Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (898)

Search Parameters:
Keywords = gas rotation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8736 KiB  
Article
Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
by Seungjoo Lee, YoungSeok Kim, Hyun-Jun Choi and Bongjun Ji
Machines 2025, 13(8), 673; https://doi.org/10.3390/machines13080673 (registering DOI) - 1 Aug 2025
Viewed by 186
Abstract
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a [...] Read more.
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

25 pages, 4318 KiB  
Article
Real Reactive Micropolar Spherically Symmetric Fluid Flow and Thermal Explosion: Modelling and Existence
by Angela Bašić-Šiško
Mathematics 2025, 13(15), 2448; https://doi.org/10.3390/math13152448 - 29 Jul 2025
Viewed by 154
Abstract
A model for the flow and thermal explosion of a micropolar gas is investigated, assuming the equation of state for a real gas. This model describes the dynamics of a gas mixture (fuel and oxidant) undergoing a one-step irreversible chemical reaction. The real [...] Read more.
A model for the flow and thermal explosion of a micropolar gas is investigated, assuming the equation of state for a real gas. This model describes the dynamics of a gas mixture (fuel and oxidant) undergoing a one-step irreversible chemical reaction. The real gas model is particularly suitable in this context because it more accurately reflects reality under extreme conditions, such as high temperatures and high pressures. Micropolarity introduces local rotational dynamic effects of particles dispersed within the gas mixture. In this paper, we first derive the initial-boundary value system of partial differential equations (PDEs) under the assumption of spherical symmetry and homogeneous boundary conditions. We explain the underlying physical relationships and then construct a corresponding approximate system of ordinary differential equations (ODEs) using the Faedo–Galerkin projection. The existence of solutions for the full PDE model is established by analyzing the limit of the solutions of the ODE system using a priori estimates and compactness theory. Additionally, we propose a numerical scheme for the problem based on the same approximate system. Finally, numerical simulations are performed and discussed in both physical and mathematical contexts. Full article
(This article belongs to the Special Issue Fluid Mechanics, Numerical Analysis, and Dynamical Systems)
Show Figures

Figure 1

29 pages, 8216 KiB  
Article
Research on the Diaphragm Movement Characteristics and Cavity Profile Optimization of a Dual-Stage Diaphragm Compressor for Hydrogen Refueling Applications
by Chongzhou Sun, Zhilong He, Dantong Li, Xiaoqian Chen, Jie Tang, Manguo Yan and Xiangjie Kang
Appl. Sci. 2025, 15(15), 8353; https://doi.org/10.3390/app15158353 - 27 Jul 2025
Viewed by 289
Abstract
The large-scale utilization of hydrogen energy is currently hindered by challenges in low-cost production, storage, and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly, an [...] Read more.
The large-scale utilization of hydrogen energy is currently hindered by challenges in low-cost production, storage, and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly, an experimental platform was established to test the gas mass flowrate and fluid pressures under various preset conditions. Secondly, a simulation path integrating the finite element method simulation, theoretical stress model, and movement model was developed and experimentally validated to analyze the diaphragm stress distribution and deformation characteristics. Finally, comparative optimization analyses were conducted on different types of diaphragm cavity profiles. The results indicated that the driving pressure differences at the top dead center position reached 85.58 kPa for the first-stage diaphragm and 75.49 kPa for the second-stage diaphragm. Under experimental conditions of 1.6 MPa suction pressure, 8 MPa second-stage discharge pressure, and 200 rpm rotational speed, the first-stage and second-stage diaphragms reached the maximum center deflections of 4.14 mm and 2.53 mm, respectively, at the bottom dead center position. Moreover, the cavity profile optimization analysis indicated that the double-arc profile (DAP) achieved better cavity volume and diaphragm stress characteristics. The first-stage diaphragm within the optimized DAP-type cavity exhibited 173.95 MPa maximum principal stress with a swept volume of 0.001129 m3, whereas the second-stage optimized configuration reached 172.57 MPa stress with a swept volume of 0.0003835 m3. This research offers valuable insights for enhancing the reliability and performance of diaphragm compressors. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

29 pages, 20260 KiB  
Review
Geodynamic, Tectonophysical, and Structural Comparison of the South Caspian and Levant Basins: A Review
by Lev Eppelbaum, Youri Katz, Fakhraddin Kadirov, Ibrahim Guliyev and Zvi Ben-Avraham
Geosciences 2025, 15(8), 281; https://doi.org/10.3390/geosciences15080281 - 24 Jul 2025
Viewed by 274
Abstract
The Paratethyan South Caspian and Mediterranean Levant basins relate to the significant hydrocarbon provinces of Eurasia. The giant hydrocarbon reserves of the SCB are well-known. Within the LB, so far, only a few commercial gas fields have been found. Both the LB and [...] Read more.
The Paratethyan South Caspian and Mediterranean Levant basins relate to the significant hydrocarbon provinces of Eurasia. The giant hydrocarbon reserves of the SCB are well-known. Within the LB, so far, only a few commercial gas fields have been found. Both the LB and SCB contain some geological peculiarities. These basins are highly complex tectonically and structurally, requiring a careful, multi-component geological–geophysical analysis. These basins are primarily composed of oceanic crust. The oceanic crust of both the South Caspian and Levant basins formed within the complex Neotethys ocean structure. However, this crust is allochthonous in the Levant Basin (LB) and autochthonous in the South Caspian Basin (SCB). This study presents a comprehensive comparison of numerous tectonic, geodynamic, morphological, sedimentary, and geophysical aspects of these basins. The Levant Basin is located directly above the middle part of the massive, counterclockwise-rotating mantle structure and rotates accordingly in the same direction. To the north of this basin is located the critical latitude 35° of the Earth, with the vast Cyprus Bouguer gravity anomaly. The LB contains the most ancient block of oceanic crust on Earth, which is related to the Kiama paleomagnetic hyperzone. On the western boundary of the SCB, approximately 35% of the world’s mud volcanoes are located; the geological reasons for this are still unclear. The low heat flow values and thick sedimentary layers in both basins provide opportunities to discover commercial hydrocarbon deposits at great depths. The counterclockwise-rotating mantle structure creates an indirect geodynamic influence on the SCB. The lithospheric blocks situated above the eastern branch of the mantle structure trigger a north–northeastward movement of the western segment of the Iranian Plate, which exhibits a complex geometric configuration. Conversely, the movement of the Iranian Plate induced a clockwise rotation of the South Caspian Basin, which lies to the east of the plate. This geodynamic ensemble creates an unstable geodynamic situation in the region. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

16 pages, 2199 KiB  
Article
Carbon Footprint and Energy Balance Analysis of Rice-Wheat Rotation System in East China
by Dingqian Wu, Yezi Shen, Yuxuan Zhang, Tianci Zhang and Li Zhang
Agronomy 2025, 15(8), 1778; https://doi.org/10.3390/agronomy15081778 - 24 Jul 2025
Viewed by 265
Abstract
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies [...] Read more.
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies addressing carbon footprint (CF) and energy balance (EB) at the regional scale and long time series. Therefore, we analyzed the evolution patterns of the CF and EB of the rice-wheat system in Jiangsu Province from 1980 to 2022, as well as their influencing factors. The results showed that the sown area and total yield of rice and wheat exhibited an increasing–decreasing–increasing trend during 1980–2022, while the yield per unit area increased continuously. The CF of rice and wheat increased by 4172.27 kg CO2 eq ha−1 and 2729.18 kg CO2 eq ha−1, respectively, with the greenhouse gas emissions intensity (GHGI) showing a fluctuating upward trend. Furthermore, CH4 emission, nitrogen (N) fertilizer, and irrigation were the main factors affecting the CF of rice, with proportions of 36%, 20.26%, and 17.34%, respectively. For wheat, N fertilizer, agricultural diesel, compound fertilizer, and total N2O emission were the primary contributors, accounting for 42.39%, 22.54%, 13.65%, and 13.14%, respectively. Among energy balances, the net energy (NE) of rice exhibited an increasing and then fluctuating trend, while that of wheat remained relatively stable. The energy utilization efficiency (EUE), energy productivity (EPD), and energy profitability (EPF) of rice showed an increasing and then decreasing trend, while wheat decreased by 46.31%, 46.31%, and 60.62% during 43 years, respectively. Additionally, N fertilizer, agricultural diesel, and compound fertilizer accounted for 43.91–45.37%, 21.63–25.81%, and 12.46–20.37% of energy input for rice and wheat, respectively. Moreover, emission factors and energy coefficients may vary over time, which is an important consideration in the analysis of long-term time series. This study analyzes the ecological and environmental effects of the rice-wheat system in Jiangsu Province, which helps to promote the development of agriculture in a green, low-carbon, and high-efficiency direction. It also offers a theoretical basis for constructing a low-carbon sustainable agricultural production system. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

32 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Viewed by 223
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

81 pages, 10454 KiB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 355
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

20 pages, 3162 KiB  
Article
Study on Separation of Desulfurization Wastewater in Ship Exhaust Gas Cleaning System with Rotating Dynamic Filtration
by Shiyong Wang, Juan Wu, Yanlin Wu and Wenbo Dong
Membranes 2025, 15(7), 214; https://doi.org/10.3390/membranes15070214 - 18 Jul 2025
Viewed by 373
Abstract
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental [...] Read more.
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental testing, theoretical analysis, and pilot-scale validation. Flux increases with temperature and pressure but decreases with feed concentration, remaining unaffected by circulation flow. For a small membrane (152 mm), flux consistently increases with rotational speed across all pressures. For a large membrane (374 mm), flux increases with rotational speed at 300 kPa but firstly increases and then decreases at 100 kPa. Filtrate turbidity in all experiments complies with regulatory standards. Due to the unique hydrodynamic characteristics of RDF, back pressure reduces the effective transmembrane pressure, whereas shear force mitigates concentration polarization and cake layer formation. Separation performance is governed by the balance between these two forces. The specific energy consumption of RDF is only 10–30% that of cross-flow filtration (CFF). Under optimized pilot-scale conditions, the wastewater was concentrated 30-fold, with filtrate turbidity consistently below 2 NTU, outperforming CFF. Moreover, continuous operation proves more suitable for marine environments. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

21 pages, 3490 KiB  
Article
Energy-Efficient CO2 Conversion for Carbon Utilization Using a Gliding Arc/Glow Discharge with Magnetic Field Acceleration—Optimization and Characterization
by Svetlana Lazarova, Snejana Iordanova, Stanimir Kolev, Veselin Vasilev and Tsvetelina Paunska
Energies 2025, 18(14), 3816; https://doi.org/10.3390/en18143816 - 17 Jul 2025
Viewed by 303
Abstract
The dry conversion of CO2 into CO and O2 provides an attractive path for CO2 utilization which allows for the use of the CO produced for the synthesis of valuable hydrocarbons. In the following work, the CO2 conversion is [...] Read more.
The dry conversion of CO2 into CO and O2 provides an attractive path for CO2 utilization which allows for the use of the CO produced for the synthesis of valuable hydrocarbons. In the following work, the CO2 conversion is driven by an arc discharge at atmospheric pressure, producing hot plasma. This study presents a series of experiments aiming to optimize the process. The results obtained include the energy efficiency and the conversion rate of the process, as well as the electrical parameters of the discharge (current and voltage signals). In addition, optical emission spectroscopy diagnostics based on an analysis of C2’s Swan bands are used to determine the gas temperature in the discharge. The data is analyzed according to several aspects—an analysis of the arc’s motion based on the electrical signals; an analysis of the effect of the gas flow and the discharge current on the discharge performance for CO2 conversion; and an analysis of the vibrational and rotational temperatures of the arc channel. The results show significant improvements over previous studies. Relatively high gas conversion and energy efficiency are achieved due to the arc acceleration caused by the Lorentz force. The rotational (gas) temperatures are in the order of 5500–6000 K. Full article
Show Figures

Figure 1

18 pages, 1414 KiB  
Article
Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management
by Qiliang Huang, Nobuko Katayanagi, Masakazu Komatsuzaki and Tamon Fumoto
Agriculture 2025, 15(14), 1525; https://doi.org/10.3390/agriculture15141525 - 15 Jul 2025
Viewed by 389
Abstract
The DNDC-Rice model effectively simulates yield and greenhouse gas emissions within a paddy system, while its performance under upland conditions remains unclear. Using data from a long-term cover crop experiment (fallow [FA] vs. rye [RY]) in a soybean field, this study validated the [...] Read more.
The DNDC-Rice model effectively simulates yield and greenhouse gas emissions within a paddy system, while its performance under upland conditions remains unclear. Using data from a long-term cover crop experiment (fallow [FA] vs. rye [RY]) in a soybean field, this study validated the DNDC-Rice model’s performance in simulating soil dynamics, crop growth, and C-N cycling processes in upland systems through various indicators, including soil temperature, water-filled pore space (WFPS), soybean biomass and yield, CO2 and N2O fluxes, and soil organic carbon (SOC). Based on simulated results, the underestimation of cumulative N2O flux (25.6% in FA and 5.1% in RY) was attributed to both underestimated WFPS and the algorithm’s limitations in simulating N2O emission pulses. Overestimated soybean growth increased respiration, leading to the overestimation of CO2 flux. Although the model captured trends in SOC stock, the simulated annual values differed from observations (−9.9% to +10.1%), potentially due to sampling errors. These findings indicate that the DNDC-Rice model requires improvements in its N cycling algorithm and crop growth sub-models to improve predictions for upland systems. This study provides validation evidence for applying DNDC-Rice to upland systems and offers direction for improving model simulation in paddy-upland rotation systems, thereby enhancing its applicability in such contexts. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

16 pages, 5587 KiB  
Article
Rotational vs. Vibrational Excitations in a Chemical Laser
by José Daniel Sierra Murillo
Physchem 2025, 5(3), 26; https://doi.org/10.3390/physchem5030026 - 4 Jul 2025
Viewed by 246
Abstract
The research reviews and contrasts two studies based on the gas-phase reaction OH + D2(v, j). In these studies, Quasi-Classical Trajectory (QCT) calculations and the Gaussian Binning (GB) technique were used on the Wu–Schatz–Lendvay–Fang–Harding (WSLFH) potential energy surface. Large sample sizes [...] Read more.
The research reviews and contrasts two studies based on the gas-phase reaction OH + D2(v, j). In these studies, Quasi-Classical Trajectory (QCT) calculations and the Gaussian Binning (GB) technique were used on the Wu–Schatz–Lendvay–Fang–Harding (WSLFH) potential energy surface. Large sample sizes allow for precise energy state distribution analysis across translational, vibrational, and rotational components in the products. A key observation is the influence of the vibrational and rotational excitation of D2 on the total angular momentum (J′) of the HOD* product. This study reveals that increasing the vibrational level, vD2, significantly shifts P(J′) distributions toward higher values, broadening them due to increased isotropy. In contrast, increasing the rotational level, jD2, results in a smaller shift but introduces greater anisotropy, leading to a more selective distribution of J′ values. The dual Gaussian Binning selection—Vibrational-GB followed by Rotational-GB—further highlights a preference for either odd or even J′ values, depending on the specific excitation conditions. These findings have implications for the development of chemical lasers, as the excitation and emission properties of HOD* can be leveraged in the laser design. Future research aims to extend this study to a broader range of initial conditions, refining the understanding of reaction dynamics in controlled gas-phase environments. Full article
(This article belongs to the Section Application of Lasers to Physical Chemistry)
Show Figures

Figure 1

24 pages, 5848 KiB  
Article
Influence of Thermal Inertia on Dynamic Characteristics of Gas Turbine Impeller Components
by Yang Liu, Yuhao Jia and Yongbao Liu
Entropy 2025, 27(7), 711; https://doi.org/10.3390/e27070711 - 1 Jul 2025
Viewed by 328
Abstract
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, [...] Read more.
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, a three-dimensional computational fluid dynamic simulation is employed to create a model of the gas turbine rotor, incorporating thermal inertia, which is then analyzed in conjunction with three-dimensional finite element methods. The governing equations of the flow field are discretized, providing results for the flow and temperature fields throughout the entire flow path. A hybrid approach, combining temperature differences and heat flux density, is applied to set the thermal boundary conditions for the walls, with the turbine’s operational state determined based on the direction of heat transfer. Additionally, mesh division techniques and turbulence models are selected based on the geometric dimensions and operating conditions of the compressor and turbine. The simulation results reveal that thermal inertia induces a shift in the dynamic characteristics of the rotor components. Under the same heat transfer conditions, variations in rotational speed have a minimal impact on the shift in the characteristic curve. The working fluid temperature inside the compressor components is lower, with a smaller temperature difference from the wall, resulting in less intense heat transfer compared to the turbine components. Overall, heat transfer accounts for only about 0.1% of the total enthalpy at the inlet. When heat exchange occurs between the working fluid and the walls, around 6–15% of the exchanged heat is converted into changes in technical work, with this percentage increasing as the temperature difference rises. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

14 pages, 27914 KiB  
Article
Inversion Motion of Xanthene and Detection of Its Oxidation Product Xanthone from Gas-Phase Rotational Spectroscopy
by Celina Bermúdez, Manuel Goubet and Elias M. Neeman
Molecules 2025, 30(13), 2801; https://doi.org/10.3390/molecules30132801 - 29 Jun 2025
Viewed by 326
Abstract
The rotational spectra of xanthene and its oxidation product xanthone were investigated by combining quantum chemical calculations with Fourier transform microwave spectroscopy in a jet-cooled environment. Xanthone was unexpectedly generated in the experiment when water was present in the reservoir of xanthene leading [...] Read more.
The rotational spectra of xanthene and its oxidation product xanthone were investigated by combining quantum chemical calculations with Fourier transform microwave spectroscopy in a jet-cooled environment. Xanthone was unexpectedly generated in the experiment when water was present in the reservoir of xanthene leading to the total disappearance of xanthene after few hours. Structurally, xanthone shows a near planar disposition, whereas xanthene exhibits a non-planar geometry with both benzene rings twisted out of the molecular plane. This geometry enables an inversion motion between two equivalent conformers, giving rise to a splitting in the ground vibrational state. A two-state analysis of the vibration–rotation interaction for the v=0 and v=1 states gives an energy separation between these states (inversion splitting) of ΔE01=4689.7095(10)MHz. This large-amplitude motion leads to vibration–rotation coupling of energy levels. A symmetric double-minimum inversion potential function was determined, resulting in a barrier of about 45 cm−1 in good agreement with that obtained by DFT quantum chemical calculations. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

15 pages, 1991 KiB  
Article
ALMA Observations of G333.6-0.2: Molecular and Ionized Gas Environment
by Aruzhan Omar, Aidana Abdirakhman, Nazgul Alimgazinova, Meiramgul Kyzgarina, Aisha Naurzbayeva, Zhomartkali Islyam, Kunduz Turekhanova, Aizat Demessinova and Arailym Manapbayeva
Galaxies 2025, 13(4), 73; https://doi.org/10.3390/galaxies13040073 - 27 Jun 2025
Viewed by 491
Abstract
We present high-angular resolution observations, conducted with the Atacama Large Millimeter/Submillimeter Array (ALMA) in Band 6, of high-excitation molecular lines of CH3CN, CH3OH, and the H29α radio recombination line, towards the G333.6-0.2 ultracompact (UC) H ii region. [...] Read more.
We present high-angular resolution observations, conducted with the Atacama Large Millimeter/Submillimeter Array (ALMA) in Band 6, of high-excitation molecular lines of CH3CN, CH3OH, and the H29α radio recombination line, towards the G333.6-0.2 ultracompact (UC) H ii region. Our observations reveal three hot molecular cores: A, B, and C, where emission is detected in ten components of the J=1413 rotational ladder of CH3CN and in the CH3OH J=51,441,3 transition. Rotational diagram analysis of CH3CN reveals excitation temperatures ranging from 380 to 430 K. First-order moment maps of CH3CN and CH3OH reveal distinct velocity gradients in all cores, suggesting rotating structures, with core A also showing evidence of expansion motions. The H29α recombination line shows a linewidth of 30.2±0.12 km s−1, dominated by dynamical and thermal broadening, indicative of large-scale motions in ionized gas. Analysis of the ionized gas properties yields an electron density of (4.8±0.4)×105 cm−3, an emission measure of (1.23±0.06)×109 pc cm−6, and a Lyman continuum photon flux consistent with an O5–O6 V (Zero-Age Main Sequence; ZAMS) star. Our results suggest that G333.6-0.2 is in an intermediate evolutionary stage between hypercompact (HC) and ultracompact (UC) H ii regions, hosting active high-mass star formation with rotating hot cores and ionized gas dynamics. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

16 pages, 3034 KiB  
Review
Diversified Cropping Modulates Microbial Communities and Greenhouse Gas Emissions by Enhancing Soil Nutrients
by Zhongyan Wang, Huaqiang Xuan, Bei Liu, Hongfeng Zhang, Tongyan Zheng, Yunxia Liu, Luping Dai, Yi Xie, Xianchao Shang, Li Zhang, Long Yang, Sitakanta Pattanaik, Ling Yuan and Xin Hou
Agronomy 2025, 15(6), 1472; https://doi.org/10.3390/agronomy15061472 - 17 Jun 2025
Viewed by 476
Abstract
Crop diversification has been acknowledged as a means of lowering the environmental impact of agriculture without sacrificing agricultural output in recent years due to the growth of intensive agriculture. Crop rotation and intercropping—the methodical growing of two or more crops on one plot—are [...] Read more.
Crop diversification has been acknowledged as a means of lowering the environmental impact of agriculture without sacrificing agricultural output in recent years due to the growth of intensive agriculture. Crop rotation and intercropping—the methodical growing of two or more crops on one plot—are promising practices in this regard. Therefore, we conducted a quantitative bibliometric analysis of observed data between 2014 and 2024 to identify current research hotspots and future research trends in intercropping and crop rotation. A further secondary search for research advances in four key sub-areas (soil physicochemical properties, microbial diversity, greenhouse gas emissions (CO2, N2O, or CH4) and crop yield) was conducted based on keyword clustering. Our findings suggest that a crop diversification strategy can significantly increase soil nutrient content, optimize soil physicochemical properties, and regulate microbial community structure. In addition, this strategy can help to reduce greenhouse gas emissions (CO2, N2O, CH4), which will have a positive impact on the atmospheric environment. Crop diversification improves crop yield and quality, which in turn increases farmers’ economic returns. In order to maximize the effective production methods of crop rotation and intercropping, and to increase the efficiency of resource usage, this paper examines the development of research and practice on two cropping patterns worldwide. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

Back to TopTop