Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = gas-liquid mass transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2960 KiB  
Review
Driving Sustainable Energy Co-Production: Gas Transfer and Pressure Dynamics Regulating Hydrogen and Carboxylic Acid Generation in Anaerobic Systems
by Xiao Xiao, Meng He, Yanning Hou, Bilal Abdullahi Shuaibu, Wenjian Dong, Chao Liu and Binghua Yan
Processes 2025, 13(8), 2343; https://doi.org/10.3390/pr13082343 - 23 Jul 2025
Viewed by 208
Abstract
To achieve energy transition, hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore, the utilization of anaerobic fermentation technology is expected [...] Read more.
To achieve energy transition, hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore, the utilization of anaerobic fermentation technology is expected to achieve efficient co-production of hydrogen and carboxylic acids. However, this process is fundamentally affected by gas–liquid mass transfer kinetics, bubble behaviors, and system partial pressure. Moreover, the related studies are few and unfocused, and no systematic research has been developed yet. This review systematically summarizes and discusses the basic mathematical models used for gas–liquid mass transfer kinetics, the relationship between gas solubility and mass transfer, and the liquid-phase product composition. The review analyzes the roles of the headspace gas composition and partial pressure of the reaction system in regulating co-production. Additionally, we discuss strategies to optimize the metabolic pathways by modulating the gas composition and partial pressure. Finally, the feasibility of and prospects for the realization of hydrogen and carboxylic acid co-production in anaerobic fermentation systems are outlined. By exploring information related to gas mass transfer and system pressure, this review will surely provide an important reference for promoting cleaner production of sustainable energy. Full article
(This article belongs to the Special Issue Green Hydrogen Production: Advances and Prospects)
Show Figures

Figure 1

20 pages, 9695 KiB  
Article
Numerical Investigation on Flow and Thermal Characteristics of Spray Evaporation Process in Boiler Desuperheater
by Jianqing Wang, Baoqing Liu, Bin Du, Kaifei Wu, Qi Lin, Bohai Liu and Minghui Cheng
Energies 2025, 18(14), 3734; https://doi.org/10.3390/en18143734 - 15 Jul 2025
Viewed by 202
Abstract
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid [...] Read more.
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid dynamics (CFDs) was applied to numerically investigate the flow and thermal characteristics. The Eulerian–Lagrangian approach was used to describe the two-phase flow characteristics. Both primary and secondary droplet breakup, the coupling effect of gas–liquid and stochastic collision and coalescence of droplets were considered in the model. The plain-orifice atomizer model was applied to simulate the atomization process. The numerical model was validated with the plant data. The spray tube structure was found to greatly affect the flow pattern, resulting in the uneven velocity distribution, significant temperature difference, and local reverse flow downstream of the orifices. The velocity and temperature distributions tend to be more uniform due to the complete evaporation and turbulent mixing. Smaller orifices are beneficial for generating smaller-sized droplets, thereby promoting the mass and heat transfer between the steam and droplets. Under the same operating conditions, the desuperheating range of cases with 21, 15, and 9 orifices is 33.7 K, 32.0 K, and 29.8 K, respectively, indicating that the desuperheater with more orifices (i.e., with smaller orifices) shows better desuperheating ability. Additionally, a venturi-type desuperheater was numerically studied and compared with the straight liner case. By contrast, discernible differences in velocity and temperature distribution characteristics can be observed in the venturi case. The desuperheating range of the venturi and straight liner cases is 38.1 K and 35.4 K, respectively. The velocity acceleration through the venturi throat facilitates the droplet breakup and improves mixing, thereby achieving better desuperheating ability and temperature uniformity. Based on the investigation of the spray evaporation process, the complex droplet behaviors and fluid–thermal coupling characteristics in an industrial boiler desuperheater under high temperature and high pressure can be better understood, and effective guidance for the process and design optimizations can be provided. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) for Heat Transfer Modeling)
Show Figures

Figure 1

10 pages, 3200 KiB  
Article
Enhancing Fuel Cell Performance by Constructing a Gas Diffusion Layer with Gradient Microstructure
by Rui-Xin Wang, Bai-He Chen, Ye-Fan-Hao Wang, Cheng Guo, Bo-Wen Deng, Zhou-Long Song, Yi You and Hai-Bo Jiang
Materials 2025, 18(14), 3271; https://doi.org/10.3390/ma18143271 - 11 Jul 2025
Viewed by 352
Abstract
This study focuses on addressing the issues of water flooding and mass transfer limitations in proton exchange membrane fuel cells (PEMFCs) under high current density conditions. A multi-scale gradient pore gas diffusion layer (GDL) is designed to enhance fuel cell performance. The pore [...] Read more.
This study focuses on addressing the issues of water flooding and mass transfer limitations in proton exchange membrane fuel cells (PEMFCs) under high current density conditions. A multi-scale gradient pore gas diffusion layer (GDL) is designed to enhance fuel cell performance. The pore structure is precisely controlled using a self-assembled mold, resulting in the fabrication of a GDL with a gradient distribution of pore diameters ranging from 80 to 170 μm. Experimental results indicate that, with the optimized gradient pore GDL, the peak power density of the fuel cell reaches 1.18 W·cm−2, representing a 20% improvement compared to the traditional structure. A mechanism analysis reveals that this structure establishes a concentrated water transport pathway through channels while enabling gas diffusion and transport driven by concentration gradients, thereby achieving the collaborative optimization of gas–liquid transport. This approach offers a novel solution for managing water in PEMFCs operating under high current density conditions, and holds significant implications for advancing the commercialization of PEMFC technology. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

27 pages, 3398 KiB  
Review
A Comprehensive Review on Studies of Flow Characteristics in Horizontal Tube Falling Film Heat Exchangers
by Zhenchuan Wang and Meijun Li
Energies 2025, 18(13), 3587; https://doi.org/10.3390/en18133587 - 7 Jul 2025
Viewed by 379
Abstract
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and [...] Read more.
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and mass transfer take place within it. Given that the heat and mass transfer predominantly occur at the gas-liquid interface, the flow characteristics therein emerge as a significant factor governing the performance of heat and mass transfer. This article elaborates on the progress of experimental and simulation research approaches with respect to flow characteristics. It systematically reviews the influence patterns of various operating parameters, namely parameters of gas, solution and internal medium, as well as structural parameters like tube diameter and tube spacing, on the flow characteristics, such as the flow regime between tubes, liquid film thickness, and wettability. This review serves to furnish theoretical underpinnings for optimizing the heat and mass transfer performance of the horizontal tube falling film heat exchanger. It is further indicated that the multi-dimensional flow characteristics and their quantitative characterizations under the impacts of different airflow features will constitute the focal research directions for horizontal tube falling film heat exchangers in the foreseeable future. Full article
Show Figures

Figure 1

18 pages, 1925 KiB  
Article
Experimental Analysis for Tritium Recovery in Lithium–Lead Alloy Using a Membrane Gas–Liquid Contactor Concept
by Luca Farina, Antonio Ricca, Alfonso Pozio, Priscilla Reale and Silvano Tosti
Processes 2025, 13(7), 2066; https://doi.org/10.3390/pr13072066 - 30 Jun 2025
Viewed by 349
Abstract
The eutectic PbLi (15.7 at.% Li) alloy appears promising for producing tritium from fertile materials. Currently, in nuclear fusion design, the technologies being explored for tritium extraction in molten phases primarily focus on (i) established processes based on Gas–Liquid Contactor (GLC), such as [...] Read more.
The eutectic PbLi (15.7 at.% Li) alloy appears promising for producing tritium from fertile materials. Currently, in nuclear fusion design, the technologies being explored for tritium extraction in molten phases primarily focus on (i) established processes based on Gas–Liquid Contactor (GLC), such as bubble, packed, or spray columns, or on (ii) exploiting hydrogen permeation phenomena using dense metallic membranes, i.e., Permeation Against Vacuum (PAV). This work introduces a new concept, a Membrane Gas–Liquid Contactor, to address several open issues related to mass transport phenomena within the previously mentioned technologies. The MGLC concept merges the advantages of Permeation Against Vacuum (PAV) and Gas–Liquid Contactor (GLC), which have been extensively applied to extract hydrogen and its isotopes from liquid metals. A comprehensive description of the MGLC’s operation is then provided, suggesting a mass transfer model suitable for the practical application of this new concept. Finally, the results of the experimental campaign conducted on a lab-scale test facility are presented and critically analyzed. Full article
Show Figures

Figure 1

18 pages, 4883 KiB  
Article
A Pilot-Scale Study on Cross-Tube Ozone Catalytic Oxidation of Biochemical Tailwater in an Industrial Park in Suzhou (China)
by Pengyu Wei, Kangping Cui, Shijie Sun and Jiao Wang
Water 2025, 17(13), 1953; https://doi.org/10.3390/w17131953 - 29 Jun 2025
Viewed by 336
Abstract
Aiming at the defects of the low mass transfer efficiency and large floor space of the traditional ozone process, a cross-tube ozone catalytic oxidation pilot plant was designed and developed. By implementing lateral aeration and a modular series configuration, the gas–liquid mass transfer [...] Read more.
Aiming at the defects of the low mass transfer efficiency and large floor space of the traditional ozone process, a cross-tube ozone catalytic oxidation pilot plant was designed and developed. By implementing lateral aeration and a modular series configuration, the gas–liquid mass transfer pathways were optimized, achieving a hydraulic retention time of 25 min and maintaining an ozone dosage of 43 mg/L, which significantly improved the ozone utilization efficiency. During the pilot operation in an industrial park in Suzhou, Anhui Province, the average COD removal efficiency of the device for the actual biochemical tail water (COD 82.5~29.7 mg/L) reached 35.47%, and the effluent concentration was stably lower than 50 mg/L, which meets the stricter discharge standard. The intermediate products in the system were also analyzed by liquid chromatography–mass spectrometry (LC-MS), and the key pollutants were selected for degradation path analysis. Compared to the original tower process in the park, the ozone dosage was reduced by 46%, the reaction residence time was reduced by 60%, and the cost of water treatment was reduced to 0.067 USD, which is both economical and applicable to engineering. This process provides an efficient and low-cost solution for the deep treatment of wastewater in industrial parks, and has a broad engineering application prospect. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 5123 KiB  
Article
Biogas Purification by Intensified Absorption in a Micromixer
by Tarsida N. Wedraogo, Souhila Djerid, Jing Wu and Huai Z. Li
Methane 2025, 4(3), 14; https://doi.org/10.3390/methane4030014 - 25 Jun 2025
Viewed by 287
Abstract
Biogas is a renewable energy source produced by anaerobic digestion of organic waste. It can be upgraded to bio-methane by removing carbon dioxide, water and impurities. The present work focuses on carbon dioxide removal using both physical and chemical absorption in a micromixer. [...] Read more.
Biogas is a renewable energy source produced by anaerobic digestion of organic waste. It can be upgraded to bio-methane by removing carbon dioxide, water and impurities. The present work focuses on carbon dioxide removal using both physical and chemical absorption in a micromixer. The absorption efficiency in the micromixer was studied under various conditions of co-current gas–liquid flow. With physical absorption, 25% of carbon dioxide could be removed from the biogas stream (with a liquid flowrate of 40 mL/min and a gas flowrate of 25 mL/min). In absorption with a chemical reaction, up to 88% of the carbon dioxide was eliminated with a catalyst concentration of 77.4 mol·m−3. In both cases, the space time was below 3 s. Liquid-side mass transfer coefficients as large as 3.5 s−1 were achieved, which is at least two orders of magnitude higher than those reported in conventional absorbers. Full article
Show Figures

Graphical abstract

15 pages, 15944 KiB  
Article
Impact of Models of Thermodynamic Properties and Liquid–Gas Mass Transfer on CFD Simulation of Liquid Hydrogen Release
by Chenyu Lu, Jianfei Yang, Jian Yuan, Luoyi Feng, Wenbo Li, Cunman Zhang, Liming Cai and Jing Cao
Energies 2025, 18(12), 3052; https://doi.org/10.3390/en18123052 - 9 Jun 2025
Viewed by 387
Abstract
The safety performance of liquid hydrogen storage has a significant influence on its large-scale commercial application. Due to the complexity and costs of experimental investigation, computational fluid dynamics (CFD) simulations have been extensively applied to investigate the dynamic behaviors of liquid hydrogen release. [...] Read more.
The safety performance of liquid hydrogen storage has a significant influence on its large-scale commercial application. Due to the complexity and costs of experimental investigation, computational fluid dynamics (CFD) simulations have been extensively applied to investigate the dynamic behaviors of liquid hydrogen release. The involved physical and chemical models, such as models of species thermodynamic properties and liquid–gas mass transfer, play a major role for the entire CFD model performance. However, comprehensive investigations into their impacts remain insufficient. In this study, CFD models of liquid hydrogen release were developed by using two widely used commercial simulation tools, Fluent and FLACS, and validated against experimental data available in the literature. Comparisons of the model results reveal strong discrepancies in the prediction accuracy of temperature and hydrogen volume fraction between the two models. The impact of the models of thermodynamic properties and liquid–gas mass transfer on the prediction results was subsequently explored by incorporating the FLACS sub-models to Fluent and evaluating the resulting prediction differences in temperatures and hydrogen volume fractions. The results show that the models of thermodynamic properties and liquid–gas mass transfer used in FLACS underestimate the vertical rise height and the highest hydrogen volume fraction of the cloud. Sensitivity analyses on the parameters in these sub-models indicate that the specific heats of hydrogen and nitrogen, in conjunction with the mass flow rate and outflow density of the mass transfer model, have a significant influence on model prediction of temperature. Full article
Show Figures

Figure 1

21 pages, 4590 KiB  
Article
Modeling of a High-Frequency Ultrasonic Wave in the Ultrasonic-Assisted Absorption System (UAAS) Using a Computational Fluid Dynamics (CFD) Approach
by Athirah Mohd Tamidi, Kok Keong Lau, Ven Chian Quek and Tengku M. Uzaini Tengku Mat
Processes 2025, 13(6), 1737; https://doi.org/10.3390/pr13061737 - 1 Jun 2025
Viewed by 480
Abstract
The propagation of high-frequency ultrasound waves will generate both physical and chemical effects as they propagate through a liquid medium, such as acoustic streaming, an acoustic fountain, and atomization. These phenomena are believed to be the main factors that contribute to the enhancement [...] Read more.
The propagation of high-frequency ultrasound waves will generate both physical and chemical effects as they propagate through a liquid medium, such as acoustic streaming, an acoustic fountain, and atomization. These phenomena are believed to be the main factors that contribute to the enhancement of mass transfer in the gas–liquid carbon dioxide (CO2) absorption system. Computational Fluid Dynamic (CFD) simulation is one of the powerful tools that can be used to model the complex hydrodynamic behavior induced by the propagation of ultrasound waves in the liquid medium. In this study, the ultrasonic irradiation forces were simulated via the momentum source term method using commercial CFD software (ANSYS Fluent V19.1). In addition, a parametric study was conducted to investigate the influences of absorber height and ultrasonic power on the hydrodynamic mixing performance. The simulation results indicated that enhanced mixing and a higher intensification factor were achieved with increased fountain flow velocity, particularly at the lowest absorber height and highest ultrasonic power. Conversely, the energy efficiency was improved with the increase of absorber height and decrease of ultrasonic power. To determine the optimal combination of absorber height and ultrasonic power, this trade-off between the energy efficiency and intensification in the ultrasonic-assisted absorption system (UAAS) is a crucial consideration during process scale-up. Full article
(This article belongs to the Special Issue Modeling, Operation and Control in Renewable Energy Systems)
Show Figures

Figure 1

22 pages, 3702 KiB  
Article
Mathematical Model of Fluid Flow Machine Unit for a Small-Scale Compressed Gas Energy Storage System
by Piotr Lis, Jarosław Milewski, Pavel Shuhayeu, Jan Paczucha and Paweł Ryś
Energies 2025, 18(11), 2874; https://doi.org/10.3390/en18112874 - 30 May 2025
Viewed by 413
Abstract
This study presents a comprehensive dynamic model of a small-scale, solar-powered hydraulic gas compression energy storage system tailored for renewable energy applications. Addressing the intermittency of renewable energy sources, the model incorporates mass, momentum, and energy conservation principles and is implemented using GT-Suite [...] Read more.
This study presents a comprehensive dynamic model of a small-scale, solar-powered hydraulic gas compression energy storage system tailored for renewable energy applications. Addressing the intermittency of renewable energy sources, the model incorporates mass, momentum, and energy conservation principles and is implemented using GT-Suite simulation software v2025.0. The system, based on a liquid piston mechanism, was analyzed under both adiabatic and isothermal compression scenarios. Validation against experimental data showed maximum deviations under 10% for pressure and 5 °C for temperature. Under ideal isothermal conditions, the system stored up to 8 MJ and recovered 6.1 MJ of energy, achieving a round-trip efficiency of 76.3%. In contrast, adiabatic operation yielded 52.6% efficiency due to thermal losses. Sensitivity analyses revealed the importance of heat transfer enhancement, with performance varying by over 15% depending on spray cooling intensity. These findings underscore the potential of thermally integrated hydraulic systems for efficient, scalable, and cost-effective energy storage in distributed renewable energy networks. Full article
Show Figures

Figure 1

34 pages, 3535 KiB  
Article
Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis
by Teka Tesfaye Mengesha, Venkata Ramayya Ancha, Abebe Nigussie, Million Merid Afessa and Ramchandra Bhandari
Sustainability 2025, 17(11), 4962; https://doi.org/10.3390/su17114962 - 28 May 2025
Viewed by 626
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in biochar, as opposed to those in pyrolysis liquid products that exit the reactor without adhering to the solid product, are particularly undesirable due to their environmental persistence and potential toxicity. When applied as a soil amendment, biochar containing [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) in biochar, as opposed to those in pyrolysis liquid products that exit the reactor without adhering to the solid product, are particularly undesirable due to their environmental persistence and potential toxicity. When applied as a soil amendment, biochar containing PAHs poses risks to soil ecosystems and human health. Their formation during pyrolysis presents a significant challenge in biochar production, requiring the optimization of pyrolysis process parameters to minimize PAH content for safe soil amendment applications. This study explored the effects of particle size and heating rate on PAH formation during corn cob pyrolysis. Thermogravimetric analysis (TGA) was employed to heat corn cob powder of varying sample masses from ambient temperature to 550 °C at heating rates of 5, 10, and 20 °C/min. Simultaneously, the Chemical Reaction Engineering and Chemical Kinetics (CRECK) model simulated the pyrolysis of spherical corn cob biomass particles with a radius ranging from 1 to 40 mm, using feedstock chemical compositions as inputs. Tar species generated from the solid biomass model were introduced into a gas-phase batch reactor model to evaluate PAH formation. The results demonstrate that the particle size and heating rate significantly affect PAH formation, shedding light on the complex dynamics of biomass pyrolysis. A single spherical particle with a radius close to 1 mm approximates ideal TGA conditions by minimizing temperature and mass transfer limitations. The CRECK model suggested that a particle radius of 5–10 mm, combined with a low heating rate of 5 °C/min, optimally reduces PAH formation. Future research should focus on using thermogravimetric analysis coupled with gas chromatography–mass spectrometry (TGA-GC-MS) to comprehensively quantify PAH species formation. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

19 pages, 3449 KiB  
Article
Optimization of Gas-Liquid Sulfonation in Cross-Shaped Microchannels for α-Olefin Sulfonate Synthesis
by Yao Li, Yingxin Mu, Muxuan Qin, Wei Zhang and Wenjin Zhou
Micromachines 2025, 16(6), 638; https://doi.org/10.3390/mi16060638 - 28 May 2025
Viewed by 901
Abstract
The gas-liquid sulfonation of α-olefin sulfonate (AOS) in falling film reactors faces significant limitations, primarily due to poor mass transfer efficiency and excessive byproduct formation. To overcome these challenges, a novel cross-shaped microchannel reactor was developed for the continuous gas-liquid sulfonation of α-olefin [...] Read more.
The gas-liquid sulfonation of α-olefin sulfonate (AOS) in falling film reactors faces significant limitations, primarily due to poor mass transfer efficiency and excessive byproduct formation. To overcome these challenges, a novel cross-shaped microchannel reactor was developed for the continuous gas-liquid sulfonation of α-olefin (AO) with gaseous sulfur trioxide (SO3). The influence of key process parameters, including gas-phase flow rate, reaction temperature, SO3/AO molar ratio, and SO3 volume fraction, on product characteristics and their interactions was systematically investigated using the single-factor experiment and response surface methodology (RSM). A high-precision empirical model (coefficient of determination, R2 = 0.9882) to predict product content was successfully constructed. To achieve multi-objective optimization considering product active substance content and energy efficiency, a strategy combining a two-population genetic algorithm with the entropy-weighted TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method was implemented. Optimal conditions were determined as follows: gas-phase flow rate of 228 mL/min, reaction temperature of 52 °C, SO3/AO molar ratio of 1.27, and SO3 volume fraction of 4%. Compared to conditions optimized solely by RSM, this multi-objective approach achieved a significant 10% reduction in energy efficiency, with only a marginal 3.8% decrease in active substance content. This study demonstrates the feasibility and advantages of microreactors for the efficient and green synthesis of AOS. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Graphical abstract

24 pages, 5920 KiB  
Article
Numerical Investigations on Boil-Off Gas Generation Characteristics of LCO2 in Type C Storage Tanks Under Different Sloshing Conditions
by Mengke Sun, Zhongchao Zhao and Jiwei Gong
Appl. Sci. 2025, 15(10), 5788; https://doi.org/10.3390/app15105788 - 21 May 2025
Viewed by 442
Abstract
Marine transportation of liquefied carbon dioxide (LCO2) is crucial for Carbon Capture, Transportation, Utilization, and Storage (CCTUS) technology, aiding in CO2 emission reduction and greenhouse effect control. This study investigates the thermodynamic and fluid dynamic characteristics of LCO2 in [...] Read more.
Marine transportation of liquefied carbon dioxide (LCO2) is crucial for Carbon Capture, Transportation, Utilization, and Storage (CCTUS) technology, aiding in CO2 emission reduction and greenhouse effect control. This study investigates the thermodynamic and fluid dynamic characteristics of LCO2 in Type C storage tanks using numerical simulations, focusing on heat transfer, flow phenomena, and boil-off gas (BOG) generation under varying storage pressures. Results show that heated liquid rises along the tank wall, forming vortices, while gas-phase vortices are driven by central upward airflow. Over time, liquid velocity near the wall increases, enhancing flow field mixing. Gas-phase temperatures rise significantly, while liquid-phase temperature gradients remain minimal. Higher storage pressures reduce fluid velocity, vortex range, and thermal response speed. BOG generation is higher at low pressures and decreases as pressure rises, slowing beyond 1.5 MPa. Under sloshing conditions, interfacial fluctuations enhance heat and mass transfer, reducing thermal stratification. Resonance periods amplify interfacial disturbances, improving thermal mixing and minimizing temperature gradients (ΔT ≈ 0.1 K). Higher filling rates suppress surface rupture, while lower rates exhibit gas-dominated instabilities and larger thermal gradients (ΔT ≈ 0.3 K). Full article
(This article belongs to the Special Issue Research on Heat Transfer Analysis in Fluid Dynamics)
Show Figures

Figure 1

20 pages, 4646 KiB  
Article
The Production of High-Permeable and Macrovoid-Free Polysulfone Hollow Fiber Membranes and Their Utilization in CO2 Capture Applications via the Membrane-Assisted Gas Absorption Technique
by Pavel Țiuleanu, Artem A. Atlaskin, Kirill A. Smorodin, Sergey S. Kryuchkov, Maria E. Atlaskina, Anton N. Petukhov, Andrey V. Vorotyntsev, Nikita S. Tsivkovskiy, Alexander A. Sysoev and Ilya V. Vorotyntsev
Polymers 2025, 17(10), 1407; https://doi.org/10.3390/polym17101407 - 20 May 2025
Viewed by 546
Abstract
This present study covers a complex approach to study a hybrid separation technique: membrane-assisted gas absorption for CO2 capture from flue gases. It includes not only the engineering aspects of the process, particularly the cell design, flow organization, and process conditions, but [...] Read more.
This present study covers a complex approach to study a hybrid separation technique: membrane-assisted gas absorption for CO2 capture from flue gases. It includes not only the engineering aspects of the process, particularly the cell design, flow organization, and process conditions, but also a complex study of the materials. It covers the spinning of hollow fibers with specific properties that provide sufficient mass transfer for their implementation in the hybrid membrane-assisted gas absorption technique and the design of an absorbent with a new ionic liquid—bis(2-hydroxyethyl) dimethylammonium glycinate, which allows the selective capture of carbon dioxide. In addition, the obtained hollow fibers are characterized not only by single gas permeation but with regard to mixed gases, including the transfer of water vapors. A quasi-real flue gas, which consists of nitrogen, oxygen, carbon dioxide, and water vapors, is used to evaluate the separation efficiency of the proposed membrane-assisted gas absorption technique and to determine its ultimate performance in terms of the CO2 content in the product flow and recovery rate. As a result of this study, it is found that highly permeable fibers in combination with the obtained absorbent provide sufficient separation and their implementation is preferable compared to a selective but much less permeable membrane. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
Show Figures

Figure 1

20 pages, 6765 KiB  
Article
Effect of Precipitated Bubbles on the Behavior of Gas–Liquid Two-Phase Flow in Ruhrstahl Heraeus Refining
by Yihong Li, Zongyi Chen, Yan Tian, Dong Wang, Yibo He, Chengjian Hua, Zhifeng Ren and Pengju Zhang
Processes 2025, 13(5), 1484; https://doi.org/10.3390/pr13051484 - 12 May 2025
Cited by 1 | Viewed by 440
Abstract
In this study, through RH water model simulation experiments, the effects of precipitation bubbles on the two-phase flow pattern, liquid steel flow behavior, and flow characteristics in an RH reactor during the whole decarburization process were comparatively investigated and analyzed by using quasi-counts [...] Read more.
In this study, through RH water model simulation experiments, the effects of precipitation bubbles on the two-phase flow pattern, liquid steel flow behavior, and flow characteristics in an RH reactor during the whole decarburization process were comparatively investigated and analyzed by using quasi-counts that reflected the similarity of the precipitation bubble phenomenon. The experimental results show that an increase in precipitation bubbles is positively related to an increase in circulating flow rate, a reduction in mixing time, and an increase in gas content and negatively related to the residence time of liquid steel in the vacuum chamber. The two-phase flow pattern of the rising tube under the influence of precipitation bubbles includes bubble flow, slug flow, mixing flow, and churn flow. Under the influence of precipitation bubbles, the liquid surface spattering inside the vacuum chamber is reduced, the fluctuation amplitude is reduced, the efficiency of liquid steel processing is improved, it is not easy for cold steel to form, and the fluctuation frequency is increased, which is conducive to increasing the surface area of the vacuum chamber; the bubbles’ rising, aggregating, and crushing behavior increases the stirring effect inside the vacuum chamber, which is conducive to improving the decarburization and mass transfer rate. Under the influence of the precipitated bubbles, the concentration gradient between the ladle and the vacuum chamber is increased, which accelerates the mixing speed of the liquid steel in the ladle, and the volume of the dead zone is reduced by 50%. The lifting gas flow rate can be appropriately reduced in the plant. Full article
(This article belongs to the Special Issue Advanced Ladle Metallurgy and Secondary Refining)
Show Figures

Figure 1

Back to TopTop