The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection Sites
2.2. Molecular Data
2.3. Sequence Processing and Molecular Analyses
2.4. Phylogenetic and Network Analyses
2.5. Divergence Time Estimation and Demographic History
3. Results
3.1. Genetic Diversity
3.2. Interrelationships
3.3. Historical Demography
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMOVA | Analysis of Molecular Variance |
COI | Cytochrome Oxidase Subunit I |
COII | Cytochrome Oxidase Subunit II |
LWRh | Long-wavelength Rhodopsin |
SAMOVA | Spatial Analysis of Molecular Variance |
References
- Roderick, G.K. Geographic structure of insect populations: Gene flow, phylogeography, and their uses. Annu. Rev. Entomol. 1996, 41, 325–352. [Google Scholar] [CrossRef]
- Satler, J.D.; Carstens, B.C.; Garrick, R.C.; Espíndola, A. The phylogeographic shortfall in hexapods: A lot of leg work remaining. Insect Syst. Divers. 2021, 5, 1. [Google Scholar] [CrossRef]
- Weckstein, J.D.; Murdoch, J.D.; Takiya, D.M.; Reddell, J.R. Comparative phylogeography of two codistributed subgenera of cave crickets (Orthoptera: Rhaphidophoridae: Ceuthophilus spp.). J. Biogeogr. 2016, 43, 1450–1463. [Google Scholar] [CrossRef]
- Muñoz-Valencia, V.; Vélez-Martínez, G.A.; Montoya-Lerma, J.; Díaz, F. Role of the Andean uplift as an asymmetrical barrier to gene flow in the neotropical leaf-cutting ant Atta cephalotes. Biotropica 2021, 54, 191–204. [Google Scholar] [CrossRef]
- Gómez Díaz, J.A.; Lira-Noriega, A.; Villalobos, F. Expanding protected areas in a Neotropical hotspot. Int. J. Sustain. Dev. World Ecol. 2023, 30, 485–499. [Google Scholar] [CrossRef]
- Gómez-Díaz, J.A. Diversity Patterns of Herbaceous Angiosperms Along Gradients of Elevation and Forest Use Intensity in Central Veracruz, Mexico. Doctoral Dissertation, Georg-August-Universität Göttingen, Göttingen, Germany, 12 December 2017. [Google Scholar] [CrossRef]
- Loreto, D.; Esperón-Rodríguez, M.; Barradas, V.L. The climatic-environmental significance, status and socioeconomic perspective of the grown-shade coffee agroecosystems in the central mountain region of Veracruz, Mexico. Investig. Geogr. 2017, 92, 88–100. [Google Scholar] [CrossRef]
- Nolasco-Soto, J.; González-Astorga, J.; Espinosa de los Monteros, A.; Galante-Patiño, E.; Favila, M.E. Phylogeographic structure of Canthon cyanellus (Coleoptera: Scarabaeidae), a Neotropical dung beetle in the Mexican Transition Zone. Mol. Phylogenet Evol. 2017, 109, 180–190. [Google Scholar] [CrossRef]
- Reyes, J.A.; Espinosa de los Monteros, A.; Santiago-Jiménez, Q.J. Phylogeography of Falagonia mexicana Sharp, 1883 (Coleoptera, Staphylinidae, Aleocharinae). ZooKeys 2023, 1156, 107–131. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T. Does desertification diminish biodiversity? Enhancement of ant diversity by shrub invasion in southwestern USA. Divers. Distrib. 2005, 11, 45–55. [Google Scholar] [CrossRef]
- Rivas-Arancibia, S.P. Effect of disturbance on the ant community in a semiarid region of Central Mexico. Appl. Ecol. Environ. Res. 2014, 12, 703–716. [Google Scholar] [CrossRef]
- Aguirre, A.; Coates, R.; Cumplido-Barragán, G.; Campos-Villanueva, A.; Díaz-Castelazo, C. Morphological characterization of extrafloral nectaries and associated ants in tropical vegetation of Los Tuxtlas, Mexico. Flora 2013, 208, 147–156. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Wiens, J.A. Scavenging ant foraging behavior and variation in the scale of nutrient redistribution among semi-arid grasslands. J. Arid. Environ. 2003, 53, 373–386. [Google Scholar] [CrossRef]
- Campos-Navarrete, M.J.; Abdala-Roberts, L.; Munguía-Rosas, M.A.; Parra-Tabla, V. Are tree species diversity and genotypic diversity effects on insect herbivores mediated by ants? PLoS ONE 2015, 10, e0132671. [Google Scholar] [CrossRef] [PubMed]
- Oberski, J.T. First phylogenomic assessment of the amphitropical New World ant genus Dorymyrmex (Hymenoptera: Formicidae), a longstanding taxonomic puzzle. Insect Syst. Divers. 2022, 6, 8. [Google Scholar] [CrossRef]
- Oberski, J.T. Ultraconserved element (UCE) phylogenomics illuminates the evolutionary history and biogeography of Dorymyrmex pyramid ants. Syst. Entomol. 2024, 49, 352–368. [Google Scholar] [CrossRef]
- Singer-Sam, J.; Tanguay, R.L.; Rjggs, A.O. Use of Chelex to improve PCR signal from a small number of cells. Amplifications 1989, 3, 11. [Google Scholar]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. 2005, 1, 47–50. [Google Scholar] [CrossRef]
- Lynch, M.; Crease, T.J. The analysis of population survey data on DNA sequence variation. Mol. Biol. Evol. 1990, 7, 377–394. [Google Scholar] [CrossRef]
- Dupanloup, I.S.; Schneider, S.; Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 2002, 11, 2571–2581. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Anastasiou, I.; Vogler, A.P. Revisiting the insect mitochondrial molecular clock: The mid-Aegean trench calibration. Mol. Biol. Evol. 2010, 27, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Beerli, P. How to use migrate or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation; Bertorelle, G., Bruford, M.W., Hauffe, H.C., Rizzoli, A., Vernesi, C., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 42–79. [Google Scholar] [CrossRef]
- Godfrey, R.K.; Oberski, J.T.; Allmark, T.; Givens, C.; Hernandez-Rivera, J.; Gronenberg, W. Olfactory system morphology suggests colony size drives trait evolution in odorous ants (Formicidae: Dolichoderinae). Front. Ecol. Evol. 2021, 9, 733023. [Google Scholar] [CrossRef]
- Eyer, P.A.; Espinoza, E.M.; Blumenfeld, A.J.; Vargo, E.L. The underdog invader: Breeding system and colony genetic structure of the dark rover ant (Brachymyrmex patagonicus Mayr). Ecol. Evol. 2019, 9, 493–505. [Google Scholar] [CrossRef]
- Helms, J.A. The flight ecology of ants (Hymenoptera: Formicidae). Myrmecol. News 2018, 26, 19–30. [Google Scholar]
- Cronin, A.L.; Molet, M.; Doums, C.; Monnin, T.; Peeters, C. Recurrent evolution of dependent colony foundation across eusocial insects. Ann. Rev. Entomol. 2013, 58, 37–55. [Google Scholar] [CrossRef]
- Sundström, L.; Keller, L.; Chapuisat, M. Inbreeding and sex-biased gene flow in the ant Formica exsecta. Evolution 2003, 57, 1552–1561. [Google Scholar] [CrossRef]
- Carrasco-Núñez, G.; Rose, W.I. Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5–9.0 ka. J. Volcanol. Geotherm. Res. 1995, 69, 197–215. [Google Scholar] [CrossRef]
- Hoskuldsson, A.; Robin, C. Late Pleistocene to Holocene eruptive activity of Pico de Orizaba, Eastern Mexico. Bull. Volcanol. 1993, 55, 571–587. [Google Scholar] [CrossRef]
- Macias, J.L.; Arce, J.L. Volcanic activity in Mexico during the Holocene. In The Holocene and Anthropocene Environmental History in Mexico; Torrescano-Valle, N., Islebe, G.A., Roy, P.D., Eds.; Springer: Cham, Switzerland, 2019; pp. 129–170. [Google Scholar] [CrossRef]
- Rodríguez, S.R.; Morales-Barrera, W.; Layer, P.; González-Mercado, E. A Quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: Geology, distribution and morphology of the volcanic vents. J. Volcanol. Geotherm. Res. 2010, 197, 149–166. [Google Scholar] [CrossRef]
- Derkarabetian, S.; Ledford, J.; Hedin, M. Genetic diversification without obvious genitalic morphological divergence in harvestmen (Opiliones, Laniatores, Sclerobunus robustus) from montane sky islands of western North America. Mol. Phylogenet Evol. 2011, 61, 844–853. [Google Scholar] [CrossRef]
- Caballero, M.; Lozano-García, S.; Vázquez Romero, M.; Sosa, S. Droughts during the last 2000 years in a tropical sub-humid environment in central Mexico. J. Quat. Sci. 2023, 38, 767–775. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, A.; Caballero, M.; Roy, P.; Ortega, B.; Vázquez-Castro, G.; Lozano-García, S. Climatic variability and human impact during the last 2000 years in western Mesoamerica: Evidence of late Classic (AD 600–900) and Little Ice Age drought events. Clim. Past. 2015, 11, 1239–1248. [Google Scholar] [CrossRef]
- Cuezzo, F.; Guerrero, R.J. The ant genus Dorymyrmex Mayr (Hymenoptera: Formicidae: Dolichoderinae) in Colombia. Psyche 2012, 2012, 516058. [Google Scholar] [CrossRef]
- Brouat, C.; Sennedot, F.; Audiot, P.; Leblois, R.; Rasplus, J.Y. Fine-scale genetic structure of two carabid species with contrasted levels of habitat specialization. Mol. Ecol. 2003, 12, 1731–1745. [Google Scholar] [CrossRef]
- Bretman, A.; Rodríguez-Muñoz, R.; Walling, C.; Slate, J.; Tregenza, T. Fine-scale population structure, inbreeding risk and avoidance in a wild insect population. Mol. Ecol. 2011, 20, 3045–3055. [Google Scholar] [CrossRef] [PubMed]
Site | Nest | Latitude | Longitude | Altitude | Habitat |
---|---|---|---|---|---|
Apazapan | 01 | 19.3187 | −96.7159 | 476 m | Evergreen forest and oak woodland |
02 | 19.3195 | −96.7169 | |||
03 | 19.3206 | −96.7192 | |||
04 | 19.3254 | −96.7332 | |||
Cardel | 01 | 19.3712 | −96.3763 | 22 m | Subdeciduous tropical forest. |
02 | 19.3682 | −96.3825 | |||
03 | 19.3646 | −96.3828 | |||
04 | 19.3661 | −96.3799 | |||
Chavarrillo | 01 | 19.4228 | −96.7857 | 811 m | Foothill subevergreen forest |
02 | 19.4229 | −96.7927 | |||
03 | 19.4226 | −96.7872 | |||
04 | 19.4202 | −96.7860 | |||
El Crucero | 01 | 19.3170 | −96.5223 | 132 m | Low deciduous forest |
02 | 19.3167 | −96.5267 | |||
03 | 19.3155 | −96.5278 | |||
04 | 19.3155 | −96.5268 | |||
Jalcomulco | 01 | 19.3296 | −96.7656 | 418 m | Subdeciduous tropical forest in river |
02 | 19.3292 | −96.7628 | canyon | ||
03 | 19.3286 | −96.7574 | |||
04 | 19.3325 | −96.7650 | |||
El Lencero | 01 | 19.4912 | −96.8182 | 1042 m | Cloud forest and secondary oak |
02 | 19.4871 | −96.8183 | woodlands | ||
03 | 19.4875 | −96.8163 | |||
04 | 19.4897 | −96.8155 | |||
La Mancha | 01 | 19.5903 | −96.3800 | 0 m | Mangroves, coastal dunes |
02 | 19.5903 | −96.3793 | |||
03 | 19.5915 | −96.3793 | |||
04 | 19.5962 | −96.3773 | |||
San Isidro | 01 | 19.3625 | −96.9046 | 1116 m | Montane cloud forest |
02 | 19.6053 | −96.5421 | |||
03 | 19.6036 | −96.9014 | |||
04 | 19.6064 | −96.8998 | |||
Teocelo | 01 | 19.3817 | −96.9812 | 1187 m | Montane cloud forest |
02 | 19.3961 | −96.9824 | |||
03 | 19.3902 | −96.9572 | |||
04 | 19.3902 | −96.9572 | |||
Tuzamapan | 01 | 19.3882 | −96.8760 | 869 m | Montane cloud and subevergreen |
02 | 19.3945 | −96.8689 | forest | ||
03 | 19.3979 | −96.8711 | |||
04 | 19.3969 | −96.8642 | |||
Vaquería | 01 | 19.4138 | −96.8367 | 864 m | Montane cloud and subevergreen |
02 | 19.4143 | −96.8369 | forest | ||
03 | 19.4142 | −96.8389 | |||
04 | 19.4049 | −96.8349 | |||
Xalapa | 01 | 19.5121 | −96.9431 | 1355 m | Montane cloud forest |
02 | 19.5125 | −96.9452 | |||
03 | 19.5127 | −96.9440 | |||
04 | 19.5128 | −96.9456 | |||
Xico | 01 | 19.4307 | −97.0142 | 1351 m | Montane cloud forest |
02 | 19.4286 | −97.0032 | |||
03 | 19.4027 | −96.9935 | |||
04 | 19.4086 | −96.9897 |
Population | n | S | Ts | Tv | π | SD π | H | Hd | SD Hd | Fu’s F | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Apazapan | 4 | 1 | 0 | 1 | 0.0003 | 0.0004 | 2 | 0.50 | 0.27 | 0.172 | 0.33 |
Cardel | 4 | 9 | 9 | 0 | 0.0029 | 0.0022 | 2 | 0.50 | 0.27 | 3.777 | 0.18 |
Chavarrillo | 4 | 13 | 12 | 1 | 0.0042 | 0.0030 | 2 | 0.50 | 0.27 | 4.604 | 0.12 |
El Crucero | 4 | 12 | 12 | 0 | 0.0039 | 0.0028 | 3 | 0.83 | 0.22 | 1.792 | 0.43 |
Jalcomulco | 4 | 12 | 10 | 2 | 0.0040 | 0.0029 | 3 | 0.83 | 0.22 | 1.835 | 0.42 |
Lencero | 4 | 3 | 3 | 0 | 0.0010 | 0.0009 | 3 | 0.83 | 0.22 | −0.288 | 0.34 |
La Mancha | 4 | 1 | 0 | 1 | 0.0003 | 0.0003 | 2 | 0.40 | 0.24 | 0.090 | 0.29 |
San Isidro | 4 | 1 | 1 | 0 | 0.0003 | 0.0004 | 2 | 0.50 | 0.27 | 0.172 | 0.34 |
Teocelo | 4 | 15 | 15 | 0 | 0.0051 | 0.0036 | 4 | 1.00 | 0.18 | 0.043 | 0.31 |
Tuzamapan | 4 | 2 | 2 | 0 | 0.0006 | 0.0006 | 3 | 0.83 | 0.22 | −0.887 | 0.25 |
Vaquería | 4 | 0 | 0 | 0 | 0.0000 | 0.0000 | 1 | 0.00 | 0.00 | NA | NA |
Xalapa | 4 | 1 | 1 | 0 | 0.0003 | 0.0003 | 2 | 0.40 | 0.24 | 0.090 | 0.39 |
Xico | 4 | 11 | 11 | 0 | 0.0036 | 0.0026 | 3 | 0.83 | 0.22 | 1.655 | 0.44 |
Global | 52 | 42 | 39 | 3 | 0.0055 | 0.0003 | 21 | 0.92 | 0.022 | −1.732 | 0.06 |
Apa | Car | Cha | Cru | Jal | Len | Man | SIs | Teo | Tuz | Vaq | Xal | Xic | Nests | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hap_01 | 3 | – | 1 | – | 1 | – | – | 3 | – | – | – | – | – | 8 |
Hap_02 | 1 | – | – | – | 2 | – | – | – | – | – | – | – | – | 3 |
Hap_03 | – | 1 | – | – | – | – | – | – | – | – | – | – | – | 1 |
Hap_04 | – | 3 | – | – | – | – | – | – | – | – | – | – | – | 3 |
Hap_05 | – | – | 3 | – | – | 1 | – | – | – | – | – | – | – | 4 |
Hap_06 | – | – | – | 2 | – | – | – | – | 1 | – | – | – | – | 3 |
Hap_07 | – | – | – | 1 | – | – | – | – | – | – | – | – | – | 1 |
Hap_08 | – | – | – | 1 | – | – | 4 | – | – | – | – | – | – | 5 |
Hap_09 | – | – | – | – | – | 1 | – | – | – | – | – | – | – | 1 |
Hap_10 | – | – | – | – | – | 2 | – | – | – | – | – | – | – | 2 |
Hap_11 | – | – | – | – | 1 | – | – | – | – | – | – | – | – | 1 |
Hap_12 | – | – | – | – | – | – | 1 | – | – | – | – | – | – | 1 |
Hap_13 | – | – | – | – | – | – | – | 1 | – | – | – | – | – | 1 |
Hap_14 | – | – | – | – | – | – | – | – | 1 | – | – | – | 1 | 2 |
Hap_15 | – | – | – | – | – | – | – | – | 1 | – | – | – | – | 1 |
Hap_16 | – | – | – | – | – | – | – | – | 1 | – | – | – | – | 1 |
Hap_17 | – | – | – | – | – | – | – | – | – | 2 | 4 | 4 | 2 | 12 |
Hap_18 | – | – | – | – | – | – | – | – | – | 1 | – | – | – | 1 |
Hap_19 | – | – | – | – | – | – | – | – | – | 1 | – | – | – | 1 |
Hap_20 | – | – | – | – | – | – | – | – | – | – | – | 1 | – | 1 |
Hap_21 | – | – | – | – | – | – | – | – | – | – | – | – | 1 | 1 |
Variation Source | DF | Sum of Squares | Variance Components | % of Variation |
---|---|---|---|---|
Among groups | 3 | 143.5 | 3.85 * | 69.72 |
Populations within groups | 9 | 19.6 | 0.16 * | 2.86 |
Within populations | 41 | 62.1 | 1.51 * | 27.42 |
Total | 53 | 225.1 | 5.52 * |
To/From | Group I | Group II | Group III | Group IV |
---|---|---|---|---|
Group I | − | 326 | 78 | 183 |
Group II | 231 | − | 238 | 183 |
Group III | 135 | 459 | − | 268 |
Group IV | 545 | 776 | 666 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Lazaga, M.; Espinosa de los Monteros, A. The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico. Insects 2025, 16, 785. https://doi.org/10.3390/insects16080785
Gómez-Lazaga M, Espinosa de los Monteros A. The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico. Insects. 2025; 16(8):785. https://doi.org/10.3390/insects16080785
Chicago/Turabian StyleGómez-Lazaga, Maria, and Alejandro Espinosa de los Monteros. 2025. "The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico" Insects 16, no. 8: 785. https://doi.org/10.3390/insects16080785
APA StyleGómez-Lazaga, M., & Espinosa de los Monteros, A. (2025). The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico. Insects, 16(8), 785. https://doi.org/10.3390/insects16080785