Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis
Abstract
:1. Introduction
No. | Title and Year of Publication | Methods Used | Conclusions and Corresponding Reference |
---|---|---|---|
1. EXP | PAH concentration in straw biochar with different particle sizes (2016). | Straw powder of PS (9.31 to 101.9 μm) carbonized in a muffle furnace (350 °C, 50 °Cmin−1 and 6 h). PAHs in biochar analyzed by GC-MS. | PAH levels peak at 60.77 μm (166.52 ng/g) and drop to 14.63 ng/g at 101.90 μm, with low- and medium-molecular-weight PAHs rising then falling as PS increases from 9.31 μm to 101.9 μm [38]. |
2. EXP | Biomass Pyrolysis and Gasification of Varying PS in a Fluidized-Bed Reactor (2011). | White oak (PS 6–25 mm) was pyrolyzed (500–900 °C) in a fluidized bed gasifier, with tar species quantified by molecular beam mass spectrometry. | PAHs increase with larger PSs due to secondary reactions and rise significantly between 700 and 800 °C, but statistical analysis shows no significant PS effect [35]. |
3. EXP | Investigation into PS influence on PAH formation during dry sewage sludge pyrolysis: TG-FTIR analysis and batch scale research (2015). | Sewage sludge (0.075–2 mm) was pyrolyzed (850 °C) in a quartz tube reactor, with gases captured by XAD-2 resin and dichloromethane solutions in ice baths, and 16 USEPA PAHs analyzed via GC-MS. | The smallest PS (0.075 mm) produce the highest PAH concentrations, mainly naphthalene, fluorene, and phenanthrene (80%), while larger PS (2 mm) show a decrease in higher molar weight PAHs from 15.87% to 10.21% [37]. |
4. EXP | PAH formation during the fast pyrolysis of hazardous health-care waste (2019). | Waste was pyrolyzed in a continuous tubular fast pyrolysis reactor (300–700 °C, 100–190 S and PS 1–3 cm), and 16 US EPA PAHs in oil and char were quantified using a GC-FID system. | PAHs in pyrolytic oil and char rise with higher temperatures, longer residence times, and larger PS, peaking in char at 1–2 cm but slightly dropping at 2–3 cm, with 121–29,440 mg/L in oil and 223–1610 mg/kg in char [36]. |
5. EXP | Pear Wood Pyrolysis Influences Quality and Levels of PAH in Liquid Smoke (2024). | Pear wood (0.8–12.5 mm) were pyrolyzed (<250 °C, 250–350 °C, >350 °C), with the gas smoke condensed, and analyzed for PAHs using GC-MS. | PS significantly affected 13 PAHs, but not acenaphthene, benzo[a]pyrene, and benzo[g,h,i] perylene, with low-ring PAHs most prevalent at 1.6 mm, influencing the distribution [39]. |
6. Model | Quantification of the influence of particle diameter on PAH formation in fluidized bed biomass Pyrolysis (2017). | A model for biomass devolatilization in a fluidized bed reactor, tested with white oak PS 6–25 mm at 500–900 °C, measured tar compounds using a MS, validated by experimental data. | Larger particle diameters increase PAH formation during high-temperature pyrolysis due to lower devolatilization temperatures, boosting synapyl aldehyde in tar and thus PAH yields [34]. |
7. EXP | Fast Pyrolysis of MGW in an Auger Reactor: Effects of Residence Time and PS on the Yield and characteristic- s of Produced Oil (2024). | Municipal green waste (1–10 mm) was pyrolyzed at 500 °C to produce biochar and bio-oil, with the bio-oil’s compounds analyzed by GC-MS for ≥80% similarity and significant peak areas. | Increasing PS causes slight compound-specific fluctuations in PAH peak areas, with fluorene decreasing (0.99 to 0.87) and 1-methylnaphtha-lene increasing (0.51 to 0.56), indicating a modest and inconsistent effect [15]. |
8. EXP | The study of the effect of operating parameters on PAH formation during the combustion of coconut shell in a fluidised bed (2003). | Experiments at 675 °C and 750 °C with PS (1–1.5 mm and 2.5–3.15 mm) measured O2, CO, CO2, and PAHs in flue gas calculated based on peak height and computer-based data recorded. | Among the combustion parameters studied, which included temperature, excess air, fuel PS, and fuel moisture content, only excess air proved to have significant influence on PAH formation [40]. |
- To enhance our understanding on the effect of particle size on PAH formation (in totality encompassing all product phases, i.e., gases, liquid, and solid) under slow-pyrolysis conditions while segregating individual PAH species.
- To look into the ambiguities present to resolve the trade-offs likely involved up to different levels.
- To employ a comprehensive predictive model (CRECK) to mimic the effect of particle size on PAHs (16 USEPA-PAHs) specifically under slow pyrolysis, including validation.
2. Materials and Methods
2.1. Feedstock Characterization (Proximate, Ultimate, and Chemical Analysis)
2.2. Thermo-Gravimetric (TG) and Derivative Thermogram (DTG) Analysis
2.3. CRECK Single-Particle Solid Biomass and Batch Reactor Gas-Phase Model
2.4. Optimization and Validation Techniques
3. Results and Discussions
3.1. Feedstock Characterization
3.2. Effect of Particle Size and Heating Rate on Temperature Profile
3.3. Effect of Particle Size and Heating Rate on Thermal Decomposition
3.4. Experimental vs. Model Comparison on Thermal Decomposition Because of Particle Size and Heating Rate
3.5. Effect of Particle Size and Heating Rate on Tar Fraction
3.6. Effect of Particle Size and Heating Rate on PAH Fraction
3.7. Validation and Optimization Results
4. Conclusions
5. Alignment of Proposed Solution with Sustainable Development Principles
6. Limitations on the Practical Application of the Research and Scope for Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amjith, L.R.; Bavanish, B. A review on biomass and wind as renewable energy for sustainable environment. Chemosphere 2022, 293, 133579. [Google Scholar] [CrossRef] [PubMed]
- Pstrowska, K.; Łużny, R.; Fałtynowicz, H.; Jaroszewska, K.; Postawa, K.; Pyshyev, S.; Witek-Krowiak, A. Unlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chem. Chem. Technol. 2024, 18, 211–231. [Google Scholar] [CrossRef]
- Varkolu, M.; Gundekari, S.; Chandra, V.; Palla, S.; Kumar, P.; Bhattacharjee, S.; Vinodkumar, T. Recent Advances in Biochar Production, Characterization, and Environmental Applications. Catalysts 2025, 15, 243. [Google Scholar] [CrossRef]
- Amalina, F.; Syukor, A.; Razak, A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Journal of Hazardous Materials Advances Biochar production techniques utilizing biomass waste-derived materials and environmental applications—A review. J. Hazard. Mater. Adv. 2022, 7, 100134. [Google Scholar] [CrossRef]
- Durak, H. Comprehensive assessment of thermochemical processes for sustainable waste management and resource recovery. Processes 2023, 11, 2092. [Google Scholar] [CrossRef]
- Lee, D.; Nam, H.; Won Seo, M.; Hoon Lee, S.; Tokmurzin, D.; Wang, S.; Park, Y.-K. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chem. Eng. J. 2022, 447, 137501. [Google Scholar] [CrossRef]
- Joshi, N.C.; Sinha, S.; Bhatnagar, P.; Nath, Y.; Negi, B.; Kumar, V.; Gururani, P. A concise review on waste biomass valorization through thermochemical conversion. Curr. Res. Microb. Sci. 2024, 6, 100237. [Google Scholar] [CrossRef]
- Egbosiuba, T.C. Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel. Heliyon 2022, 8, e10114. [Google Scholar] [CrossRef]
- Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al-Ansari, T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [Google Scholar] [CrossRef]
- Miroshnichenko, D.; Zhylina, M.; Shmeltser, K. Modern Use of Biochar in Various Technologies and Industries. A Review. Chem. Chem. Technol. 2024, 18, 232–243. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Yue, X.; Zhang, K.; Zhang, Z.; Zheng, H.; Zhao, X.; Li, H.; Zhou, P.; Wu, F.; et al. Advances in biochar composites for environmental sustainability. Adv. Compos. Hybrid Mater. 2025, 8, 74. [Google Scholar] [CrossRef]
- Khan, S.; Irshad, S.; Mehmood, K.; Hasnain, Z.; Nawaz, M.; Rais, A.; Gul, S.; Wahid, M.A.; Hashem, A.; Abd_Allah, E.F.; et al. Biochar Production and Characteristics, Its Impacts on Soil Health, Crop Production, and Yield Enhancement: A Review. Plants 2024, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Rambhatla, N.; Panicker, T.F.; Mishra, R.K.; Manjeshwar, S.K.; Sharma, A. Biomass pyrolysis for biochar production: Study of kinetics parameters and effect of temperature on biochar yield and its physicochemical properties. Results Eng. 2025, 25, 103679. [Google Scholar] [CrossRef]
- Perez-Martinez, B.B.; Lopez-Urionabarrenechea, A.; Serras-Malillos, A.; Acha, E.; Caballero, B.M.; Asueta, A.; Arnaiz, S. Influence of Feedstock Particle Size on the Certain Determination of Chlorine and Bromine in Pyrolysis Oils from Waste Electrical and Electronic Equipment Plastics. ACS Omega 2024, 9, 32593–32603. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Jahirul, M.I.; Khan, M.M.K. Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil. Energies 2024, 17, 2914. [Google Scholar] [CrossRef]
- Drané, M.; Zbair, M.; Hajjar-Garreau, S.; Josien, L.; Michelin, L.; Bennici, S.; Limousy, L. Unveiling the Potential of Corn Cob Biochar: Analysis of Microstructure and Composition with Emphasis on Interaction with NO2. Materials 2024, 17, 159. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, Y.; Zhang, Y.; Liu, C.; Wang, Y.; Xie, Y.; Ji, G.; Li, A. Fast pyrolysis of biomass with diverse properties to produce liquid hydrogen storage molecules. Carbon Capture Sci. Technol. 2024, 12, 100230. [Google Scholar] [CrossRef]
- Manka’abusi, D.; Zongo, N.; Lompo, D.J.P.; Steiner, C.; Marschner, B.; Buerkert, A. Soil properties and agronomic effects of repeated biochar amendment and fertilization in an urban horticultural system of Burkina Faso. Eur. J. Agron. 2024, 159, 127234. [Google Scholar] [CrossRef]
- Abban-Baidoo, E.; Manka’abusi, D.; Apuri, L.; Marschner, B.; Frimpong, K.A. Biochar addition influences C and N dynamics during biochar co-composting and the nutrient content of the biochar co-compost. Sci. Rep. 2024, 14, 23781. [Google Scholar] [CrossRef]
- Jeon, H.; Kim, D.; Scheufele, F.B.; Ro, K.S.; Libra, J.A.; Marzban, N.; Chen, H.; Ribeiro, C.; Jeong, C. Occurrence of Polycyclic Aromatic Hydrocarbons (PAHs) in Pyrochar and Hydrochar during Thermal and Hydrothermal Processes. Agronomy 2024, 14, 2040. [Google Scholar] [CrossRef]
- Tiwari, M.; Dirbeba, M.J.; Lehmusto, J.; Yrjas, P.; Vinu, R. Analytical and applied pyrolysis of challenging biomass feedstocks: Effect of pyrolysis conditions on product yield and composition. J. Anal. Appl. Pyrolysis 2024, 177, 106355. [Google Scholar] [CrossRef]
- Jerzak, W.; Acha, E.; Li, B. Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis. Energies 2024, 17, 5082. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Liu, P.; Wang, Z.; Huhe, T.; Chen, Z.; Wu, Y.; Lei, T. A Study on the Pyrolysis Behavior and Product Evolution of Typical Wood Biomass to Hydrogen-Rich Gas Catalyzed by the Ni-Fe/HZSM-5 Catalyst. Catalysts 2024, 14, 200. [Google Scholar] [CrossRef]
- Soko, A.; Boguszewska-czubara, A.; Zarzycki, R.; Oleszczuk, P.; Gao, Y.; Ko, M. Bioresource Technology Increased oxygen content in biochar lowered bioavailability of polycyclic aromatic hydrocarbons—Related toxicity to various organisms. Bioresour. Technol. 2024, 407, 131110. [Google Scholar] [CrossRef]
- Piazza, V.; Batista, R.; Frassoldati, A.; Lietti, L.; Chiaberge, S.; Gambaro, C.; Siviero, A.; Faravelli, T.; Beretta, A. Detailed speciation of biomass pyrolysis products with a novel TGA-based methodology: The case-study of cellulose. J. Anal. Appl. Pyrolysis 2024, 178, 106413. [Google Scholar] [CrossRef]
- Osman, A.I.; Farghali, M.; Ihara, I.; Elgarahy, A.M.; Ayyad, A.; Mehta, N.; Ng, K.H.; Abd El-Monaem, E.M.; Eltaweil, A.S.; Hosny, M.; et al. Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: A review. Environ. Chem. Lett. 2023, 21, 1419–1476. [Google Scholar] [CrossRef]
- Mariyam, S.; Al-Ansari, T.; McKay, G. Particle size impact on pyrolysis of multi-biomass: A solid-state reaction modeling study. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 3681–3691. [Google Scholar] [CrossRef]
- Rozzi, E.; Minuto, F.D.; Lanzini, A.; Leone, P. Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies 2024, 13, 420. [Google Scholar] [CrossRef]
- Afessa, M.M.; Locaspi, A.; Debiagi, P.; Frassoldati, A.; Caraccio, R.; Ramayya, A.V.; Faravelli, T. Pyrolysis of large biomass particles: Model validation and application to coffee husks valorization. J. Anal. Appl. Pyrolysis 2025, 188, 107028. [Google Scholar] [CrossRef]
- Fernández, I.; Pérez, S.F.; Fernández-Ferreras, J.; Llano, T. Microwave-Assisted Pyrolysis of Forest Biomass. Energies 2024, 17, 4852. [Google Scholar] [CrossRef]
- Osman, A.I.; Zhang, Y.; Lai, Z.Y.; Rashwan, A.K.; Farghali, M.; Ahmed, A.A.; Liu, Y.; Fang, B.; Chen, Z.; Al-Fatesh, A.; et al. Machine learning and computational chemistry to improve biochar fertilizers: A review. Environ. Chem. Lett. 2023, 21, 3159–3244. [Google Scholar] [CrossRef]
- Aboelela, D.; Saleh, H.; Attia, A.M.; Elhenawy, Y.; Majozi, T.; Bassyouni, M. Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions. Sustainability 2023, 15, 11238. [Google Scholar] [CrossRef]
- Silva, J.; Teixeira, S.; Teixeira, J. A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective. Energies 2023, 16, 6705. [Google Scholar] [CrossRef]
- Stark, A.K.; Ghoniem, A.F. Quantification of the influence of particle diameter on Polycyclic Aromatic Hydrocarbon (PAH) formation in fluidized bed biomass pyrolysis. Fuel 2017, 206, 276–288. [Google Scholar] [CrossRef]
- Gaston, K.R.; Jarvis, M.W.; Pepiot, P.; Smith, K.M.; Frederick, W.J.; Nimlos, M.R. Biomass pyrolysis and gasification of varying particle sizes in a fluidized-bed reactor. Energy Fuels 2011, 25, 3747–3757. [Google Scholar] [CrossRef]
- Mohseni-bandpei, A.; Majlesi, M.; Ra, M. Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste. Chemosphere 2019, 227, 277–288. [Google Scholar] [CrossRef]
- Dai, Q.; Jiang, X.; Lv, G.; Ma, X.; Jin, Y.; Wang, F.; Chi, Y.; Yan, J. Investigation into particle size influence on PAH formation during dry sewage sludge pyrolysis: TG-FTIR analysis and batch scale research. J. Anal. Appl. Pyrolysis 2015, 112, 388–393. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Y.; He, Y.; Xia, K.; Qiao, S.; Zhang, Q. Polycyclic Aromatic Hydrocarbons Concentration in Straw Biochar with different Particle Size. Environ. Sci. 2016, 31, 91–97. [Google Scholar] [CrossRef]
- Qiao, M.; Wang, F.; Meng, S.; Liu, Y.; Song, L.; Zhao, J.; Ma, Y.; Zhao, G.; Huang, X.; Hai, D. Pear Wood Pyrolysis Influences Quality and Levels of Polycyclic Aromatic Hydrocarbons in Liquid Smoke. J. Food Prot. 2024, 87, 100320. [Google Scholar] [CrossRef]
- Gulyurtlu, I.; Karunaratne, D.G.G.P.; Cabrita, I. The study of the effect of operating parameters on the PAH formation during the combustion of coconut shell in a fluidised bed. Fuel 2003, 82, 215–223. [Google Scholar] [CrossRef]
- Afshar, M.; Mofatteh, S. Biochar for a sustainable future: Environmentally friendly production and diverse applications. Results Eng. 2024, 23, 102433. [Google Scholar] [CrossRef]
- Li, Y.; Gupta, R.; Zhang, Q.; You, S. Review of biochar production via crop residue pyrolysis: Development and perspectives. Bioresour. Technol. 2023, 369, 128423. [Google Scholar] [CrossRef]
- Hafidzal, M.; Mohd, B.; Nakamura, H.; Hasegawa, S.; Tezuka, T.; Maruta, K. Effects of n-butanol addition on sooting tendency and formation of C 1–C 2 primary intermediates of n -heptane / air mixture in a micro flow reactor with a controlled temperature profile. Combust. Sci. Technol. 2018, 190, 2066–2081. [Google Scholar] [CrossRef]
- Drakon, A.V.; Eremin, A.V.; Mikheyeva, E.Y. Influence of chemically active additives on kinetics of acetylene self-decomposition and following soot formation. Combust. Sci. Technol. 2023, 195, 2774–2800. [Google Scholar] [CrossRef]
- Wu, S.; Liu, H.; Duan, Q.; Li, J.; Sun, Q.; Li, Z. A Discrete Distributed Activation Energy Model for Cedar and Polyethylene Fast Heating Pyrolysis Kinetics. Processes 2024, 12, 2618. [Google Scholar] [CrossRef]
- Pielsticker, S.; Debiagi, P.; Cerciello, F.; Hasse, C.; Kneer, R. Comparative analysis of pyrolysis models including SFOR, CRECK, and Bio-CPD to predict reaction kinetics and products from extracted biomass components. Fuel 2024, 371, 131867. [Google Scholar] [CrossRef]
- Assefa, B.T.; Chamberlin, J.; Reidsma, P.; Silva, J.V.; van Ittersum, M.K. Correction to: Unravelling the variability and causes of smallholder maize yield gaps in Ethiopia. Food Secur. 2020, 12, 489–490. [Google Scholar] [CrossRef]
- ASTM D3172-13; Standard Practice for Proximate Analysis of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2013.
- Bizerra, D.; Nunes, J.; Barros, C.; Paixão, R.; Marques, R.; Neto, F.S.; Santos, J.; Melo, R.; Fernandes, B.; Rios, M. Carnauba Straw as Feedstock for Solid Biofuel Production. Adv. Environ. Eng. Res. 2023, 4, 43. [Google Scholar] [CrossRef]
- DIN EN ISO 16948:2015-09; Solid biofuels-Determination of Total Content of Carbon, Hydrogen and Nitrogen. Deutsches Institut für Normung: Berlin, Germany, 2015.
- Adam, R.; Pollex, A.; Zeng, T.; Kirsten, C.; Röver, L.; Berger, F.; Lenz, V.; Werner, H. Systematic homogenization of heterogenous biomass batches—Industrial-scale production of solid biofuels in two case studies. Biomass Bioenergy 2023, 173, 106808. [Google Scholar] [CrossRef]
- Debiagi, P.; Gentile, G.; Cuoci, A.; Frassoldati, A.; Ranzi, E.; Faravelli, T. A predictive model of biochar formation and characterization. J. Anal. Appl. Pyrolysis 2018, 134, 326–335. [Google Scholar] [CrossRef]
- Debiagi, P.E.A.; Pecchi, C.; Gentile, G.; Frassoldati, A.; Cuoci, A.; Faravelli, T.; Ranzi, E. Extractives Extend the Applicability of Multistep Kinetic Scheme of Biomass Pyrolysis. Energy Fuels 2015, 29, 6544–6555. [Google Scholar] [CrossRef]
- Wossine, S.E.; Thothadri, G.; Tufa, H.B.; Tucho, W.M.; Murtaza, A.; Edacherian, A.; Sayeed Ahmed, G.M. Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties. Polymers 2024, 16, 1629. [Google Scholar] [CrossRef]
- Afessa, M.M.; Olu, F.E.; Geleta, W.S.; Legese, S.S.; Ramayya, A.V. Unlocking the potential of biochar derived from coffee husk and khat stem for catalytic tar cracking during biomass pyrolysis: Characterization and evaluation. Biomass Convers. Biorefinery 2025, 15, 11011–11026. [Google Scholar] [CrossRef]
- Debiagi, P.; Faravelli, T.; Hasse, C.; Ranzi, E. Kinetic Modeling of Solid, Liquid and Gas Biofuel Formation from Biomass Pyrolysis. In Production of Biofuels and Chemicals with Pyrolysis; Fang, Z., Smith, R.L., Jr., Xu, L., Eds.; Springer: Singapore, 2020; pp. 31–76. ISBN 9789811527319. [Google Scholar]
- Afessa, M.M.; Debiagi, P.; Ferreiro, A.I.; Mendes, M.A.A.; Faravelli, T.; Ramayya, A.V. Experimental and modeling investigation on pyrolysis of agricultural biomass residues: Khat stem and coffee husk for bio-oil application. J. Anal. Appl. Pyrolysis 2022, 162, 105435. [Google Scholar] [CrossRef]
- Gentile, G.; Debiagi, P.E.A.; Cuoci, A.; Frassoldati, A.; Ranzi, E.; Faravelli, T. A computational framework for the pyrolysis of anisotropic biomass particles. Chem. Eng. J. 2017, 321, 458–473. [Google Scholar] [CrossRef]
- Barr, M.R.; Jervis, R.; Zhang, Y.; Bodey, A.J.; Rau, C.; Shearing, P.R.; Brett, D.J.L.; Titirici, M.-M.; Volpe, R. Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. Sci. Rep. 2021, 11, 2656. [Google Scholar] [CrossRef]
- Losic, D.; Farivar, F.; Yap, P.L. Refining and Validating Thermogravimetric Analysis (TGA) for Robust Characterization and Quality Assurance of Graphene-Related Two-Dimensional Materials (GR2Ms). C-J. Carbon Res. 2024, 10, 30. [Google Scholar] [CrossRef]
- Kamga, P.L.W.; Vitoussia, T.; Bissoue, A.N.; Nguimbous, E.N.; Dieudjio, D.N.; Bot, B.V.; Njeugna, E. Physical and energetic characteristics of pellets produced from Movingui sawdust, corn spathes, and coconut shells. Energy Rep. 2024, 11, 1291–1301. [Google Scholar] [CrossRef]
- Maulinda, L.; Husin, H.; Rahman, N.A.; Meurah, C. Results in Engineering Effects of temperature and times on the product distribution of bio-oils derived from Typha latifolia pyrolysis as renewable energy. Results Eng. 2023, 18, 101163. [Google Scholar] [CrossRef]
- Shah, H.H.; Amin, M.; Iqbal, A.; Nadeem, I.; Kalin, M.; Soomar, A.M.; Galal, A.M. A review on gasification and pyrolysis of waste plastics. Front. Chem. 2023, 10, 960894. [Google Scholar] [CrossRef]
- Kumar, N.V.; Sawargaonkar, G.; Rani, C.S.; Pasumarthi, R.; Kale, S. Harnessing the potential of pigeonpea and maize feedstock biochar for carbon sequestration, energy generation, and environmental sustainability. Bioresour. Bioprocess. 2024, 11, 5. [Google Scholar] [CrossRef]
- Landrat, M.; Abawalo, M.; Piko, K. Assessing the Potential of Teff Husk for Biochar Production through Slow Pyrolysis: Effect of Pyrolysis Temperature on Biochar Yield. Energies 2024, 17, 1988. [Google Scholar] [CrossRef]
- Vilas-Boas, A.C.M.; Tarelho, L.A.C.; Oliveira, H.S.M.; Silva, F.G.C.S.; Pio, D.T.; Matos, M.A.A. Valorisation of residual biomass by pyrolysis: Influence of process conditions on products. Sustain. Energy Fuels 2023, 8, 379–396. [Google Scholar] [CrossRef]
- Zou, X.; Debiagi, P.; Amjed, M.A.; Zhai, M.; Faravelli, T. Impact of high-temperature biomass pyrolysis on biochar formation and composition. J. Anal. Appl. Pyrolysis 2024, 179, 106463. [Google Scholar] [CrossRef]
- Syguła, E.; Ciolkosz, D.; Białowiec, A. The significance of structural components of lignocellulosic biomass on volatile organic compounds presence on biochar—A review. Wood Sci. Technol. 2024, 58, 859–886. [Google Scholar] [CrossRef]
- Panizio, R.; Castro, C.; Pacheco, N.; Assis, A.C.; Longo, A.; Vilarinho, C.; Teixeira, J.C.; Brito, P.; Gonçalves, M.; Nobre, C. Investigation of biochars derived from waste lignocellulosic biomass and insulation electric cables: A comprehensive TGA and Macro-TGA analysis. Heliyon 2024, 10, e37882. [Google Scholar] [CrossRef]
- Folgueras, M.B.; Gutiérrez-Trashorras, A.J.; Laine-Cuervo, G.; Ríos-Fernández, J.C. The relevant effect of marine salt and epiphytes on Posidonia oceanica waste pyrolysis: Removal of SO2/HCl emissions and promotion of O/HCOOH formation. Waste Manag. 2024, 181, 101–113. [Google Scholar] [CrossRef]
- Gao, X.; Lu, L.; Shahnam, M.; Rogers, W.A.; Smith, K.; Gaston, K.; Robichaud, D.; Brennan Pecha, M.; Crowley, M.; Ciesielski, P.N.; et al. Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer. Chem. Eng. J. 2021, 418, 129347. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.; Chu, S.; Zha, Z. Pyrolysis of single large biomass particle: Simulation and experiments. Chin. J. Chem. Eng. 2021, 29, 375–382. [Google Scholar] [CrossRef]
- Karda, D.; Swie, I.W. Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow. Energy 2021, 221, 119802. [Google Scholar] [CrossRef]
- Ogunkanmi, J.O.; Kulla, D.M.; Omisanya, N.O.; Sumaila, M.; Obada, D.O. Extraction of bio-oil during pyrolysis of locally sourced palm kernel shells: Effect of process parameters. Case Stud. Therm. Eng. 2018, 12, 711–716. [Google Scholar] [CrossRef]
- Han, F.; Wang, M.; Ma, X.; Yin, L.; Chen, D. Numerical simulation of heat transfer properties of large-sized biomass particles during pyrolysis process. Heliyon 2023, 9, e21255. [Google Scholar] [CrossRef] [PubMed]
- Von Berg, L.; Hochenauer, C.; Scharler, R. Multi-scale modelling of fluidized bed biomass gasification using a 1D particle model coupled to CFD. Fuel 2022, 324, 124677. [Google Scholar] [CrossRef]
- Zhang, F.; Tavakkol, S.; Galeazzo, F.C.C.; Stapf, D. Particle-resolved simulation of the pyrolysis process of a single plastic particle. Heat Mass Transf. 2025, 61, 12. [Google Scholar] [CrossRef]
- Wickramaarachchi, W.A.M.K.P.; Narayana, M. Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling. Renew. Energy 2020, 146, 1153–1165. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Zacharis, A.K. Simulation and Experimental Study of the Isothermal Thermogravimetric Analysis and the Apparent Alterations of the Thermal Stability of Composite Polymers. Polymers 2024, 16, 1454. [Google Scholar] [CrossRef]
- Ahmed, A.; Afolabi, E.A.; Garba, M.U.; Musa, U.; Alhassan, M.; Ishaq, K. Effect of particle size on thermal decomposition and devolatilization kinetics of melon seed shell. Chem. Eng. Commun. 2019, 206, 1228–1240. [Google Scholar] [CrossRef]
- Escalante, J.; Chen, W.H.; Tabatabaei, M.; Hoang, A.T.; Kwon, E.E.; Andrew Lin, K.Y.; Saravanakumar, A. Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renew. Sustain. Energy Rev. 2022, 169, 112914. [Google Scholar] [CrossRef]
- Caposciutti, G.; Almuina-Villar, H.; Dieguez-Alonso, A.; Gruber, T.; Kelz, J.; Desideri, U.; Hochenauer, C.; Scharler, R.; Anca-Couce, A. Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion. Biomass Bioenergy 2019, 123, 1–13. [Google Scholar] [CrossRef]
- Zolghadr, A.; Kelley, M.D.; Sokhansefat, G.; Moradian, M.; Sullins, B.; Ley, T.; Biernacki, J.J. Biomass microspheres—A new method for characterization of biomass pyrolysis and shrinkage. Bioresour. Technol. 2019, 273, 16–24. [Google Scholar] [CrossRef]
- Rony, Z.I.; Rasul, M.G.; Jahirul, M.I.; Hasan, M.M. Optimizing Seaweed (Ascophyllum nodosum) Thermal Pyrolysis for Environmental Sustainability: A Response Surface Methodology Approach and Analysis of Bio-Oil Properties. Energies 2024, 17, 863. [Google Scholar] [CrossRef]
- Paulsen, A.D.; Mettler, M.S.; Dauenhauer, P.J. The role of sample dimension and temperature in cellulose pyrolysis. Energy Fuels 2013, 27, 2126–2134. [Google Scholar] [CrossRef]
- Lu, X.; Gu, X. A review on lignin pyrolysis: Pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. Biotechnol. Biofuels Bioprod. 2022, 15, 106. [Google Scholar] [CrossRef]
- Quan, C.; Gao, N.; Song, Q. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. J. Anal. Appl. Pyrolysis 2016, 121, 84–92. [Google Scholar] [CrossRef]
- Pecha, M.B.; Arbelaez, J.I.M.; Garcia-Perez, M.; Chejne, F.; Ciesielski, P.N. Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: Chemical reactions, heat transfer, mass transfer, and phase change. Green Chem. 2019, 21, 2868–2898. [Google Scholar] [CrossRef]
- Piazza, V.; Batista da Silva Junior, R.; Frassoldati, A.; Lietti, L.; Gambaro, C.; Rajendran, K.; Chen, D.; Faravelli, T.; Beretta, A. Unravelling the complexity of hemicellulose pyrolysis: Quantitative and detailed product speciation for xylan and glucomannan in TGA and fixed bed reactor. Chem. Eng. J. 2024, 497, 154579. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Dou, J.; Henrikki, M.; Richards, T. Identifying the primary reactions and products of fast pyrolysis of alkali lignin. J. Anal. Appl. Pyrolysis 2020, 151, 104917. [Google Scholar] [CrossRef]
- Jerzak, W.; Reinmöller, M.; Magdziarz, A. Estimation of the heat required for intermediate pyrolysis of biomass. Clean Technol. Environ. Policy 2022, 24, 3061–3075. [Google Scholar] [CrossRef]
- Atakoohi, S.E.; Spennati, E.; Casazza, A.A.; Riani, P.; Garbarino, G. Investigating the Effect of Operational Variables on the Yield, Characterization, and Properties of End-of-Life Olive Stone Biomass Pyrolysis Products. Molecules 2023, 28, 6516. [Google Scholar] [CrossRef]
- Cortazar, M.; Santamaria, L.; Lopez, G.; Alvarez, J.; Zhang, L.; Wang, R.; Bi, X.; Olazar, M. A comprehensive review of primary strategies for tar removal in biomass gasification. Energy Convers. Manag. 2023, 276, 116496. [Google Scholar] [CrossRef]
- Ochieng, R.; Ceron, A.L.; Konist, A.; Sarker, S. Experimental and modeling studies of intermediate pyrolysis of wood in a laboratory-scale continuous feed retort reactor. Bioresour. Technol. Rep. 2023, 24, 101650. [Google Scholar] [CrossRef]
- Singh, A.; Singh, D.K.; Ojha, D.K. Sustainable Chemistry for Climate Action Chemical engineering perspective of pyrolysis reactor and condenser system for biomass valorisation. Sustain. Chem. Clim. Action 2024, 5, 100046. [Google Scholar] [CrossRef]
- Bensabath, T.; Le, M.D.; Monnier, H.; Glaude, P.; Bensabath, T.; Le, M.D.; Monnier, H.; Polycyclic, P.G.; Réactions, L.; De Lorraine, U.; et al. Polycyclic aromatic hydrocarbon (PAH) formation during acetylene pyrolysis in tubular reactor under low pressure carburizing conditions. Chem. Eng. Sci. 2019, 202, 84–94. [Google Scholar] [CrossRef]
- Pahnila, M.; Koskela, A.; Sulasalmi, P.; Fabritius, T. A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. Energies 2023, 16, 6936. [Google Scholar] [CrossRef]
- Elhenawy, Y.; Fouad, K.; Mansi, A.; Bassyouni, M.; Gadalla, M.; Ashour, F.; Majozi, T. Experimental analysis and numerical simulation of biomass pyrolysis. J. Therm. Anal. Calorim. 2024, 149, 10369–10383. [Google Scholar] [CrossRef]
- Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 2012, 46, 2830–2838. [Google Scholar] [CrossRef]
- Buss, W.; Hilber, I.; Graham, M.C.; Masěk, O. Composition of PAHs in Biochar and Implications for Biochar Production. ACS Sustain. Chem. Eng. 2022, 10, 6755–6765. [Google Scholar] [CrossRef]
- Andrzej, P.; Onopiuk, A.; Kielar, J.; Chojnacki, J.; Kukiełka, L.; Najser, J.; Mikeska, M.; Knutel, B.; Berner, B. Polycyclic Aromatic Hydrocarbons (PAHs) in Wheat Straw Pyrolysis Products Produced for Energy Purposes. Sustainability 2024, 16, 9639. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, F.; Li, Z.; Tan, H. Formation and emission characteristics of PAHs during pyrolysis and combustion of coal and biomass. Fuel 2024, 378, 132935. [Google Scholar] [CrossRef]
- Buss, W.; Graham, M.C.; MacKinnon, G.; Mašek, O. Strategies for producing biochars with minimum PAH contamination. J. Anal. Appl. Pyrolysis 2016, 119, 24–30. [Google Scholar] [CrossRef]
- Mengesha, T.T.; Ancha, V.R.; Sundar, L.S.; Pollex, A. Review on the Influence of Pyrolysis Process Parameters for Biochar Production with Minimized Polycyclic Aromatic Hydrocarbon Content. J. Anal. Appl. Pyrolysis 2024, 182, 106699. [Google Scholar] [CrossRef]
Proximate Analysis, % wt. (As Received Basis) | Ultimate Analysis, % wt. (Dry Ash Free Basis, Daf) | Chemical Analysis, % wt. (As Received Basis) | |||
---|---|---|---|---|---|
Volatile matter | 75.23 | C | 46.7 | CELL | 46.0 |
Fixed Carbon | 13.73 | H | 5.76 | XYGR | 25.0 |
Ash | 3.04 | N | 0.46 | LIG-C | 2.3 |
Moisture | 7.99 | O | 47.08 | LIG-H | 0 |
S | 0.03 | LIG-O | 14.6 | ||
TANN | 0 | ||||
TGL | 0 |
Composition of Coffee Husk, in % | Temperature, °C | Residence Time, min | Naphthalene (C10H8), mg/kg | Phenanthrene (C14H10), mg/kg | ∑16 EPA-PAH, mg/kg | |
---|---|---|---|---|---|---|
CELL | 28.07 | 450 | 60 | 4.5 | 1.4 | 6.7 |
HCE | 21.96 | 450 | 120 | 4.3 | 0.6 | 5.2 |
LIG-C | 0.00 | 450 | 180 | 1.5 | 0.6 | 2.5 |
LIG-H | 17.45 | 550 | 60 | 1.5 | 1.5 | |
LIG-O | 13.43 | 550 | 120 | 0.7 | 0.7 | |
TANN | 0.00 | 650 | 60 | 0.7 | 0.7 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 9 | 8.124 | 285.22 | <0.0001 | significant | |
A-Heating Rate | 6.327 | 1 | 6.327 | 222.14 | <0.0001 | |
B-Particle Size | 1.862 | 1 | 1.862 | 65.37 | <0.0001 | |
C-Time | 1.004 | 1 | 1.004 | 352.60 | <0.0001 | |
AB | 8.481 | 1 | 8.481 | 297.77 | <0.0001 | |
AC | 7.120 | 1 | 7.120 | 25.00 | <0.0001 | |
BC | 5.656 | 1 | 5.656 | 19.86 | <0.0001 | |
A2 | 7.550 | 1 | 7.550 | 26.51 | <0.0001 | |
B2 | 2.546 | 1 | 2.546 | 8.94 | 0.0030 | |
C2 | 1.407 | 1 | 1.407 | 493.90 | <0.0001 | |
Residual | 9.541 | 335 | 2.848 | |||
Cor Total | 8.265 | 344 | ||||
Std. Dev. | 1.69 | R2 | 0.89 | |||
Mean | 9.32 | Adjusted R2 | 0.88 | |||
C.V. % | 18.12 | Predicted R2 | 0.88 |
Regression Equations | R2 | PRESS |
---|---|---|
0.58 | 0.0001 | |
0.89 | 1.0178 | |
0.97 | ||
0.53 | ||
0.71 | 0 | |
0.43 | ||
0.23 | ||
0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mengesha, T.T.; Ancha, V.R.; Nigussie, A.; Afessa, M.M.; Bhandari, R. Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis. Sustainability 2025, 17, 4962. https://doi.org/10.3390/su17114962
Mengesha TT, Ancha VR, Nigussie A, Afessa MM, Bhandari R. Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis. Sustainability. 2025; 17(11):4962. https://doi.org/10.3390/su17114962
Chicago/Turabian StyleMengesha, Teka Tesfaye, Venkata Ramayya Ancha, Abebe Nigussie, Million Merid Afessa, and Ramchandra Bhandari. 2025. "Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis" Sustainability 17, no. 11: 4962. https://doi.org/10.3390/su17114962
APA StyleMengesha, T. T., Ancha, V. R., Nigussie, A., Afessa, M. M., & Bhandari, R. (2025). Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis. Sustainability, 17(11), 4962. https://doi.org/10.3390/su17114962