were predominantly those with higher Gleason scores. Pathway analysis linked methylated genes in AA TAS to several key signaling pathways (p-value < 0.05), including immune response (e.g., IL-1, IL-15, IL-7, IL-8, IL-3, and chemokine), Wnt/β-catenin, androgen, PTEN, p53, TGF-β, and circadian clock regulation. A total of 168 concordantly methylated genes were identified, with 109 genes (65%) showing increased methylation in AA CAFs and TAS (p-value < 0.05). Treatment with 5-AzaC significantly reduced DNA methylation of concordant genes in AA CAFs (p-value < 0.001). Conclusions: These findings suggest a distinct stromal methylome in AA, providing a foundation for integrating demethylating agents into standard therapies. This approach targets the tumor microenvironment, potentially addressing PCa disparities in AA men. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

18 pages, 3116 KiB  
Article
Effects of Probiotic Supplementation on Depressive Symptoms, Sleep Quality, and Modulation of Gut Microbiota and Inflammatory Biomarkers: A Randomized Controlled Trial
by S Rehan Ahmad, Abdullah M. AlShahrani and Anupriya Kumari
Brain Sci. 2025, 15(7), 761; https://doi.org/10.3390/brainsci15070761 - 18 Jul 2025
Viewed by 1093
Abstract
Background: More than merely determining our sleep pattern, our body’s internal clock also improves the quality of our sleep, alleviates the symptoms of depression, and maintains the balance of our gut flora. Methods: We carried out a 12-week randomized controlled trial with 99 [...] Read more.
Background: More than merely determining our sleep pattern, our body’s internal clock also improves the quality of our sleep, alleviates the symptoms of depression, and maintains the balance of our gut flora. Methods: We carried out a 12-week randomized controlled trial with 99 adults from Kolkata, New Delhi, and Pune who reported sleep problems and symptoms of depression or anxiety. Participants received either a probiotic formulated to improve sleep quality and reduce depressive symptoms or a placebo. We tracked sleep using overnight studies and wearable devices, assessed depressive symptoms with standardized questionnaires, and analyzed stool samples to profile gut bacteria and their metabolites using gene sequencing and metabolomics. Advanced statistics and machine learning helped us pinpoint the key microbial and metabolic factors tied to sleep and mental health. Results: At the start, participants with disrupted sleep and depressive symptoms had fewer beneficial gut bacteria like Bifidobacterium and Lactobacillus, more inflammation-related microbes, and lower levels of helpful short-chain fatty acids. These imbalances were linked to poorer sleep efficiency, less REM sleep, and higher depression and anxiety scores. After 12 weeks, those taking the circadian-supporting probiotic saw a statistically significant increase in beneficial gut bacteria, improved sleep efficiency (+7.4%, p = 0.02), and greater reductions in depression and anxiety compared to the placebo. Increases in SCFA-producing bacteria most strongly predicted improvements. Conclusions: Our results show that taking a probiotic supplement can help bring your gut back into balance, support better sleep, and lift symptoms of depression and anxiety. This offers a hopeful and practical option for people looking for real relief from these deeply connected challenges. Full article
(This article belongs to the Special Issue Relationships Between Disordered Sleep and Mental Health)
Show Figures

Figure 1

18 pages, 2314 KiB  
Article
Deletion of Clock Gene Period 2 (Per2) in Astrocytes Shortens Clock Period but Does Not Affect Light-Mediated Phase Shifts in Mice
by Soha A. Hassan, Katrin S. Wendrich and Urs Albrecht
Clocks & Sleep 2025, 7(3), 37; https://doi.org/10.3390/clockssleep7030037 - 17 Jul 2025
Viewed by 279
Abstract
The circadian clock is a self-sustaining oscillator with a period of approximately 24 h, enabling organisms to anticipate daily recurring events, such as sunrise and sunset. Since the circadian period is not exactly 24 h and the environmental day length varies throughout the [...] Read more.
The circadian clock is a self-sustaining oscillator with a period of approximately 24 h, enabling organisms to anticipate daily recurring events, such as sunrise and sunset. Since the circadian period is not exactly 24 h and the environmental day length varies throughout the year, the clock must be periodically reset to align an organism’s physiology with the natural light/dark cycle. This synchronization, known as entrainment, is primarily regulated by nocturnal light, which can be replicated in laboratory settings using a 15 min light pulse (LP) and by assessing locomotor activity. An LP during the early part of the dark phase delays the onset of locomotor activity, resulting in a phase delay, whereas an LP in the late dark phase advances activity onset, causing a phase advance. The clock gene Period 2 (Per2) plays a key role in this process. To investigate its contributions, we examined the effects of Per2 deletion in neurons versus astrocytes using glia-specific GPer2 (Per2/GfapCre) knockout (KO) and neuronal-specific NPer2KO (Per2/NesCre) mice. All groups were subjected to Aschoff type II protocol, where an LP was applied at ZT14 or ZT22 and the animals were released into constant darkness. As control, no LP was applied. Phase shift, period, amplitude, total activity count, and rhythm instability were assessed. Our findings revealed that mice lacking Per2 in neurons (NPer2) exhibited smaller phase delays and larger phase advances compared to control animals. In contrast, mice with Per2 deletion specifically in glial cells including astrocytes (GPer2) displayed normal clock resetting. Interestingly, the absence of Per2 in either of the cell types resulted in a shorter circadian period compared to control animals. These results suggest that astrocytic Per2 is important for maintaining the circadian period but is not required for phase adaptation to light stimuli. Full article
(This article belongs to the Section Animal Basic Research)
Show Figures

Figure 1

16 pages, 12731 KiB  
Article
RNA-Seq Revealed the Effects of Cold Stress on Different Brain Regions of Leiocassis longirostris
by Senyue Liu, Qiang Li, Yongqiang Deng, Zhongwei Wang, Yang Feng, Zhongmeng Zhao, Han Zhao, Lu Zhang, Yuanliang Duan, Zhipeng Huang, Jian Zhou and Chengyan Mou
Animals 2025, 15(14), 2107; https://doi.org/10.3390/ani15142107 - 16 Jul 2025
Viewed by 239
Abstract
Cold shock represents a prevalent but harmful environmental stress factor that poses significant threats to fish survival and reproductive success. In fish, the brain acts as a central regulator of thermoregulatory processes. Nevertheless, how different brain regions respond molecularly to cold exposure remains [...] Read more.
Cold shock represents a prevalent but harmful environmental stress factor that poses significant threats to fish survival and reproductive success. In fish, the brain acts as a central regulator of thermoregulatory processes. Nevertheless, how different brain regions respond molecularly to cold exposure remains largely unknown. To address this, this study systematically investigated the effects of acute cold stress on five specific brain regions of Leiocassis longirostris using RNA-seq. The findings demonstrated that all five brain regions were significantly impacted by cold treatment, with the mesencephalon (MB) showing the most substantial changes. GO and KEGG enrichment analyses indicated that cold stress disrupted processes including gene expression regulation, circadian rhythms, and immune function within brain tissues. Through Weighted Gene Co-Expression Network Analysis (WGCNA), the MB was identified as the core responsive region, and the brain’s reaction to cold stress was strongly correlated with circadian rhythm, spliceosome, and ubiquitination. In summary, our investigation demonstrates that the MB represents a principal region for cold stress response in L. longirostris, involving alterations in circadian clocks, immune function, and inflammatory responses, alongside suppression of gene expression processes and ubiquitination-mediated proteolysis. Full article
Show Figures

Figure 1

17 pages, 1839 KiB  
Review
The Clock and the Brain: Circadian Rhythm and Alzheimer’s Disease
by Samaneh Ghorbani Shirkouhi, Ashkan Karimi, Seyed Sepehr Khatami, Ashkan Asgari Gashtrodkhani, Farzin Kamari, Morten Blaabjerg and Sasan Andalib
Curr. Issues Mol. Biol. 2025, 47(7), 547; https://doi.org/10.3390/cimb47070547 - 15 Jul 2025
Viewed by 477
Abstract
Alzheimer’s Disease (AD) is the most common type of dementia. The circadian system, which is controlled by the master clock in the Suprachiasmatic Nucleus (SCN) of the hypothalamus, is crucial for various physiological processes. Studies have shown that changes in the circadian rhythms [...] Read more.
Alzheimer’s Disease (AD) is the most common type of dementia. The circadian system, which is controlled by the master clock in the Suprachiasmatic Nucleus (SCN) of the hypothalamus, is crucial for various physiological processes. Studies have shown that changes in the circadian rhythms can deteriorate neurodegenerative diseases. Changes in the SCN are associated with cognitive decline in AD. The cognitive impairments in AD, especially memory dysfunctions, may be related to Circadian Rhythm Disturbances (CRDs). Moreover, rhythmic expression of clock genes is disrupted in AD patients. There is a circadian pattern of inflammatory processes in AD, and dysregulation of core clock genes promotes neuroinflammation. The present narrative review addresses the intricate link between CRDs and AD, revisiting the relevant cellular and molecular mechanisms. The association between CRDs and AD highlights the need for further investigation of the underlying mechanisms. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

12 pages, 1668 KiB  
Article
The PAS-B Domain of BMAL1 Controls Proliferation, Cellular Energetics, and Inflammatory Response in Human Monocytic Cell Line THP-1
by Yoko Gozu, Junichi Hosoi, Hiroaki Nagatomo, Kayako Ishimaru and Atsuhito Nakao
Int. J. Mol. Sci. 2025, 26(14), 6737; https://doi.org/10.3390/ijms26146737 - 14 Jul 2025
Viewed by 250
Abstract
Brain muscle ARNT-like1 (Bmal1) is a transcriptional factor, consisting of basic helix–loop–helix (bHLH) and PER-ARNT-SIM (PAS) domains, that plays a central role in circadian clock activity. However, the precise roles of the BMAL1-PAS domain, a circadian rhythm-regulating structure, remain unexplored in [...] Read more.
Brain muscle ARNT-like1 (Bmal1) is a transcriptional factor, consisting of basic helix–loop–helix (bHLH) and PER-ARNT-SIM (PAS) domains, that plays a central role in circadian clock activity. However, the precise roles of the BMAL1-PAS domain, a circadian rhythm-regulating structure, remain unexplored in monocytes. Here, we highlight the BMAL1-PAS domain as a key structure in monocyte pleiotropic functions by using human monocytic cell line THP-1. THP-1 cells lacking the BMAL1-PAS-B domain (THP-1#207) abrogated the circadian expression of core clock genes. THP-1#207 cells exhibited less proliferation, glycolysis and oxidative phosphorylation activity, and LPS-induced IL-1β production, but exhibited more production of LPS-induced IL-10 than THP-1 cells. A quantitative proteomics analysis revealed significant expression changes in ~10% metabolic enzymes in THP-1#207 cells compared to THP-1 cells, including reduction in a rate-limiting enzyme hexokinase2 (HK2) in the glycolytic pathway. Importantly, treatment of THP-1 with 2-deoxy-D-glucose (2-DG), an HK2 inhibitor, largely recapitulated the phenotypes of THP-1#207 cells. These findings suggest that the BMAL1-PAS-B domain is an important structure for the regulation of proliferation, cellular energetics, and inflammatory response in THP-1 cells, at least in part, via the control of glycolytic activity. Thus, the BMAL1-PAS-B domain may become a promising pharmacological target to control inflammation. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Figure 1

17 pages, 1598 KiB  
Article
Comparative Analysis of Diel and Circadian Eclosion Rhythms and Clock Gene Expression Between Sexes in the Migratory Moth Spodoptera frugiperda
by Changning Lv, Yibo Ren, Viacheslav V. Krylov, Yumeng Wang, Yuanyuan Li, Weidong Pan, Gao Hu, Fajun Chen and Guijun Wan
Insects 2025, 16(7), 705; https://doi.org/10.3390/insects16070705 - 9 Jul 2025
Viewed by 502
Abstract
The circadian clock orchestrates behavioral and molecular processes such as eclosion. Understanding eclosion timing may offer insights into circadian mechanisms underlying migratory timing. Here, we characterize the diel and circadian patterns of eclosion and core clock gene expression in the fall armyworm (FAW), [...] Read more.
The circadian clock orchestrates behavioral and molecular processes such as eclosion. Understanding eclosion timing may offer insights into circadian mechanisms underlying migratory timing. Here, we characterize the diel and circadian patterns of eclosion and core clock gene expression in the fall armyworm (FAW), Spodoptera frugiperda, a globally distributed migratory moth. Using a custom-designed eclosion monitoring system under 14 h light: 10 h dark (L14: D10) and constant darkness (DD) conditions, we observed robust diel eclosion rhythms peaking shortly after lights-off under L14: D10, which became delayed and damped over three consecutive days in DD. Males showed a tendency toward more dispersed emergence patterns and exhibited statistically distinguishable eclosion distributions from females under both conditions. Expression of five canonical clock genes (cyc, clk, tim, per, cry2) displayed significant 24 h rhythmicity, with generally higher mesors in males. However, sex-specific differences in amplitude and phase were detected only for clk and cyc under L14: D10, not in DD. These findings suggest that sex-specific differences in circadian regulation are limited. Nonetheless, subtle variations in clock gene output and emergence timing in the FAW population established in China may contribute to sex-specific ecological strategies in the novel migratory arena. Full article
(This article belongs to the Special Issue Travelers on the Wind: Migratory Insects as Emerging Research Models)
Show Figures

Figure 1

18 pages, 1436 KiB  
Article
Circulating Bacterial DNA as a Novel Blood-Based Biomarker in Type 2 Diabetes Mellitus (DM2): Results from the PROMOTERA Study
by Robertina Giacconi, Patrizia D’Aquila, Fabiola Olivieri, Davide Gentilini, Luciano Calzari, Carlo Fortunato, Gretta Veronica Badillo Pazmay, Mirko Di Rosa, Giada Sena, Elisabetta De Rose, Antonio Cherubini, Riccardo Sarzani, Roberto Antonicelli, Giuseppe Pelliccioni, Anna Rita Bonfigli, Roberta Galeazzi, Fabrizia Lattanzio, Giuseppe Passarino, Dina Bellizzi and Francesco Piacenza
Int. J. Mol. Sci. 2025, 26(14), 6564; https://doi.org/10.3390/ijms26146564 - 8 Jul 2025
Viewed by 370
Abstract
Blood bacterial DNA (BB-DNA) has been identified as a novel biomarker for metabolic dysfunction, yet its relationship with epigenetic features in type 2 diabetes mellitus (DM2) patients remains largely unexplored. This study investigated the relationship between BB-DNA and epigenetic, inflammatory, and aging-related markers [...] Read more.
Blood bacterial DNA (BB-DNA) has been identified as a novel biomarker for metabolic dysfunction, yet its relationship with epigenetic features in type 2 diabetes mellitus (DM2) patients remains largely unexplored. This study investigated the relationship between BB-DNA and epigenetic, inflammatory, and aging-related markers in 285 elderly both with and without DM2. BB-DNA levels were higher in DM2 patients than in non-diabetic subjects, with the highest levels in those with severe renal impairment. BB-DNA showed a positive association with plasma IL-1β, linking bacterial DNA to systemic inflammation. Epigenetic analysis revealed a negative correlation between BB-DNA and DNA methylation-based leukocyte telomere length, suggesting accelerated aging in DM2. Additionally, BB-DNA was positively associated with DNAm-based biological age estimators, particularly DNAmPhenoAge and DNAmAge Skin Blood Clock. BB-DNA also correlated with DNAmVEGFA and DNAmCystatin C, key markers of diabetic nephropathy and vascular dysfunction. Furthermore, BB-DNA levels were associated with hypomethylation of genes involved in inflammation (e.g., IL1β, TNFα, IFNγ), cellular senescence (p16, p21, TP53), and metabolic regulation (e.g., IGF1, SREBF1, ABCG1, PDK4). These associations suggest that increased BB-DNA may reflect and potentially promote a pro-inflammatory and pro-senescent epigenetic profile in DM2. Importantly, many of these associations remained significant after adjusting for diabetes status, supporting BB-DNA as a robust biomarker across clinical subgroups. These findings provide new insights into the relationship between BB-DNA, inflammation, and epigenetic aging in DM2, highlighting BB-DNA as a potential biomarker for disease progression and complications, particularly in relation to renal dysfunction and systemic inflammation. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 2067 KiB  
Article
Sex and Circadian Rhythm Dependent Behavioral Effects of Chronic Stress in Mice and Modulation of Clock Genes in the Prefrontal Cortex
by Jessica Mingardi, Mattia Giovenzana, Noemi Nicosia, Paulina Misztak, Alessandro Ieraci and Laura Musazzi
Int. J. Mol. Sci. 2025, 26(13), 6410; https://doi.org/10.3390/ijms26136410 - 3 Jul 2025
Viewed by 352
Abstract
Behavioral stress is a recognized triggering factor for systemic diseases, including psychiatric disorders. The stress response is subjected to circadian regulation and many factors shape the susceptibility to its maladaptive consequences, including the biological sex. Accordingly, circadian dysregulation of the stress response, often [...] Read more.
Behavioral stress is a recognized triggering factor for systemic diseases, including psychiatric disorders. The stress response is subjected to circadian regulation and many factors shape the susceptibility to its maladaptive consequences, including the biological sex. Accordingly, circadian dysregulation of the stress response, often occurring in a sexually dimorphic manner, is typically associated with psychiatric disorders. However, the interaction between stress, sex, circadian phases, and behavior is still largely unknown. Here, we used the chronic restraint stress (CRS) model in male and female mice to assess the impact of sex and circadian phases on the behavioral consequences of chronic stress. Animals were stressed either in the light or dark phase, and anxious-/depressive-/anhedonic-like behaviors were assessed. Associated transcriptional changes in clock genes were measured in the prefrontal cortex. A significant interaction of stress, sex, and circadian phase was found in most of the parameters evaluated, with no behavioral response to stress in males stressed in the dark phase, and an exaggerated response in females stressed in the dark phase compared to the light phase. We also found some molecular changes in corticosterone serum levels and expression of clock genes in the prefrontal cortex. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 1538 KiB  
Article
The CONSTANS-like 2 Gene Serves as a Pivotal Regulator of Flowering in Hemerocallis
by Chunjing Guan, Yike Gao, Ziyi Wang and Qixiang Zhang
Plants 2025, 14(13), 1996; https://doi.org/10.3390/plants14131996 - 30 Jun 2025
Viewed by 280
Abstract
Hemerocallis spp. exhibit distinct flower opening times, categorized into nocturnal and diurnal types. Previous studies have demonstrated that the circadian clock and CONSTANS (CO) genes play crucial roles in regulating flowering in Hemerocallis. However, the key genes that integrate flowering [...] Read more.
Hemerocallis spp. exhibit distinct flower opening times, categorized into nocturnal and diurnal types. Previous studies have demonstrated that the circadian clock and CONSTANS (CO) genes play crucial roles in regulating flowering in Hemerocallis. However, the key genes that integrate flowering pathways remain largely unknown. To address this gap, we identified potential homologs of the FLOWERING LOCUS T (FT) gene in Hemerocallis. A yeast one-hybrid assay revealed that HfCOL2 and HfLHY directly bind to the HfFT1 and HfFT2 promoters, thereby activating FT transcription. The expression analysis reveals that HfCOL2 expression rhythms not only display opposing patterns between nocturnal and diurnal opening types of Hemerocallis but also between leaf and flower tissues. The peak expression of HfCOL2 in flowers aligns closely with the respective opening times of diurnally and nocturnally flowering Hemerocallis. The overexpression of HfCOL2 in tobacco plants led to early flowering and prolonged flower longevity. In Hemerocallis, the HfCOL2 gene plays a pivotal role not only in photoperiod-induced flowering but also in the circadian rhythm-mediated regulation of flower opening time. Due to the limited availability of plant materials exhibiting distinct flower opening rhythms, research in this area has been constrained. Identifying the key genes in the flowering pathway of Hemerocallis can facilitate a better understanding of the mechanisms by which plants respond to circadian rhythms. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

18 pages, 2632 KiB  
Article
Cretaceous Connections Among Camel Cricket Lineages in the Himalaya Revealed Through Fossil-Calibrated Mitogenomic Phylogenetics
by Cheten Dorji, Mary Morgan-Richards and Steven A. Trewick
Insects 2025, 16(7), 670; https://doi.org/10.3390/insects16070670 - 27 Jun 2025
Viewed by 540
Abstract
The nocturnal, flightless camel crickets (Rhaphidophoridae) have a global distribution and are believed to have originated prior to the breakup of Pangea. We investigated the phylogeny and the timing of the radiation of East Asian species with mitogenomic data. Initially we analyzed a [...] Read more.
The nocturnal, flightless camel crickets (Rhaphidophoridae) have a global distribution and are believed to have originated prior to the breakup of Pangea. We investigated the phylogeny and the timing of the radiation of East Asian species with mitogenomic data. Initially we analyzed a large taxon dataset (n = 117) using available partial mitochondrial and nuclear DNA sequences to confirm the monophyly of subfamilies and current taxonomy. Our findings support the monophyly of each genus within the subfamily Aemodogryllinae, with a minor inconsistency between taxonomy and phylogeny resolved by resurrection of the genus Gymnaeta Adelung. Fossil-calibrated molecular clock analysis used 11,124 bp alignment of 13 complete mitochondrial protein-coding genes for 20 species of Rhaphidophoridae, with a focus on the neglected Rhaphidophorinae and Aemodogryllinae lineages. Divergence time estimates suggest that the most recent common ancestor of the family lived during the Early Jurassic (189 Mya ± 23 Mya) before Pangea broke into the supercontinents or possibly during the early stage of breakup when Gondwana and Laurasia were still connected by land. The two subfamilies, Rhaphidophorinae and Aemodogryllinae, that overlap in Asia are estimated to have diverged 138 Mya ± 17 Mya, well before the Late Cretaceous northern connection between America and Asia (the Bering Land Bridge). Thus, our extended sampling of species from East Asia and Oceania refutes the importance of continental drift in the evolution of this wingless orthopteran family. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Back to TopTop