Enhancing Fuel Cell Performance by Constructing a Gas Diffusion Layer with Gradient Microstructure
Abstract
1. Introduction
2. Materials and Methods
2.1. Hydrophobic Modification of the Carbon Paper
2.2. Preparation of the Microporous Layers
2.3. Construction of the Multi-Scale Pore Structures
2.4. Single Cell Assembly and Performance Testing
3. Results and Discussions
3.1. Morphological Characteristics and Structural Composition of the Diffusion Layer
3.2. Single-Cell Performance Analysis
4. Conclusions
- (1)
- the optimized gradient pore design (80→170 μm, with larger pores near the gas inlet) achieved a peak power density of 1.18 W·cm−2, representing a 20% improvement over conventional GDLs;
- (2)
- the structure effectively decoupled gas and liquid transport, reducing oxygen diffusion resistance (effective diffusion coefficient up to 0.01102 cm2·s−1) and mitigating flooding issues;
- (3)
- a scalable self-assembly mold method was established for precise pore structure control.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, Q.; He, Y.; Bai, X.; Wang, M.; Cullen, D.A.; Lucero, M.; Zhao, X.; More, K.L.; Zhou, H.; Feng, Z.; et al. Methanol tolerance of atomically dispersed single metal site catalysts: Mechanistic understanding and high-performance direct methanol fuel cells. Energy Environ. Sci. 2020, 13, 3544–3555. [Google Scholar] [CrossRef]
- Cindrella, L.; Kannan, A.; Lin, J.; Saminathan, K.; Ho, Y.; Lin, C.; Wertz, J. Gas diffusion layer for proton exchange membrane fuel cells—A review. J. Power Sources 2009, 194, 146–160. [Google Scholar] [CrossRef]
- Schwartz, N.; Harrington, J.; Ziegler, K.J.; Cox, P. Effects of Electrode Support Structure on Electrode Microstructure, Transport Properties, and Gas Diffusion within the Gas Diffusion Layer. ACS Omega 2022, 7, 29832–29839. [Google Scholar] [CrossRef]
- Shen, J.; Tu, Z.; Chan, S.H. Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel. Appl. Therm. Eng. 2019, 149, 1408–1418. [Google Scholar] [CrossRef]
- Zhang, G.; Qu, Z.; Tao, W.-Q.; Wang, X.; Wu, L.; Wu, S.; Xie, X.; Tongsh, C.; Huo, W.; Bao, Z.; et al. Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges. Chem. Rev. 2022, 123, 989–1039. [Google Scholar] [CrossRef]
- Yahya, A.; Ferrero, D.; Dhahri, H.; Leone, P.; Slimi, K.; Santarelli, M. Electrochemical performance of solid oxide fuel cell: Experimental study and calibrated model. Energy 2018, 142, 932–943. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Li, S.; Shen, Q.; Liao, J.; Jiang, Z.; Zhang, G.; Zhang, H.; Su, F. Effect of Binder and Compression on the Transport Parameters of a Multilayer Gas Diffusion Layer. Energy Fuels 2021, 35, 15058–15073. [Google Scholar] [CrossRef]
- Kong, C.S.; Kim, D.-Y.; Lee, H.-K.; Shul, Y.-G.; Lee, T.-H. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. J. Power Sources 2002, 108, 185–191. [Google Scholar] [CrossRef]
- Pasaogullari, U.; Wang, C.-Y. Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electrochim. Acta 2004, 49, 4359–4369. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Shen, Q.; Li, S.; Su, F.; Jiang, Z.; Liao, J.; Zhang, G.; Sun, J. Effects of Compression and Porosity Gradients on Two-Phase Behavior in Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells. Membranes 2023, 13, 303. [Google Scholar] [CrossRef]
- He, C.; Wen, Q.; Ning, F.; Shen, M.; He, L.; Li, Y.; Tian, B.; Pan, S.; Dan, X.; Li, W.; et al. A New Integrated GDL with Wavy Channel and Tunneled Rib for High Power Density PEMFC at Low Back Pressure and Wide Humidity. Adv. Sci. 2023, 10, e2302928. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Qu, Z.; Wang, X.; Zhang, G. Enhancing the performance of proton exchange membrane fuel cell using nanostructure gas diffusion layers with gradient pore structures. Int. J. Hydrogen Energy 2023, 52, 1161–1172. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, P.; Yang, S.; Su, J.; Guo, L. Enhancing the performance of proton-exchange membrane fuel cell by optimizing the hydrophobicity and porosity of cathode catalyst layer. Sci. China Technol. Sci. 2025, 68, 1320101. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wan, Z.; Chen, Y.; Tan, J.; Pan, M. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells. J. Power Sources 2018, 379, 338–343. [Google Scholar] [CrossRef]
- Zahiri, B.; Felix, R.M.; Hill, A.; Kung, C.H.; Sharma, T.; Real, J.D.; Mérida, W. Through-plane wettability tuning of fibrous carbon layers via O2 plasma treatment for enhanced water management. Appl. Surf. Sci. 2018, 458, 32–42. [Google Scholar] [CrossRef]
- Li, F.; Wu, W.; Wang, S. Pore network simulations of liquid water and oxygen transport in gas diffusion layers with spatially variable wettability. J. Power Sources 2021, 506, 230207. [Google Scholar] [CrossRef]
- Muirhead, D.; Banerjee, R.; George, M.G.; Ge, N.; Shrestha, P.; Liu, H.; Lee, J.; Bazylak, A. Liquid water saturation and oxygen transport resistance in polymer electrolyte membrane fuel cell gas diffusion layers. Electrochim. Acta 2018, 274, 250–265. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-W.; Popov, B.N. A review of gas diffusion layer in PEM fuel cells: Materials and designs. Int. J. Hydrogen Energy 2012, 37, 5850–5865. [Google Scholar] [CrossRef]
- Guo, F.; Yang, X.; Jiang, H.; Zhu, Y.; Li, C. An ultrasonic atomization spray strategy for constructing hydrophobic and hydrophilic synergistic surfaces as gas diffusion layers for proton exchange membrane fuel cells. J. Power Sources 2020, 451, 227784. [Google Scholar] [CrossRef]
- Gao, W.; Yin, Q.; Zhang, X.; Zhang, C.; Lei, Y.; Wang, C. Low-platinum dissymmetric membrane electrode assemblies for fuel cells suitable for a variety of external humidification conditions. J. Power Sources 2022, 547, 232013. [Google Scholar] [CrossRef]
- Liu, S.; Guo, Y.; Kang, K.; Chen, Y.; Li, K. Theoretical and experimental study on the preparation of hydrophobic GDL materials by ultrasonic dispersion. Renew. Energy 2022, 181, 129–141. [Google Scholar] [CrossRef]
- Dai, W.; Wang, H.; Yuan, X.-Z.; Martin, J.J.; Yang, D.; Qiao, J.; Ma, J. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2009, 34, 9461–9478. [Google Scholar] [CrossRef]
- Wan, Z.; Sun, Y.; Yang, C.; Kong, X.; Yan, H.; Chen, X.; Huang, T.; Wang, X. Experimental performance investigation on the arrangement of metal foam as flow distributors in proton exchange membrane fuel cell. Energy Convers. Manag. 2021, 231, 113846. [Google Scholar] [CrossRef]
- Tseng, C.-J.; Lo, S.-K. Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC. Energy Convers. Manag. 2010, 51, 677–684. [Google Scholar] [CrossRef]
- Sakaida, S.; Tabe, Y.; Tanaka, K.; Konno, M. Study on water transport in hydrophilic gas diffusion layers for improving the flooding performance of polymer electrolyte fuel cells. Int. J. Hydrogen Energy 2021, 46, 7464–7474. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Yu, S.; Jiang, H.; Li, C. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management. Chin. J. Chem. Eng. 2022, 44, 246–252. [Google Scholar] [CrossRef]
- Guo, L.; Chen, L.; Zhang, R.; Peng, M.; Tao, W.-Q. Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity. Energy 2022, 253, 124101. [Google Scholar] [CrossRef]
- Sim, J.; Kang, M.; Min, K.; Lee, E.; Jyoung, J.-Y. Effects of carbon corrosion on proton exchange membrane fuel cell performance using two durability evaluation methods. Renew. Energy 2022, 190, 959–970. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Wang, Z.; Li, R. Experimental and simulation analysis of liquid capillary fingering process in the gas diffusion layer. J. Power Sources 2022, 554, 232276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.-X.; Chen, B.-H.; Wang, Y.-F.-H.; Guo, C.; Deng, B.-W.; Song, Z.-L.; You, Y.; Jiang, H.-B. Enhancing Fuel Cell Performance by Constructing a Gas Diffusion Layer with Gradient Microstructure. Materials 2025, 18, 3271. https://doi.org/10.3390/ma18143271
Wang R-X, Chen B-H, Wang Y-F-H, Guo C, Deng B-W, Song Z-L, You Y, Jiang H-B. Enhancing Fuel Cell Performance by Constructing a Gas Diffusion Layer with Gradient Microstructure. Materials. 2025; 18(14):3271. https://doi.org/10.3390/ma18143271
Chicago/Turabian StyleWang, Rui-Xin, Bai-He Chen, Ye-Fan-Hao Wang, Cheng Guo, Bo-Wen Deng, Zhou-Long Song, Yi You, and Hai-Bo Jiang. 2025. "Enhancing Fuel Cell Performance by Constructing a Gas Diffusion Layer with Gradient Microstructure" Materials 18, no. 14: 3271. https://doi.org/10.3390/ma18143271
APA StyleWang, R.-X., Chen, B.-H., Wang, Y.-F.-H., Guo, C., Deng, B.-W., Song, Z.-L., You, Y., & Jiang, H.-B. (2025). Enhancing Fuel Cell Performance by Constructing a Gas Diffusion Layer with Gradient Microstructure. Materials, 18(14), 3271. https://doi.org/10.3390/ma18143271