Modeling of a High-Frequency Ultrasonic Wave in the Ultrasonic-Assisted Absorption System (UAAS) Using a Computational Fluid Dynamics (CFD) Approach
Abstract
:1. Introduction
2. Fundamentals on CFD Theory
2.1. Governing Equations
2.2. Solution Method: Momentum Source Term Method
2.3. VOF Model Validation
3. Simulation Boundary Conditions
3.1. Geometry and Meshing
3.2. Mesh Sensitivity Analysis
4. CFD Analysis
4.1. Volume Fraction
4.2. Velocity and Pressure Profile
4.3. Volume-Averaged Phase Interaction
4.4. Liquid Tracer Mixing
5. Parametric Study
5.1. Analysis of Absorber Height
5.2. Analysis of Ultrasonic Power
5.3. Analysis of Tracer Mixing
5.4. Intensification Factor and Energy Efficiency
6. Analysis Summary
7. Conclusions
- Run 7 (largest and lowest power) shows the highest energy efficiency
- Run 3 (smallest and highest power) shows the highest intensification factor
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tay, W.H.; Lau, K.K.; Shari, A.M. High performance promoter-free CO2 absorption using potassium carbonate solution in an ultrasonic irradiation system. J. CO2 Util. 2017, 21, 383–394. [Google Scholar] [CrossRef]
- George, G.; Bhoria, N.; Alhallaq, S.; Abdala, A.; Mittal, V. Polymer membranes for acid gas removal from natural gas. Sep. Purif. Technol. 2016, 158, 333–356. [Google Scholar] [CrossRef]
- Faiz, R.; Li, K.; Al-marzouqi, M. H2S absorption at high pressure using hollow fibre membrane contactors. Chem. Eng. Process. 2014, 83, 33–42. [Google Scholar] [CrossRef]
- Yusof, S.M.M.; Lau, K.K.; Shariff, A.M.; Tay, W.H.; Mustafa, N.F.A.; Lock, S.S.M. Novel continuous ultrasonic contactor system for CO2 absorption: Parametric and optimization study. J. Ind. Eng. Chem. 2019, 79, 279–287. [Google Scholar] [CrossRef]
- Yu, C.; Huang, C.; Tan, C. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef]
- Le Grange, P.; Sheilan, M.; Spooner, B. How to Limit Amine Systems Failures. Chem. Eng. 2017. Available online: https://www.researchgate.net/publication/343879575 (accessed on 14 June 2022).
- Sea, B.; Park, Y.; Lee, K. Comparison of Porous Hollow Fibers as a Membrane Contactor for Carbon Dioxide Absorption. J. Ind. Eng. Chem. 2002, 8, 290–296. [Google Scholar]
- deMontigny, D.; Tontiwachwuthikul, P.; Chakma, A. Comparing the Absorption Performance of Packed Columns and Membrane Contactors. Ind. Eng. Chem. Res. 2005, 44, 5726–5732. [Google Scholar] [CrossRef]
- Yeon, S.; Lee, K.; Sea, B.; Park, Y.-I.; Lee, K.-H. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. J. Membr. Sci. 2005, 257, 156–160. [Google Scholar] [CrossRef]
- Lin, S.-H.; Chiang, P.-C.; Hsieh, C.-F.; Li, M.-H.; Tung, K.-L. Absorption of carbon dioxide by the absorbent composed of piperazine and 2-amino-2-methyl-1-propanol in PVDF membrane contactor. J. Chin. Inst. Chem. Eng. 2008, 39, 13–21. [Google Scholar] [CrossRef]
- Dindore, V.Y.; Brilman, D.W.F.; Feron, P.H.M.; Versteeg, G.F. CO2 absorption at elevated pressures using a hollow fiber membrane contactor. J. Membr. Sci. 2004, 235, 99–109. [Google Scholar] [CrossRef]
- Wee Horng, T. CO2 Absorption Using High Frequency Ultrasonic Irradiation: Experiment and Modeling. Ph.D Thesis, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 2017. [Google Scholar]
- Tay, W.H.; Lau, K.K.; Shariff, A.M. High frequency ultrasonic-assisted chemical absorption of CO2 using monoethanolamine (MEA). Sep. Purif. Technol. 2017, 183, 136–144. [Google Scholar] [CrossRef]
- Tamidi, A.M.; Lau, K.K.; Yusof, S.M.M.; Azmi, N.; Zakariya, S.; Patthi, U. Enhancement of CO2 Absorption Process Using High-Frequency Ultrasonic Waves. Sustainability 2023, 15, 11064. [Google Scholar] [CrossRef]
- Akbari, M.; Rahimi, M.; Faryadi, M. Gas—Liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves. Chin. J. Chem. Eng. 2017, 25, 1143–1152. [Google Scholar] [CrossRef]
- Daquan, X. Physics of Ultrasound; The New York School of Regional Anesthesia: New York, NY, USA, 2022; Available online: https://www.nysora.com/topics/equipment/physics-of-ultrasound/#toc_REFERENCES (accessed on 14 June 2022).
- Gallego-Juarez, J.A. Piezoelectric ceramics and ultrasonic transducers. J. Phys. E 1989, 22, 804–816. [Google Scholar] [CrossRef]
- Qin, L.; Porfyrakis, K.; Tzanakis, I.; Grobert, N.; Eskin, D.G.; Fezzaa, K.; Mi, J. Multiscale interactions of liquid, bubbles and solid phases in ultrasonic fields revealed by multiphysics modelling and ultrafast X-ray imaging. Ultrason. Sonochemistry 2022, 89, 106158. [Google Scholar] [CrossRef]
- Niazi, S.; Hashemabadi, S.H.; Razi, M.M. CFD simulation of acoustic cavitation in a crude oil upgrading sonoreactor and prediction of collapse temperature and pressure of a cavitation bubble. Chem. Eng. Res. Des. 2014, 92, 166–173. [Google Scholar] [CrossRef]
- Guerrero, E.; Munoz, F.; Ratkovich, N. Comparison between Eulerian and VOF models for two-phase flow assessment in vertical pipes. CT&F-Cienc. Tecnol. Futuro 2017, 7, 73–84. [Google Scholar]
- Laborde, J.; Hita, A.; Caltagirone, J.; Gerard, A. Fluid dynamics phenomena induced by power ultrasounds. Ultrasonics 2000, 38, 297–300. [Google Scholar] [CrossRef]
- Cai, J.; Huai, X.; Yan, R.; Cheng, Y. Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure. Appl. Therm. Eng. 2009, 29, 1973–1982. [Google Scholar] [CrossRef]
- Abolhasani, M.; Rahimi, M.; Dehbani, M.; Alsairafi, A.A. CFD Modeling of Heat Transfer by 1.7 MHz Ultrasound Waves. Numer. Heat Transf. Part A 2012, 62, 822–841. [Google Scholar] [CrossRef]
- Dehbani, M.; Rahimi, M.; Abolhasani, M.; Maghsoodi, A.; Afshar, P.G.; Dodmantipi, A.R.; Alsairafi, A.A. CFD modeling of convection heat transfer using 1.7 MHz and 24 kHz ultrasonic waves: A comparative study. Heat Mass Transf. 2014, 50, 1319–1333. [Google Scholar] [CrossRef]
- Abolhasani, M.; Rahimi, M.; Dehbani, M. CFD Modeling of Low, Medium and High Frequency Ultrasound Waves Propagation Inside a Liquid Medium. In Proceedings of the 4th National Conference on CFD Applications in Chemical & Petroleum Industries, Ahwaz, Iran, 16 May 2012. [Google Scholar]
- Parvizian, F.; Rahimi, M.; Faryadi, M.; Abdulaziz, A. Comparison between Mixing in Novel High Frequency Sonoreactor and Stirred Tank Reactor. Eng. Appl. Comput. Fluid Mech. 2012, 6, 295–306. [Google Scholar] [CrossRef]
- Parvizian, F.; Rahimi, M.; Hosseini, S.M.; Madaeni, S.; Alsairafi, A. The effect of high frequency ultrasound on diffusion boundary layer resistance in ion-exchange membrane transport. Desalination 2012, 286, 155–165. [Google Scholar] [CrossRef]
- Rahimi, M.; Movahedirad, S.; Shahhosseini, S. CFD study of the flow pattern in an ultrasonic horn reactor: Introducing a realistic vibrating boundary condition. Ultrason. Sonochemistry 2016, 35, 359–374. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Lighthill, J. Acoustic streaming. J. Sound Vib. 1978, 61, 391–418. [Google Scholar] [CrossRef]
- Mohd Laziz, A.; KuShaari, K.Z.; Azeem, B.; Yusup, S.; Chin, J.; Denecke, J. Rapid production of biodiesel in a microchannel reactor at room temperature by enhancement of mixing behaviour in methanol phase using volume of fluid model. Chem. Eng. Sci. 2020, 219, 115532. [Google Scholar] [CrossRef]
- Xu, Z.; Yasuda, K.; Koda, S. Numerical simulation of liquid velocity distribution in a sonochemical reactor. Ultrason. Sonochemistry 2013, 20, 452–459. [Google Scholar] [CrossRef]
- Absar, S.; Pasumarthi, P.; Choi, H. Numerical and experimental studies about the effect of acoustic streaming on ultrasonic processing of metal matrix nanocomposites (MMNCs). J. Manuf. Process. 2017, 28, 515–522. [Google Scholar] [CrossRef]
- Dong, Z.; Yao, C.; Zhang, Y.; Chen, G.; Yuan, Q.; Xu, J. Hydrodynamics and Mass Transfer of Oscillating Gas-Liquid Flow in Ultrasonic Microreactors. Am. Inst. Chem. Eng. 2016, 62, 1294–1307. [Google Scholar] [CrossRef]
- Tay, W.H.; Lau, K.K.; Shariff, A.M. High frequency ultrasonic assisted mass transfer for water batch reactor. ARPN J. Eng. Appl. Sci. 2016, 11, 1660–1665. [Google Scholar]
Mesh No. | Min. Size | No. of Nodes | Flow Rate, mL/s | Error |
---|---|---|---|---|
1 | 0.0004 | 24 | 3.84 | 18% |
2 | 0.0003 | 45 | 4.48 | 4% |
3 | 0.0002 | 94 | 4.65 | 1% |
Height/Power | 5 W | 9 W | 13 W |
---|---|---|---|
(Low) 37 mm | Run 1 | Run 2 | Run 3 |
(Middle) 373 mm | Run 4 | Run 5 | Run 6 |
(High) 3109 mm | Run 7 | Run 8 | Run 9 |
Height | Advantage | Disadvantage |
---|---|---|
Low | High intensification factor (smaller) | Low energy efficiency, risk of solvent loss |
High | High capacity, high energy efficiency | Low intensification factor (larger) |
Power | Advantage | Disadvantage |
---|---|---|
Low | High energy efficiency | Low intensification factor (larger) |
High | High intensification factor (smaller) | Low energy efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Tamidi, A.; Lau, K.K.; Quek, V.C.; Tengku Mat, T.M.U. Modeling of a High-Frequency Ultrasonic Wave in the Ultrasonic-Assisted Absorption System (UAAS) Using a Computational Fluid Dynamics (CFD) Approach. Processes 2025, 13, 1737. https://doi.org/10.3390/pr13061737
Mohd Tamidi A, Lau KK, Quek VC, Tengku Mat TMU. Modeling of a High-Frequency Ultrasonic Wave in the Ultrasonic-Assisted Absorption System (UAAS) Using a Computational Fluid Dynamics (CFD) Approach. Processes. 2025; 13(6):1737. https://doi.org/10.3390/pr13061737
Chicago/Turabian StyleMohd Tamidi, Athirah, Kok Keong Lau, Ven Chian Quek, and Tengku M. Uzaini Tengku Mat. 2025. "Modeling of a High-Frequency Ultrasonic Wave in the Ultrasonic-Assisted Absorption System (UAAS) Using a Computational Fluid Dynamics (CFD) Approach" Processes 13, no. 6: 1737. https://doi.org/10.3390/pr13061737
APA StyleMohd Tamidi, A., Lau, K. K., Quek, V. C., & Tengku Mat, T. M. U. (2025). Modeling of a High-Frequency Ultrasonic Wave in the Ultrasonic-Assisted Absorption System (UAAS) Using a Computational Fluid Dynamics (CFD) Approach. Processes, 13(6), 1737. https://doi.org/10.3390/pr13061737