Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = gas-metal interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 1102
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 327
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

19 pages, 7616 KiB  
Article
Size-Selective Adsorption Phenomena and Kinetic Behavior of Alcohol Homologs in Metal–Organic Framework QCM Sensors: Reconciling Apparent Contradictions
by Wenqian Gao, Wenjie Xin and Xueliang Mu
Chemosensors 2025, 13(8), 269; https://doi.org/10.3390/chemosensors13080269 - 23 Jul 2025
Viewed by 275
Abstract
In this study, we systematically investigated the adsorption behavior of a titanium-based metal–organic framework (MOF) sensing layer on five primary alcohol homologs using the quartz crystal microbalance (QCM) technique. Unexpectedly, response signals were significantly enhanced for molecules exceeding the framework’s pore dimensions, contradicting [...] Read more.
In this study, we systematically investigated the adsorption behavior of a titanium-based metal–organic framework (MOF) sensing layer on five primary alcohol homologs using the quartz crystal microbalance (QCM) technique. Unexpectedly, response signals were significantly enhanced for molecules exceeding the framework’s pore dimensions, contradicting conventional molecular sieving models. Further investigations revealed that the adsorption time constant (τa) is linearly proportional to the molecular diameter (R2=0.952) and the integral response (AUC) increases almost exponentially with the molecular weight (R2=0.891). Although the effective diffusion coefficient (Deff) decreases with increasing molecular size (Deffd5.96, R2=0.981), the normalized diffusion hindrance ratio (Deff/Dgas) decreases logarithmically with an increasing diameter. Larger responses result from stronger host–guest interactions with the framework despite significant diffusion limitations for larger molecules. These findings demonstrate the synergistic regulation of adsorption and diffusion in MOF-QCM systems. Our investigation experimentally elucidates the ’size-selectivity paradox’ in microporous sensing interfaces and establishes a quantitative framework for optimizing sensor performance through balanced control of diffusion kinetics and interfacial interactions in similar materials. Full article
Show Figures

Figure 1

18 pages, 4038 KiB  
Article
Highly Efficient and Stable Ni-Cs/TS-1 Catalyst for Gas-Phase Propylene Epoxidation with H2 and O2
by Ziyan Mi, Huayun Long, Yuhua Jia, Yue Ma, Cuilan Miao, Yan Xie, Xiaomei Zhu and Jiahui Huang
Catalysts 2025, 15(7), 694; https://doi.org/10.3390/catal15070694 - 21 Jul 2025
Viewed by 400
Abstract
The development of non-noble metal catalysts for gas-phase propylene epoxidation with H2/O2 remains challenging due to their inadequate activity and stability. Herein, we report a Cs+-modified Ni/TS-1 catalyst (9%Ni-Cs/TS-1), which exhibits unprecedented catalytic performance, giving a state-of-the-art PO [...] Read more.
The development of non-noble metal catalysts for gas-phase propylene epoxidation with H2/O2 remains challenging due to their inadequate activity and stability. Herein, we report a Cs+-modified Ni/TS-1 catalyst (9%Ni-Cs/TS-1), which exhibits unprecedented catalytic performance, giving a state-of-the-art PO formation rate of 382.9 gPO·kgcat−1·h−1 with 87.8% selectivity at 200 °C. The catalyst stability was sustainable for 150 h, far surpassing reported Ni-based catalysts. Ni/TS-1 exhibited low catalytic activity. However, the Cs modification significantly enhanced the performance of Ni/TS-1. Furthermore, the intrinsic reason for the enhanced performance was elucidated by multiple techniques such as XPS, N2 physisorption, TEM, 29Si NMR, NH3-TPD-MS, UV–vis, and so on. The findings indicated that the incorporation of Cs+ markedly boosted the reduction of Ni, enhanced Ni0 formation, strengthened Ni-Ti interactions, reduced acid sites to inhibit PO isomerization, improved the dispersion of Ni nanoparticles, reduced particle size, and improved the hydrophobicity of Ni/TS-1 to facilitate propylene adsorption/PO desorption. The 9%Ni-Cs/TS-1 catalyst demonstrated exceptional performance characterized by a low cost, high activity, and long-term stability, offering a viable alternative to Au-based systems. Full article
Show Figures

Graphical abstract

13 pages, 933 KiB  
Article
Accumulation Patterns and Health Risk Assessment of Trace Elements in Intermuscular Bone-Free Crucian Carp
by Shizhan Tang, Na Li, Zhipeng Sun, Ting Yan, Tingting Zhang, Huan Xu, Zhongxiang Chen, Dongli Qin and Youyi Kuang
Toxics 2025, 13(7), 595; https://doi.org/10.3390/toxics13070595 - 16 Jul 2025
Viewed by 339
Abstract
This study investigated the accumulation characteristics and associated health risks of 11 trace elements (Al, Rb, Cr, Ni, Mo, Sr, Pb, Ba, Ag, As, and Ga) in four crucian carp varieties: gene-edited intermuscular bone-free crucian carp (Carassius auratus, WUCI) and its sibling [...] Read more.
This study investigated the accumulation characteristics and associated health risks of 11 trace elements (Al, Rb, Cr, Ni, Mo, Sr, Pb, Ba, Ag, As, and Ga) in four crucian carp varieties: gene-edited intermuscular bone-free crucian carp (Carassius auratus, WUCI) and its sibling wild-type (Carassius auratus, WT), Fangzheng silver crucian carp (Carassius gibelio var Fangzheng, FZYJ), and Songpu silver crucian carp (Carassius gibelio var Songpu, SPYJ). Results showed that Al and Rb were the most abundant elements across all groups. WUCI exhibited distinct accumulation patterns, including significantly higher hepatic Mo concentrations (0.265 ± 0.032 mg/kg) and muscle/liver Rb levels (muscle: 8.74 ± 1.21 mg/kg; liver: 12.56 ± 2.05 mg/kg) compared to other varieties (p < 0.05), which supports the hypothesis of genotype-specific differences in heavy metal accumulation. Correlation analysis revealed that WUCI exhibited similar elemental interactions with WT and SPYJ (e.g., Al-Ni positive correlation, |rs| ≥ 0.8), while SPYJ displayed distinct patterns with fifteen negative correlations compared to three to five in others varieties, suggesting a potential alteration in elemental homeostasis. Pollution index (Pi) assessments indicated mild contamination for Pb in SPYJ liver (Pi = 0.265) and Cr/As in WUCI muscle (Pi = 0.247/0.218). Despite these values, all hazard indices remained below the established safety thresholds (THQ < 0.1, HI < 0.25, TCR < 10−6), reinforcing the overall safety of the tested fish. Notably, muscle As levels (0.86 ± 0.15 mg/kg) exceeded hepatic concentrations (0.52 ± 0.09 mg/kg), potentially due to differential detoxification mechanisms. These findings demonstrate the food safety of all tested varieties, while highlighting genotype-specific metabolic adaptations, providing critical data for evaluating gene edited aquatic products. Full article
(This article belongs to the Special Issue Effects of Toxic Contaminants on Fish Behaviours)
Show Figures

Graphical abstract

20 pages, 4487 KiB  
Article
Investigation on Corrosion-Induced Wall-Thinning Mechanisms in High-Pressure Steam Pipelines Based on Gas–Liquid Two-Phase Flow Characteristics
by Guangyin Li, Wei He, Pengyu Zhang, Hu Wang and Zhengxin Wei
Processes 2025, 13(7), 2096; https://doi.org/10.3390/pr13072096 - 2 Jul 2025
Viewed by 310
Abstract
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with [...] Read more.
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with particular emphasis on the mechanisms of void fraction and inner wall surface roughness. Research reveals that an increased void fraction significantly enhances flow turbulence and centrifugal effects, resulting in elevated pressure and Discrete Phase Model (DPM) concentration at the bend, thereby intensifying erosion phenomena. Simultaneously, the turbulence generated by bubble collapse at the bend promotes the accumulation and detachment of corrosion products, maintaining a cyclic process of erosion and corrosion that accelerates wall thinning. Furthermore, the increased surface roughness of the inner bend wall exacerbates the corrosion process. The rough surface alters local flow characteristics, leading to changes in pressure distribution and DPM concentration accumulation points, subsequently accelerating corrosion progression. Energy-Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) analyses reveal changes in the chemical composition and microstructural characteristics of corrosion products. The results indicate that the porous structure of oxide films fails to effectively protect against corrosive media, while bubble impact forces damage the oxide films, exposing fresh metal surfaces and further accelerating the corrosion process. Comprehensive analysis demonstrates that the interaction between void fraction and surface roughness significantly intensifies wall thinning, particularly under conditions of high void fraction and high roughness, where pressure and DPM concentration at the bend may reach extreme values, further increasing corrosion risk. Therefore, optimization of void fraction and surface roughness, along with the application of corrosion-resistant materials and surface treatment technologies, should be considered in pipeline design and operation to mitigate corrosion risks. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 3028 KiB  
Article
Revolutionizing Hydrogen Production: Unveiling the Role of Liquid Metals in Methane Pyrolysis over Iron Catalysts Supported on Titanium Dioxide and Alumina
by Hamid Ahmed, Amal BaQais, Fekri Abdulraqeb Ahmed Ali, Ahmed I. Osman, Anis H. Fakeeha, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Syed Farooq Adil, Tahani Saad Algarni and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 631; https://doi.org/10.3390/catal15070631 - 27 Jun 2025
Viewed by 492
Abstract
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and [...] Read more.
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and alumina composite to improve this process even more. In a fixed-bed reactor operating at 800 °C and atmospheric pressure, all catalyst activities for methane decomposition were thoroughly assessed while keeping the gas hourly space velocity at 6 L/g h. Surface area and porosity, H2-temperature programmed reduction/oxidation, X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and thermogravimetry analysis were utilized to investigate the physicochemical properties of the catalyst. The result showed that iron supported on a titanium-alumina catalyst exhibited higher activity, stability, and reproducibility with a methane conversion of 90% and hydrogen production of 81% after three cycles, with 240 min for each cycle and stability for 480 min. In contrast, the liquid metal-promoted catalysts improved the metal-support interaction and textural properties, such as surface area, pore volume, and particle dispersion of the catalysts. Still, the catalytic efficiency significantly improved. However, the gallium-promoted catalyst displayed excellent reusability. The characterization of the spent catalyst proved that both the iron supported on a titanium-alumina and its gallium-promoted derivative produced graphitic carbon; on the contrary, the indium-promoted catalyst produced amorphous carbon. These results demonstrate how liquid metal promoters can be used to adjust the characteristics of catalysts, providing opportunities for improved reusability and regulated production of carbon byproducts during methane decomposition. Full article
Show Figures

Figure 1

19 pages, 5729 KiB  
Article
Highly Engineered Cr-In/H-SSZ-39 Catalyst for Enhanced Performance in CH4-SCR of NOx
by Jiuhu Zhao, Jingjing Jiang, Guanyu Chen, Meng Wang, Xiaoyuan Zuo, Yanjiao Bi and Rongshu Zhu
Molecules 2025, 30(13), 2691; https://doi.org/10.3390/molecules30132691 - 21 Jun 2025
Viewed by 365
Abstract
The selective catalytic reduction of NOx with CH4 (CH4-SCR) holds the potential to simultaneously abate harmful NOx and CH4 greenhouse gases. In this study, a series of bimetallic M-In/H-SSZ-39 catalysts (where M represents Cr, Co, Ce, and [...] Read more.
The selective catalytic reduction of NOx with CH4 (CH4-SCR) holds the potential to simultaneously abate harmful NOx and CH4 greenhouse gases. In this study, a series of bimetallic M-In/H-SSZ-39 catalysts (where M represents Cr, Co, Ce, and Fe) were prepared via an ion exchange method and subsequently evaluated for their CH4-SCR activity. The influences of the preparation parameters, including the metal ion concentration and calcination temperature, as well as the operating conditions, such as the CH4/NO ratio, O2 concentration, water vapor content, and gas hourly space velocity (GHSV), on the catalytic activity of the optimal Cr-In/H-SSZ-39 catalyst were meticulously examined. The results revealed that the Cr-In/H-SSZ-39 catalyst exhibited peak CH4-SCR catalytic performance when the Cr(NO3)3 concentration was 0.0075 M, the In(NO3)3 concentration was 0.066 M, and the calcination temperature was 500 °C. Under optimal operating conditions, namely GHSV of 10,000 h−1, 400 ppm NO, 800 ppm CH4, 15 vol% O2, and 6 vol% H2O, the NOx conversion rate reached 93.4%. To shed light on the excellent performance of Cr-In/H-SSZ-39 under humid conditions, a comparative analysis of the crystalline phase, chemical composition, pore structure, surface chemical state, surface acidity, and redox properties of Cr-In/H-SSZ-39 and In/H-SSZ-39 was conducted. The characterization results indicated that the incorporation of Cr into In/H-SSZ-39 enhanced its acidity and also facilitated the generation of InO+ active species, which promoted the oxidation of NO and the activation of CH4, respectively. A synergistic effect was observed between Cr and In species, which significantly improved the redox properties of the catalyst. Consequently, the activated CH4 could further interact with InO+ to produce carbon-containing intermediates such as HCOO, which ultimately reacted with nitrate-based intermediates to yield N2, CO2, and H2O. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

29 pages, 8644 KiB  
Review
Recent Advances in Resistive Gas Sensors: Fundamentals, Material and Device Design, and Intelligent Applications
by Peiqingfeng Wang, Shusheng Xu, Xuerong Shi, Jiaqing Zhu, Haichao Xiong and Huimin Wen
Chemosensors 2025, 13(7), 224; https://doi.org/10.3390/chemosensors13070224 - 21 Jun 2025
Viewed by 820
Abstract
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing [...] Read more.
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing on their fundamental working mechanisms, sensing material design, device architecture optimization, and intelligent system integration. These sensors primarily operate based on changes in electrical resistance induced by interactions between gas molecules and sensing materials, including physical adsorption, charge transfer, and surface redox reactions. In terms of materials, metal oxide semiconductors, conductive polymers, carbon-based nanomaterials, and their composites have demonstrated enhanced sensitivity and selectivity through strategies such as doping, surface functionalization, and heterojunction engineering, while also enabling reduced operating temperatures. Device-level innovations—such as microheater integration, self-heated nanowires, and multi-sensor arrays—have further improved response speed and energy efficiency. Moreover, the incorporation of artificial intelligence (AI) and Internet of Things (IoT) technologies has significantly advanced signal processing, pattern recognition, and long-term operational stability. Machine learning (ML) algorithms have enabled intelligent design of novel sensing materials, optimized multi-gas identification, and enhanced data reliability in complex environments. These synergistic developments are driving resistive gas sensors toward low-power, highly integrated, and multifunctional platforms, particularly in emerging applications such as wearable electronics, breath diagnostics, and smart city infrastructure. This review concludes with a perspective on future research directions, emphasizing the importance of improving material stability, interference resistance, standardized fabrication, and intelligent system integration for large-scale practical deployment. Full article
Show Figures

Figure 1

14 pages, 2866 KiB  
Article
Selective Reduction of Iron from Iron–Manganese Ore of the Keregetas Deposit Using Hydrogen
by Nurlybai Kosdauletov, Assylbek Nurumgaliyev, Bakyt Zhautikov, Bakyt Suleimen, Galymzhan Adilov, Bauyrzhan Kelamanov, Konstantin Smirnov, Talgat Zhuniskaliyev, Yerbol Kuatbay, Gulzat Bulekova and Assylbek Abdirashit
Metals 2025, 15(7), 691; https://doi.org/10.3390/met15070691 - 20 Jun 2025
Viewed by 314
Abstract
This study presents the results of the solid-state reduction of iron–manganese ore from the Keregetas deposit (Kazakhstan) using hydrogen as a reductant. The findings demonstrate that hydrogen is an effective and environmentally friendly reducing agent, enabling selective reduction of iron. The investigated iron–manganese [...] Read more.
This study presents the results of the solid-state reduction of iron–manganese ore from the Keregetas deposit (Kazakhstan) using hydrogen as a reductant. The findings demonstrate that hydrogen is an effective and environmentally friendly reducing agent, enabling selective reduction of iron. The investigated iron–manganese ore exhibits a complex mineralogical composition comprising oxides of Fe, Mn, Si, and aluminosilicate complex phases. X-ray diffraction (XRD) analysis of the raw ore confirmed the presence of goethite, hematite, quartzite, and MnO2 as the primary mineral phases. Oxidative roasting induced the dehydration of goethite and its conversion to hematite, along with the formation of Mn2O3 and Mn3O4 phases. The detection of Mn7SiO12 indicates interaction between manganese and silica under high-temperature oxidation conditions. Reduction experiments were conducted in an RB Automazione MM 6000 laboratory furnace at temperatures ranging from 700 to 1100 °C, with a holding time of 60 min and a hydrogen flow rate of 0.5 L/min. Results revealed high selectivity of hydrogen reduction: at 700–800 °C, iron and arsenic were predominantly reduced, as evidenced by the emergence of a metallic Fe-containing phase, while oxides of Mn, Si, Ba, and Al remained in the residue. Increasing the temperature to 900–1000 °C resulted in partial reduction of manganese. At 1100 °C, a decrease in the intensity of the metallic phase was observed, likely due to sintering of ore particles and reduced gas permeability. The reduced metal and oxides were readily separable by melting. These findings provide a basis for developing processing schemes for beneficiation and hydrometallurgical treatment of iron–manganese ores from Kazakhstan. Full article
Show Figures

Figure 1

14 pages, 3059 KiB  
Article
Effect of Hydrogen and Hydrogen-Blended Natural Gas on Additive-Manufactured 316L Stainless Steel in Ambient Oil and Gas Environments
by Gerardo Gamboa, Ali Babakr and Marcus L. Young
Metals 2025, 15(7), 689; https://doi.org/10.3390/met15070689 - 20 Jun 2025
Viewed by 330
Abstract
For over five decades, blending hydrogen into existing natural gas pipelines has been explored as a potential solution to reduce greenhouse gas emissions. Despite its promise, implementing this approach has been slow due to concerns about hydrogen embrittlement (HE) and its interactions with [...] Read more.
For over five decades, blending hydrogen into existing natural gas pipelines has been explored as a potential solution to reduce greenhouse gas emissions. Despite its promise, implementing this approach has been slow due to concerns about hydrogen embrittlement (HE) and its interactions with various metals. Stainless steel alloys like 316L are commonly used in hydrogen service due to their superior resistance to HE. However, the impact of additive manufacturing (AM) on 316L’s susceptibility to HE when subjected to gas charging has not been thoroughly investigated. To fill this knowledge gap, we created conventionally manufactured and AM 316L tensile bars and solubility specimens, which were then exposed to hydrogen-blended natural gas at 10 MPa with a 50% blend and 100% pure H2. Both conventionally manufactured and additively manufactured specimens had as-received/printed samples that were used as controls. The samples underwent mechanical evaluation through tensile testing and hot chemical extraction to assess hydrogen solubility. Further analysis revealed significant changes in the microstructure near the fracture area of the soaked samples using scanning electron microscope fractography and metallography. These findings were compared with our previous work on traditionally produced 316L bar stock, which demonstrated that AM processing conditions can yield superior performance in terms of resistance to HE. Notably, this study provides valuable insights into the effects of AM on 316L’s susceptibility to HE when subjected to gas charging. The results have significant implications for the development and implementation of AM 316L for hydrogen/natural gas applications in pressure regulators when AM processing conditions are well-controlled. This article is a revised and expanded version of a paper entitled “Effect of Hydrogen-Blended Natural Gas on Additive Manufactured 316L Stainless Steel in Pressure Regulator Environments”, which was presented at TMS in Las Vegas, March 2025. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals and Alloys)
Show Figures

Figure 1

14 pages, 2670 KiB  
Communication
The Potential of MN4-GPs (M = Mn, Fe, Co, Ni, Cu, Mo) as Adsorbents for the Efficient Separation of CH4 from CO2 and H2S
by Shiqian Wei, Xinyu Tian, Zhen Rao, Chunxia Wang, Rui Tang, Ying He, Yu Luo, Qiang Fan, Weifeng Fan and Yu Hu
Materials 2025, 18(12), 2907; https://doi.org/10.3390/ma18122907 - 19 Jun 2025
Viewed by 337
Abstract
Carbon dioxide (CO2) and hydrogen sulfide (H2S) as harmful gases are always associated with methane (CH4) in natural gas, biogas, and landfill gas. Given that chemisorption and physisorption are the key gas separation technologies in industry, selecting [...] Read more.
Carbon dioxide (CO2) and hydrogen sulfide (H2S) as harmful gases are always associated with methane (CH4) in natural gas, biogas, and landfill gas. Given that chemisorption and physisorption are the key gas separation technologies in industry, selecting appropriate adsorbents is crucial to eliminate these harmful gases. The adsorption of CH4, CO2, and H2S has been studied based on the density functional theory (DFT) in this work to evaluate the feasibility of transition metal (M = Mn, Fe, Co, Ni, Cu, Mo) porphyrin-like moieties embedded in graphene sheets (MN4-GPs) as adsorbents. It was found that the interactions between gas molecules and MN4-GPs (M = Mn, Fe, Co, Ni, Cu, Mo) are different. The weaker interactions between CH4 and MN4-GPs (M = Co, Ni, Cu, Mo) than those between CO2 and MN4-GPs or between H2S and MN4-GPs are beneficial to the separation of CH4 from CO2 and H2S. The maximum difference in the interactions between gas molecules and MoN4-GPs means that MoN4-GPs have the greatest potential to become adsorbents. The different interfacial interactions are related to the amount of charge transfer, which could promote the formation of bonds between gas molecules and MN4-GPs to effectively enhance the interfacial interactions. Full article
Show Figures

Figure 1

13 pages, 1877 KiB  
Article
Enhanced C3H6O and CO2 Sensory Properties of Nickel Oxide-Functionalized/Carbon Nanotube Composite: A Comprehensive Theoretical Study
by Evgeniy S. Dryuchkov, Sergey V. Boroznin, Irina V. Zaporotskova, Natalia P. Boroznina, Govindhasamy Murugadoss and Shaik Gouse Peera
J. Compos. Sci. 2025, 9(6), 311; https://doi.org/10.3390/jcs9060311 - 19 Jun 2025
Viewed by 403
Abstract
Carbon nanotubes (CNTs) functionalized with metal oxides exhibit synergistic properties that enhance their performance across various applications, particularly in electrochemistry. Recent advancements have highlighted the potential of CNT–metal oxide heterostructures, with a specific focus on their electrochemical properties, which are pivotal for applications [...] Read more.
Carbon nanotubes (CNTs) functionalized with metal oxides exhibit synergistic properties that enhance their performance across various applications, particularly in electrochemistry. Recent advancements have highlighted the potential of CNT–metal oxide heterostructures, with a specific focus on their electrochemical properties, which are pivotal for applications in sensors, supercapacitors, batteries, and catalytic systems. Among these, nickel oxide (NiO)-modified CNTs have garnered significant attention due to their cost-effectiveness, facile synthesis, and promising gas-sensing capabilities. This study employs quantum-chemical calculations within the framework of density functional theory (DFT) to elucidate the interaction mechanisms between CNTs and NiO. The results demonstrate that the adsorption process leads to the formation of stable CNT-NiO complexes, with detailed analysis of adsorption energies, equilibrium distances, and electronic structure modifications. The single-electron spectra and density of states (DOS) of the optimized complexes reveal significant alterations in the electronic properties, particularly the modulation of the energy gap induced by surface and edge functionalization. Furthermore, the interaction of CNT-NiO composites with acetone (C3H6O) and carbon dioxide (CO2) is modeled, revealing a physisorption-dominated mechanism. The adsorption of these gases induces notable changes in the electronic properties and charge distribution within the system, underscoring the potential of CNT-NiO composites for gas-sensing applications. This investigation provides a foundational understanding of the role of metal oxide modifications in tailoring the sensory activity of CNTs toward trace amounts of diverse substances, including metal atoms, inorganic molecules, and organic compounds. The findings suggest that CNT-NiO systems can serve as highly sensitive and selective sensing elements, with potential applications in medical diagnostics and environmental monitoring, thereby advancing the development of next-generation sensor technologies. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

21 pages, 7386 KiB  
Article
Enhanced Stability and Activity of Nitrogen-Doped Carbon Nanotube-Supported Ni Catalysts for Methane Dry Reforming
by Zhizhi Tao, Dong Shen, Yanni Liu, Xiaodi Zhang and Guojie Zhang
Catalysts 2025, 15(6), 559; https://doi.org/10.3390/catal15060559 - 4 Jun 2025
Viewed by 752
Abstract
The dry reforming of methane (DRM) converts two greenhouse gases, CH4 and CO2, into H2 and CO, offering a crucial technological pathway for reducing greenhouse gas emissions and producing clean energy. However, the reaction faces two main challenges: high [...] Read more.
The dry reforming of methane (DRM) converts two greenhouse gases, CH4 and CO2, into H2 and CO, offering a crucial technological pathway for reducing greenhouse gas emissions and producing clean energy. However, the reaction faces two main challenges: high activation energy barriers require high temperatures to drive the reaction, while sintering and carbon deactivation at high temperatures are common with conventional nickel-based catalysts, which severely limit the further development of the methane dry reforming reaction. In this study, a nitrogen-doped carbon nanotube-loaded nickel catalytic system (Ni/NCNT) was developed to overcome the challenges caused by limited active sites while maintaining the stable structure of the Ni/CNT system. Ni/NCNT catalysts were prepared using different nitrogen precursors, and the impact of the mixing method on catalytic performance was examined. Characterization using H2-TPR, XPS, and TEM revealed that nitrogen doping enhanced the metal–support interaction (MSI). Additionally, pyridine nitrogen species synergistically interact with nickel particles, modulating the electronic environment on the carbon nanotube surface and increasing catalyst active site density. The Ni/NCNT-IU catalyst, prepared with impregnated urea, exhibited excellent stability, with methane conversion decreasing from 85.0% to 82.9% over 24 h of continuous reaction. This study supports the use of non-precious-metal carbon-based catalysts in high-temperature catalytic systems, which is strategically important for the industrialization of DRM and the development of decarbonized energy conversion. Full article
(This article belongs to the Special Issue Catalysis for Hydrogen Storage and Release)
Show Figures

Graphical abstract

12 pages, 690 KiB  
Article
Determination of the Activity Coefficients of Components in a Di-2-ethylhexylphosphoric Acid–n-Hexane Binary System Using Gas Chromatography
by Vladimir Glebovich Povarov, Olga Vladimirovna Cheremisina, Daria Artemovna Alferova and Aleksandr Tomasovich Fedorov
Chemistry 2025, 7(3), 92; https://doi.org/10.3390/chemistry7030092 - 1 Jun 2025
Viewed by 593
Abstract
The thermodynamic properties of di-2-ethylhexylphosphoric acid (D2EHPA) in organic solvents are critical for optimizing metal extraction processes in hydrometallurgy, necessitating precise determination of activity coefficients in binary systems such as D2EHPA–n-hexane. This study was devoted to the determination of n-hexane’s concentrations in the [...] Read more.
The thermodynamic properties of di-2-ethylhexylphosphoric acid (D2EHPA) in organic solvents are critical for optimizing metal extraction processes in hydrometallurgy, necessitating precise determination of activity coefficients in binary systems such as D2EHPA–n-hexane. This study was devoted to the determination of n-hexane’s concentrations in the vapor phase over D2EHPA solutions at 293.0 K using gas chromatography (GC) and isopiestic (IP) methods. Comparison with literature data confirmed the superior reliability of GC measurements at low n-hexane concentrations. The experimentally determined activity coefficients of hexane, obtained via GC, served as the initial input parameters for UNIFAC modeling. The optimized interaction parameters were 1144 ± 25 (CH2-HPO4) and 228 ± 50 (HPO4-CH2), with the infinite dilution activity coefficient for D2EHPA γ=22.1. These results experimentally clarify the non-ideal behavior of D2EHPA–n-hexane mixtures, establishing a validated thermodynamic modeling framework for organophosphorus extractant systems. This work establishes a fundamental basis for investigating ternary systems, such as D2EHPA–aliphatic solvent–aromatic solvent and D2EHPA–metal complex–solvent systems, paving the way for enhanced liquid–liquid extraction efficiency. Full article
Show Figures

Figure 1

Back to TopTop