Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = gas and volatile organic compounds (VOCs) sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
81 pages, 10454 KiB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 373
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

20 pages, 18517 KiB  
Article
A Highly Sensitive Low-Temperature N-Butanol Gas Sensor Based on a Co-Doped MOF-ZnO Nanomaterial Under UV Excitation
by Yinzhong Liu, Xiaoshun Wei, Yun Guo, Lingchao Wang, Hui Guo, Qingjie Wang, Yiyu Qiao, Xiaotao Zhu, Xuechun Yang, Lingli Cheng and Zheng Jiao
Sensors 2025, 25(14), 4480; https://doi.org/10.3390/s25144480 - 18 Jul 2025
Viewed by 380
Abstract
Volatile organic compounds (VOCs) are presently posing a rather considerable threat to both human health and environmental sustainability. Among these, n-butanol is commonly identified as bringing potential hazards to environmental integrity and individual health. This study presents the creation of a highly sensitive [...] Read more.
Volatile organic compounds (VOCs) are presently posing a rather considerable threat to both human health and environmental sustainability. Among these, n-butanol is commonly identified as bringing potential hazards to environmental integrity and individual health. This study presents the creation of a highly sensitive n-butanol gas sensor utilizing cobalt-doped zinc oxide (ZnO) derived from a metal–organic framework (MOF). A series of x-Co/MOF-ZnO (x = 1, 3, 5, 7 wt%) nanomaterials with varying Co ratios were generated using the homogeneous co-precipitation method and assessed for their gas-sensing performances under a low operating temperature (191 °C) and UV excitation (220 mW/cm2). These findings demonstrated that the 5-Co/MOF-ZnO sensor presented the highest oxygen vacancy (Ov) concentration and the largest specific surface area (SSA), representing the optimal reactivity, selectivity, and durability for n-butanol detection. Regarding the sensor’s response to 100 ppm n-butanol under UV excitation, it achieved a value of 1259.06, 9.80 times greater than that of pure MOF-ZnO (128.56) and 2.07 times higher than that in darkness (608.38). Additionally, under UV illumination, the sensor achieved a rapid response time (11 s) and recovery rate (23 s). As a strategy to transform the functionality of ZnO-based sensors for n-butanol gas detection, this study also investigated potential possible redox reactions occurring during the detection process. Full article
(This article belongs to the Special Issue New Sensors Based on Inorganic Material)
Show Figures

Figure 1

14 pages, 2434 KiB  
Article
Rapid Detection of VOCs from Pocket Park Surfaces for Health Risk Monitoring Using SnO2/Nb2C Sensors
by Peng Wang, Yuhang Liu, Sheng Hu, Haoran Han, Liangchao Guo and Yan Xiao
Biosensors 2025, 15(7), 457; https://doi.org/10.3390/bios15070457 - 15 Jul 2025
Viewed by 332
Abstract
The organic volatile compound gases (VOCs) emitted by the rubber running tracks in the park pose a threat to human health. Currently, the challenge lies in how to detect the VOC gas concentration to ensure it is below the level that is harmful [...] Read more.
The organic volatile compound gases (VOCs) emitted by the rubber running tracks in the park pose a threat to human health. Currently, the challenge lies in how to detect the VOC gas concentration to ensure it is below the level that is harmful to human health. This study developed a low-power acetone gas sensor based on SnO2/Nb2C MXene composites, designed for monitoring acetone gas in pocket park rubber tracks at room temperature. Nb2C MXene was combined with SnO2 nanoparticles through a hydrothermal method, and the results showed that the SnO2/Nb2C MXene composite sensor (SnM-2) exhibited a response value of 146.5% in detecting 1 ppm acetone gas, with a response time of 155 s and a recovery time of 295 s. This performance was significantly better than that of the pure SnO2 sensor, with a 6-fold increase in response value. Additionally, the sensor exhibits excellent selectivity against VOCs, such as ethanol, formaldehyde, and isopropanol, with good stability (~20 days) and reversibility (~50). It can accurately recognize acetone gas concentrations and has been successfully used to simulate rubber track environments and provide accurate acetone concentration data. This study provides a feasible solution for monitoring VOCs in rubber tracks and the foundation for the development of low-power, high-performance, and 2D MXene gas sensors. Full article
Show Figures

Figure 1

18 pages, 2887 KiB  
Article
Polymer-Based Chemicapacitive Hybrid Sensor Array for Improved Selectivity in e-Nose Systems
by Pavithra Munirathinam, Mohd Farhan Arshi, Haleh Nazemi, Gian Carlo Antony Raj and Arezoo Emadi
Sensors 2025, 25(13), 4130; https://doi.org/10.3390/s25134130 - 2 Jul 2025
Viewed by 475
Abstract
Detecting volatile organic compounds (VOCs) is essential for health, environmental protection, and industrial safety. VOCs contribute to air pollution, pose health risks, and can indicate leaks or contamination in industries. Applications include air quality monitoring, disease diagnosis, and food safety. This paper focuses [...] Read more.
Detecting volatile organic compounds (VOCs) is essential for health, environmental protection, and industrial safety. VOCs contribute to air pollution, pose health risks, and can indicate leaks or contamination in industries. Applications include air quality monitoring, disease diagnosis, and food safety. This paper focuses on polymer-based hybrid sensor arrays (HSAs) utilizing interdigitated electrode (IDE) geometries for VOC detection. Achieving high selectivity and sensitivity in gas sensing remains a challenge, particularly in complex environments. To address this, we propose HSAs as an innovative solution to enhance sensor performance. IDE-based sensors are designed and fabricated using the Polysilicon Multi-User MEMS process (PolyMUMPs). Experimental evaluations are performed by exposing sensors to VOCs under controlled conditions. Traditional multi-sensor arrays (MSAs) achieve 82% prediction accuracy, while virtual sensor arrays (VSAs) leveraging frequency dependence improve performance: PMMA-VSA and PVP-VSA predict compounds with 100% and 98% accuracy, respectively. The proposed HSA, integrating these VSAs, consistently achieves 100% accuracy in compound identification and concentration estimation, surpassing MSA and VSA performance. These findings demonstrate that proposed polymer-based HSAs and VSAs, particularly with advanced IDE geometries, significantly enhance selectivity and sensitivity, advancing e-Nose technology for more accurate and reliable VOC detection across diverse applications. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring)
Show Figures

Figure 1

21 pages, 33900 KiB  
Article
Scalable, Flexible, and Affordable Hybrid IoT-Based Ambient Monitoring Sensor Node with UWB-Based Localization
by Mohammed Faeik Ruzaij Al-Okby, Thomas Roddelkopf, Jiahao Huang, Mohsin Bukhari and Kerstin Thurow
Sensors 2025, 25(13), 4061; https://doi.org/10.3390/s25134061 - 29 Jun 2025
Viewed by 473
Abstract
Ambient monitoring in chemical laboratories and industrial sites that use toxic, hazardous, or flammable materials is essential to protect the lives of workers, material resources, and infrastructure at these sites. In this research paper, we present an innovative approach for developing a low-cost [...] Read more.
Ambient monitoring in chemical laboratories and industrial sites that use toxic, hazardous, or flammable materials is essential to protect the lives of workers, material resources, and infrastructure at these sites. In this research paper, we present an innovative approach for developing a low-cost and portable sensor node that detects and warns of hazardous chemical gas and vapor leaks. The system also enables leak location tracking using an indoor tracking and positioning system operating in ultra-wideband (UWB) technology. An array of sensors is used to detect gases, vapors, and airborne particles, while the leak location is identified through a UWB unit integrated with an Internet of Things (IoT) processor. This processor transmits real-time location data and sensor readings via wireless fidelity (Wi-Fi). The real-time indoor positioning system (IPS) can automatically select a tracking area based on the distances measured from the three nearest anchors of the movable sensor node. The environmental sensor data and distances between the node and the anchors are transmitted to the cloud in JSON format via the user datagram protocol (UDP), which allows the fastest possible data rate. A monitoring server was developed in Python to track the movement of the portable sensor node and display live measurements of the environment. The system was tested by selecting different paths between several adjacent areas with a chemical leakage of different volatile organic compounds (VOCs) in the test path. The experimental tests demonstrated good accuracy in both hazardous gas detection and location tracking. The system successfully issued a leak warning for all tested material samples with volumes up to 500 microliters and achieved a positional accuracy of approximately 50 cm under conditions without major obstacles obstructing the UWB signal between the active system units. Full article
(This article belongs to the Special Issue Sensing and AI: Advancements in Robotics and Autonomous Systems)
Show Figures

Figure 1

15 pages, 3183 KiB  
Article
Platinum-Functionalized Hierarchically Structured Flower-like Nickel Ferrite Sheets for High-Performance Acetone Sensing
by Ziwen Yang, Zhen Sun, Yuhao Su, Caixuan Sun, Peishuo Wang, Shaobin Yang, Xueli Yang and Guofeng Pan
Chemosensors 2025, 13(7), 234; https://doi.org/10.3390/chemosensors13070234 - 26 Jun 2025
Viewed by 535
Abstract
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and [...] Read more.
Acetone detection is crucial for non-invasive health monitoring and environmental safety, so there is an urgent demand to develop high-performance gas sensors. Here, platinum (Pt)-functionalized layered flower-like nickel ferrite (NiFe2O4) sheets were efficiently fabricated via facile hydrothermal synthesis and wet chemical reduction processes. When the Ni/Fe molar ratio is 1:1, the sensing material forms a Ni/NiO/NiFe2O4 composite, with performance further optimized by tuning Pt loading. At 1.5% Pt mass fraction, the sensor shows a high acetone response (Rg/Ra = 58.33 at 100 ppm), a 100 ppb detection limit, fast response/recovery times (7/245 s at 100 ppm), and excellent selectivity. The enhancement in performance originates from the synergistic effect of the structure and Pt loading: the layered flower-like morphology facilitates gas diffusion and charge transport, while Pt nanoparticles serve as active sites to lower the activation energy of acetone redox reactions. This work presents a novel strategy for designing high-performance volatile organic compound (VOC) sensors by combining hierarchical nanostructured transition metal ferrites with noble metal modifications. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Graphical abstract

16 pages, 5477 KiB  
Article
Enhanced Triethylamine-Sensing Characteristics of SnS2/LaFeO3 Composite
by Hong Wu, Xiaobing Wang, Yuxiang Chen and Xiaofeng Wang
Chemosensors 2025, 13(7), 228; https://doi.org/10.3390/chemosensors13070228 - 23 Jun 2025
Viewed by 418
Abstract
Triethylamine (TEA), a volatile organic compound (VOC), has important applications in industrial production. However, TEA has an irritating odor and potential toxicity, making it necessary to develop sensitive TEA gas sensors with high efficiency. This study focused on preparing LaFeO3 nanoparticles modified [...] Read more.
Triethylamine (TEA), a volatile organic compound (VOC), has important applications in industrial production. However, TEA has an irritating odor and potential toxicity, making it necessary to develop sensitive TEA gas sensors with high efficiency. This study focused on preparing LaFeO3 nanoparticles modified by SnS2 nanosheets (SnS2/LaFeO3 composite) using a hydrothermal method together with sol–gel technique. According to the comparison results of the gas-sensing performance between pure LaFeO3 and SnS2/LaFeO3 composite with varying composition ratios, 5% SnS2/LaFeO3 sensor had a sensitivity for TEA that was 3.2 times higher than pure LaFeO3 sensor. The optimized sensor operates at 140 °C and demonstrates strong stability, selectivity, and long-term durability. Detailed analyses revealed that the SnS2 nanosheets enhanced oxygen vacancy (OV) content and carrier mobility through heterojunction formation with LaFeO3. This study provides insights into improving gas-sensing performance via p-n heterostructure design and proposes a novel LaFeO3-based material for TEA detection. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Graphical abstract

40 pages, 7398 KiB  
Review
Emerging Role of Nb2CTx MXene in Sensors: The Roadmap from Synthesis to Health and Environmental Monitoring
by Gyu Jin Choi, Jeong Won Ryu, Hwa Jun Jeon, Rajneesh Kumar Mishra, Yoonseuk Choi and Jin Seog Gwag
Sensors 2025, 25(12), 3691; https://doi.org/10.3390/s25123691 - 12 Jun 2025
Viewed by 600
Abstract
The rise of two-dimensional (2D) materials has transformed gas sensing, with Nb2CTx MXene drawing significant interest due to its distinct physicochemical behaviors. As part of the MXene family, Nb2CTx MXene demonstrates a remarkable combination of high electrical [...] Read more.
The rise of two-dimensional (2D) materials has transformed gas sensing, with Nb2CTx MXene drawing significant interest due to its distinct physicochemical behaviors. As part of the MXene family, Nb2CTx MXene demonstrates a remarkable combination of high electrical conductivity, adjustable surface chemistry, and exceptional mechanical flexibility, positioning it as a promising candidate for next-generation gas sensors. This review explores the synthesis techniques for Nb2CTx MXene, highlighting etching methods and post-synthesis adjustments to achieve the tailored surface terminations and structural qualities essential for gas detection. A comprehensive examination of the crystal structure, morphology, and electronic characteristics of Nb2CTx MXene is presented to clarify its outstanding sensing capabilities. The application of Nb2CTx MXene for detecting gases, including NH3, humidity, NO2, and volatile organic compounds (VOCs), is assessed, showcasing its sensitivity, selectivity, and low detection limits across various environmental settings. Furthermore, the integration of Nb2CTx MXene with other nanostructures in sensor platforms is reviewed. Lastly, challenges related to scalability, stability, and long-term performance are addressed, along with future prospects for Nb2CTx MXene-based gas sensors. This review offers significant insights into the potential of Nb2CTx MXene as a pioneering material for enhancing gas sensing technologies. Full article
Show Figures

Graphical abstract

17 pages, 539 KiB  
Article
Assessment of Odour Emission During the Composting Process by Using Olfactory Methods and Gas Sensor Array Measurements
by Mirosław Szyłak-Szydłowski, Wojciech Kos, Rafał Tarakowski, Miłosz Tkaczyk and Piotr Borowik
Sensors 2025, 25(10), 3153; https://doi.org/10.3390/s25103153 - 16 May 2025
Viewed by 499
Abstract
The final stage of green waste treatment typically occurs in composting plants, where waste is biologically stabilised through the activity of microorganisms. The composting process is accompanied by the emission of volatile organic compounds responsible for odour perception. Such nuisance odours are commonly [...] Read more.
The final stage of green waste treatment typically occurs in composting plants, where waste is biologically stabilised through the activity of microorganisms. The composting process is accompanied by the emission of volatile organic compounds responsible for odour perception. Such nuisance odours are commonly regarded as atmospheric air pollutants and are subject to monitoring and legal regulation. Olfactometry remains the standard method for quantifying odours. Unfortunately, due to its dependence on human evaluators, it is often regarded as both labour-intensive and costly. Electronic noses are an emerging measurement method that could be used for such applications. This manuscript reports experimental measurements that were carried out at a composting facility specialising in the processing of biodegradable materials. VOC concentration was measured by the TSI OmniTrak™ Solution. The efficiency of the deodourisation process was evaluated by means of field olfactometry. A gas sensor array of a PEN3 electronic nose was used for the on-site measurements of emitted gas characteristics. A strong correlation between measurements by the three distinct techniques was confirmed. Three different phases of the composting process could be distinguished in the collected results. Full article
(This article belongs to the Special Issue Gas Recognition in E-Nose System)
Show Figures

Figure 1

22 pages, 3546 KiB  
Article
Nano-Tailored Triple Gas Sensor for Real-Time Monitoring of Dough Preparation in Kitchen Machines
by Dario Genzardi, Immacolata Caruso, Elisabetta Poeta, Veronica Sberveglieri and Estefanía Núñez Carmona
Sensors 2025, 25(9), 2951; https://doi.org/10.3390/s25092951 - 7 May 2025
Viewed by 603
Abstract
We evaluated the efficacy of an innovative technique using an S3+ device equipped with two custom-made nanosensors (e-nose). These sensors are integrated into kitchen appliances, such as planetary mixers, to monitor and assess dough leavening from preparation to the fully risen stage. Since [...] Read more.
We evaluated the efficacy of an innovative technique using an S3+ device equipped with two custom-made nanosensors (e-nose). These sensors are integrated into kitchen appliances, such as planetary mixers, to monitor and assess dough leavening from preparation to the fully risen stage. Since monitoring in domestic appliances is often subjective and non-reproducible, this approach aims to ensure safe, high-quality, and consistent results for consumers. Two sensor chips, each with three metal oxide semiconductor (MOS) elements, were used to assess doughs prepared with flours of varying strengths (W200, W250, W390). Analyses were conducted continuously (from the end of mixing to 1.5 h of leavening) and in two distinct phases: pre-leavening (PRE) and post-leavening (POST). The technique was validated through solid-phase micro-extraction combined with gas chromatography–mass spectrometry (SPME-GC-MS), used to analyze volatile profiles in both phases. The S3+ device clearly discriminated between PRE and POST samples in 3D Linear Discriminant Analysis (LDA) plots, while 2D LDA confirmed flour-type discrimination during continuous leavening. These findings were supported by SPME-GC-MS results, highlighting differences in the volatile organic compound (VOC) profiles. The system achieved 100% classification accuracy between PRE and POST stages and effectively distinguished all flour types. Integrating this e-nose into kitchen equipment offers a concrete opportunity to optimize leavening by identifying the ideal endpoint, improving reproducibility, and reducing waste. In future applications, sensor data could support feedback control systems capable of adjusting fermentation parameters like time and temperature in real time. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

25 pages, 8266 KiB  
Review
Challenges and Applications of Bio-Sniffers for Monitoring Volatile Organic Compounds in Medical Diagnostics
by Yang Wang, Xunda Zhou, Siying Mao, Shiwei Chen and Zhenzhong Guo
Chemosensors 2025, 13(4), 127; https://doi.org/10.3390/chemosensors13040127 - 3 Apr 2025
Viewed by 1146
Abstract
Bio-sniffers represent a novel detection technology that demonstrates significant potential in medical diagnostics. Specifically, they assess disease conditions and metabolic status through the detection of volatile organic compounds (VOCs) in exhaled breath. Unlike conventional methods such as gas chromatography-mass spectrometry (GC-MS) and gas [...] Read more.
Bio-sniffers represent a novel detection technology that demonstrates significant potential in medical diagnostics. Specifically, they assess disease conditions and metabolic status through the detection of volatile organic compounds (VOCs) in exhaled breath. Unlike conventional methods such as gas chromatography-mass spectrometry (GC-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), bio-sniffers provide rapid, sensitive, and portable detection capabilities. In this review, we examine the metabolic pathways and detection methods of specific VOCs in the human body, and their roles as disease biomarkers, and focus on the detection principles, performance characteristics, and medical applications of two bio-sniffer types: electrical and optical sensors. Finally, we systematically discuss the current challenges facing bio-sniffers in VOC monitoring, outline future development directions, and provide suggestions for improving sensitivity and reducing environmental interference. Full article
Show Figures

Figure 1

12 pages, 2132 KiB  
Article
A Versatile SAW Sensor-Based Modular and Portable Platform for a Multi-Sensor Device
by Ángel López-Luna, Patricia Arroyo, Daniel Matatagui, Carlos Sánchez-Vicente and Jesús Lozano
Micromachines 2025, 16(2), 170; https://doi.org/10.3390/mi16020170 - 31 Jan 2025
Viewed by 1059
Abstract
This study presents the development and characterization of a novel electronic nose system based on customized surface acoustic wave (SAW) sensors. The system includes four sensors, customized with different custom polymer coatings, in order to detect volatile organic compounds (VOCs). The main innovation [...] Read more.
This study presents the development and characterization of a novel electronic nose system based on customized surface acoustic wave (SAW) sensors. The system includes four sensors, customized with different custom polymer coatings, in order to detect volatile organic compounds (VOCs). The main innovation lies in the design of a robust and versatile switching electronics system that allows for the integration of the SAW sensors into portable systems, as well as interoperability with other gas sensor technologies. The system includes a modular architecture that allows multiple sensor arrays to be combined to improve the selectivity and discrimination of complex gas mixtures. To verify the proper performance of the system and the detection capability of the manufactured sensors, experimental laboratory tests have been carried out. Specifically, ethanol and acetone measurements up to a 2000 ppm concentration have been performed. These preliminary experimental results demonstrate the capability of the SAW sensors with different response patterns across the sensor array. In particular, the sensor made with the polyvinyl acetate polymer exhibits high sensitivity to both VOCs. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 2629 KiB  
Article
The Development and Optimisation of a Urinary Volatile Organic Compound Analytical Platform Using Gas Sensor Arrays for the Detection of Colorectal Cancer
by Ramesh P. Arasaradnam, Ashwin Krishnamoorthy, Mark A. Hull, Peter Wheatstone, Frank Kvasnik and Krishna C. Persaud
Sensors 2025, 25(3), 599; https://doi.org/10.3390/s25030599 - 21 Jan 2025
Cited by 2 | Viewed by 1911
Abstract
The profile of Volatile Organic Compounds (VOCs) may help prioritise at-risk groups for early cancer detection. Urine sampling has been shown to provide good disease accuracy whilst being patient acceptable compared to faecal analysis. Thus, in this study, urine samples were examined using [...] Read more.
The profile of Volatile Organic Compounds (VOCs) may help prioritise at-risk groups for early cancer detection. Urine sampling has been shown to provide good disease accuracy whilst being patient acceptable compared to faecal analysis. Thus, in this study, urine samples were examined using an electronic nose with metal oxide gas sensors and a solid-phase microextraction sampling system. A calibration dataset (derived from a previous study) with CRC-positive patients and healthy controls was used to train a radial basis function neural network. However, a blinded analysis failed to detect CRC accurately, necessitating an enhanced data-processing strategy. This new approach categorised samples by significant bowel diseases, including CRC and high-risk polyps. Retraining the neural network showed an area under the ROC curve of 0.88 for distinguishing CRC versus non-significant bowel disease (without CRC, polyps or inflammation). These findings suggest that, with appropriate training sets, urine VOC analysis could be a rapid, low-cost method for early detection of precancerous colorectal polyps and CRC. Full article
Show Figures

Figure 1

24 pages, 31658 KiB  
Article
Cr-Doped Nanocrystalline TiO2-Cr2O3 Nanocomposites with p-p Heterojunction as a Stable Gas-Sensitive Material
by Dmitriy Kuranov, Elizaveta Konstantinova, Anastasia Grebenkina, Alina Sagitova, Vadim Platonov, Sergei Polomoshnov, Marina Rumyantseva and Valeriy Krivetskiy
Int. J. Mol. Sci. 2025, 26(2), 499; https://doi.org/10.3390/ijms26020499 - 9 Jan 2025
Cited by 2 | Viewed by 1086
Abstract
Nanocrystalline TiO2 is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped [...] Read more.
Nanocrystalline TiO2 is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO2 in combination with p-conducting Cr2O3. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy. Gas sensor performance in direct current (DC) mode was studied toward a number of gasses (H2, CO, CH4, NO2, H2S, NH3) as well as volatile organic compounds (VOCs) (acetone, methanol, and formaldehyde) in dry and humid conditions. The long-term stability of the obtained materials’ gas sensor performance was evaluated alongside with an ex situ study of structural evolution. High sensitivity toward oxygenated VOCs and a lower detection limit below ppm level with a limited influence of humidity were shown. The long-term gas sensor performance stability of the obtained materials and its connection to the defect structure of doped TiO2 is demonstrated. Full article
(This article belongs to the Special Issue Applications of Nanocomposites in Gas Sensors)
Show Figures

Figure 1

18 pages, 5355 KiB  
Article
Investigation of Volatile Organic Compounds of Whole-Plant Corn Silage Using HS-SPME-GC-MS, HS-GC-IMS and E-Nose
by Yinge Chen, Lulu Wang, Yawei Zhang, Nan Zheng, Yuanqing Zhang and Yangdong Zhang
Agriculture 2025, 15(1), 5; https://doi.org/10.3390/agriculture15010005 - 24 Dec 2024
Cited by 1 | Viewed by 1725
Abstract
To investigate the source of the bitter almond taste in whole corn silage (WPCS), headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC-MS), headspace gas chromatography–ion migration spectrometry (HS-GC-IMS), and electronic nose (E-nose) technology were employed. The study analyzed the differences in volatile [...] Read more.
To investigate the source of the bitter almond taste in whole corn silage (WPCS), headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC-MS), headspace gas chromatography–ion migration spectrometry (HS-GC-IMS), and electronic nose (E-nose) technology were employed. The study analyzed the differences in volatile compounds between two WPCS samples with distinct odors from the same cellar. GC-IMS and GC-MS identified 32 and 101 volatile organic compounds (VOCs), respectively, including aldehydes, alcohols, esters, ketones, and other compounds. Three characteristic volatile organic compounds associated with the bitter almond taste were detected: benzaldehyde, cyanide, and isocyanate. The electronic nose demonstrated varying sensitivities across its sensors, and principal component analysis (PCA) combined with variable importance projection (VIP) analysis revealed that W5S (nitrogen oxides) could differentiate between the two distinct silage odors. This finding was consistent with the GC-MS results, which identified 34 nitrogen-containing heterocyclic compounds in the abnormal silage sample, accounting for 77% of the total nitrogen-containing compounds. In summary, significant differences in aroma composition were observed between the bitter almond-flavored silage and the other silage in the same cellar. These differences were primarily attributed to changes in volatile organic compounds, which could serve as indicators for identifying bitter almond-flavored silage. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

Back to TopTop