Rapid Detection of VOCs from Pocket Park Surfaces for Health Risk Monitoring Using SnO2/Nb2C Sensors
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Nb2C MXene
2.3. Synthesis of SnO2 Nanoparticles
2.4. Synthesis of SnO2/Nb2C MXene
2.5. Preparation of Gas Sensors
2.6. Gas Sensitivity Testing
2.7. Characterization Methods
3. Results and Discussions
3.1. Morphology and Structural Characterization
3.2. Performance of Gas Sensors
3.3. Application
3.4. Gas Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Li, N.; Ji, H.; Zhang, H.; Bu, J.; Zhang, X.; Qian, S.; Yang, Y.; Han, B.; Wang, H.; et al. Determination and Analysis of Harmful Components in Synthetic Running Tracks from Chinese Primary and Middle Schools. Sci. Rep. 2019, 9, 12743. [Google Scholar] [CrossRef]
- Park, S.; Lim, Y.; Oh, D.; Ahn, J.; Park, C.; Kim, M.; Jung, W.; Kim, J.; Kim, I.-D. Steering Selectivity in the Detection of Exhaled Biomarkers over Oxide Nanofibers Dispersed with Noble Metals. J. Mater. Chem. A 2023, 11, 3535–3545. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, M.; Meng, F.; Bai, J.; Wang, D.; Tang, M.; Wu, Z. Recent Advances in Chemiresistive Gas Sensor for Acetone Detection: Focus on Room Temperature. TrAC Trends Anal. Chem. 2025, 187, 118213. [Google Scholar] [CrossRef]
- Zheng, Z.; Chi, H.; Wu, J.; Zhang, L.; Huang, D.; Ye, Z.; Jiang, J.; Zhu, L. Advanced Yolk-Shell Pt@In2O3 Nanoreactor: Achieving Selective and Ppb-Level Acetone Detection. Sens. Actuators B Chem. 2025, 434, 137599. [Google Scholar] [CrossRef]
- Hu, J.; Wang, F.; Yu, J.; Hong, Z.; Zhang, W.; Li, H.-J.; Lai, Z.; Wang, D.; Deng, Y.; Li, G. MOF-Derived Porous Co3O4 Nanosheets Array Assembled on SnO2 Nanofibers for Humidity-Resistant High Efficiency Acetone Detection. Chin. Chem. Lett. 2025, 36, 110863. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, P.; Wei, S.-H. Revisit of the Band Gaps of Rutile SnO2 and TiO2: A First-Principles Study. J. Semicond. 2019, 40, 092101. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Wang, D.; Zhang, R.; Zhang, Y.; Zhao, L. Insight into SnO2-Based Gas-Sensitive Materials and Readout Circuits for Semiconductor Gas Sensors. Nano Mater. Sci. 2025, 7, 2589–9651. [Google Scholar] [CrossRef]
- Aleksanyan, M.; Sayunts, A.; Shahkhatuni, G.; Simonyan, Z.; Kananov, D.; Khachaturyan, E.; Papovyan, R.; Michalcová, A.; Kopecký, D. SnO2/MWCNTs Nanostructured Material for High-Performance Acetone and Ethanol Gas Sensors. ACS Omega 2025, 10, 7283–7294. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, H.; Hu, J.; Rong, X.; Zhang, W.; Wang, Y.; Li, S.; Li, G.; Wang, D. Facile Engineering of Metal–Organic Framework Derived SnO2@NiO Core–Shell Nanocomposites Based Gas Sensor toward Superior VOCs Sensing Performance. Chem. Eng. J. 2024, 501, 157692. [Google Scholar] [CrossRef]
- Li, J.; Xian, J.; Wang, W.; Cheng, K.; Zeng, M.; Zhang, A.; Wu, S.; Gao, X.; Lu, X.; Liu, J.-M. Ultrafast Response and High-Sensitivity Acetone Gas Sensor Based on Porous Hollow Ru-Doped SnO2 Nanotubes. Sens. Actuators B Chem. 2022, 352, 131061. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.; Chen, C.; Wu, L. Chemiresistive Gas Sensors Made with PtRu@SnO2 Nanoparticles for Machine Learning-Assisted Discrimination of Multiple Volatile Organic Compounds. ACS Appl. Mater. Interfaces 2024, 16, 67944–67958. [Google Scholar] [CrossRef]
- Kim, S.J.; Koh, H.-J.; Ren, C.E.; Kwon, O.; Maleski, K.; Cho, S.-Y.; Anasori, B.; Kim, C.-K.; Choi, Y.-K.; Kim, J.; et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 2018, 12, 986–993. [Google Scholar] [CrossRef]
- Choi, J.; Kim, Y.-J.; Cho, S.-Y.; Park, K.; Kang, H.; Kim, S.J.; Jung, H.-T. In Situ Formation of Multiple Schottky Barriers in a Ti3C2 MXene Film and Its Application in Highly Sensitive Gas Sensors. Adv. Funct. Mater. 2020, 30, 2003998. [Google Scholar] [CrossRef]
- Wu, X.; Niu, M.; Tian, X.; Peng, X.; Buenconsej, P.J.S.; Wu, X.; Wang, Y.; Ji, W.; Li, Y.; Qiao, J.; et al. Solution-Processable Ni3(HITP)2/MXene Heterostructures for Ppb-Level Gas Detection. J. Mater. Chem. A 2024, 12, 17382–17394. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, P.; Yu, Z.; Tao, M.; Zhou, D.; Yang, B.; Zhang, T. Light-Driven, Ultra-Sensitive and Multifunctional Ammonia Wireless Sensing System by Plasmonic-Functionalized Nb2CTx MXenes towards Smart Agriculture. Nano Energy 2023, 108, 108216. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, L.; Wang, J.; Liu, F.; He, J.; Liu, A.; Lv, S.; You, R.; Yan, X.; Sun, P.; et al. Flexible Resistive NO2 Gas Sensor of Three-Dimensional Crumpled MXene Ti3C2Tx/ZnO Spheres for Room Temperature Application. Sens. Actuators B Chem. 2021, 326, 128828. [Google Scholar] [CrossRef]
- Li, D.; Liang, H.; Zhang, Y. MXene-Based Gas Sensors: State of the Art and Prospects. Carbon 2024, 226, 119205. [Google Scholar] [CrossRef]
- Wu, P.; Zhao, X.; Ding, Y.; Huang, Y.; Lin, D.; Xie, L.; Li, Z.; Zhu, Z.; Zhao, H.; Lan, M. Self-Assembled Multilayer Nb2C MXene/MnFe2O4 Electrochemical Sensor with Schottky Junctions for the Detection of Acetaminophen and Dopamine. Colloids Surf. Physicochem. Eng. Asp. 2023, 667, 131377. [Google Scholar] [CrossRef]
- Ren, W.; Luan, J.; Yin, L.; Chen, H.; Wang, C.; Zhang, P.; Cui, G.; Lv, L. Ultrasensitive Room-Temperature NO2 Gas Sensor Based on MXene–Cu2O Composites. ACS Sens. 2025, 10, 3579–3588. [Google Scholar] [CrossRef]
- Wang, P.; Guo, S.; Zhao, Y.; Hu, Z.; Tang, Y.; Zhou, L.; Li, T.; Li, H.-Y.; Liu, H. WO3 Nanoparticles Supported by Nb2CTx MXene for Superior Acetone Detection under High Humidity. Sens. Actuators B Chem. 2024, 398, 134710. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Li, D.; Cao, J.; Han, W. Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano 2021, 15, 7439–7450. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Shen, T.; Sun, J. Flexible Resistive NO2 Gas Sensor of SnO2@Ti3C2Tx MXene for Room Temperature Application. Ceram. Int. 2024, 50, 2459–2466. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q.-Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self-Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage. 2018, 30, 1707334. Adv. Mater. 2018, 30, 1707334. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.Z.; Rafiq, K.; Aslam, A.; Jin, R.; Hussain, E. Scope, Evaluation and Current Perspectives of MXene Synthesis Strategies for State of the Art Applications. J. Mater. Chem. A 2024, 12, 7351–7395. [Google Scholar] [CrossRef]
- Wang, L.P.; Leconte, Y.; Feng, Z.; Wei, C.; Zhao, Y.; Ma, Q.; Xu, W.; Bourrioux, S.; Azais, P.; Srinivasan, M.; et al. Novel Preparation of N-Doped SnO2 Nanoparticles via Laser-Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties. Adv. Mater. 2017, 29, 1603286. [Google Scholar] [CrossRef]
- Zhu, Z.; Xing, X.; Feng, D.; Li, Z.; Tian, Y.; Yang, D. Highly Sensitive and Fast-Response Hydrogen Sensing of WO3 Nanoparticles via Palladium Reined Spillover Effect. Nanoscale 2021, 13, 12669–12675. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Chang, X.; Gao, W.; Chen, X.; Niu, S.; Sun, S. Room Temperature Gas Sensors for NH3 Detection Based on SnO2 Films and Lamellar-Structured Ti3C2Tx MXene Heterojunction Nanocomposites. Appl. Surf. Sci. 2024, 660, 159976. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, C.-Y.; Zhu, L.-Y.; Cao, Q.; Yang, J.-H.; Li, X.-X.; Huang, W.; Wang, Y.-Y.; Lu, H.-L.; Zhang, D.W. Fabrication of a Micro-Electromechanical System-Based Acetone Gas Sensor Using CeO2 Nanodot-Decorated WO3 Nanowires. ACS Appl. Mater. Interfaces 2020, 12, 14095–14104. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, A.; Chang, H.; Xia, B. Room-Temperature High-Performance Acetone Gas Sensor Based on Hydrothermal Synthesized SnO2-Reduced Graphene Oxide Hybrid Composite. RSC Adv. 2014, 5, 3016–3022. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, C.; Kong, Q.; Fan, N.; Chen, G.; Guan, H.; Dong, C. ZnO-Decorated In/Ga Oxide Nanotubes Derived from Bimetallic In/Ga MOFs for Fast Acetone Detection with High Sensitivity and Selectivity. ACS Appl. Mater. Interfaces 2020, 12, 26161–26169. [Google Scholar] [CrossRef]
- Wu, M.; He, M.; Hu, Q.; Wu, Q.; Sun, G.; Xie, L.; Zhang, Z.; Zhu, Z.; Zhou, A. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sens. 2019, 4, 2763–2770. [Google Scholar] [CrossRef]
- Jaisutti, R.; Lee, M.; Kim, J.; Choi, S.; Ha, T.-J.; Kim, J.; Kim, H.; Park, S.K.; Kim, Y.-H. Ultrasensitive Room-Temperature Operable Gas Sensors Using p-Type Na:ZnO Nanoflowers for Diabetes Detection. ACS Appl. Mater. Interfaces 2017, 9, 8796–8804. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Xu, Y.; Li, X.; Wu, J.; Han, Y.; Wang, Z.; Zhang, X. Enhanced Selective Acetone-Sensing Performance of Hierarchical Hollow SnO2/α-Fe2O3 Microcubes. J. Mater. Chem. C 2019, 7, 11984–11990. [Google Scholar] [CrossRef]
- Xu, J.; Fan, X.; Xu, K.; Wu, K.; Liao, H.; Zhang, C. Ultrasensitive Chemiresistive Gas Sensors Based on Dual-Mesoporous Zinc Stannate Composites for Room Temperature Rice Quality Monitoring. Nano-Micro Lett. 2025, 17, 115. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wan, Z.; Chen, H.; Li, J.; Na, E.; Wang, F.; Gao, R.; Wu, Y.; Wang, S.; Li, G.-D. Triethylamine Gas Sensor Based on Au-Functionalized CdGa2O4 for the Practical Detection of Fish Freshness. Sens. Actuators B Chem. 2025, 440, 137891. [Google Scholar] [CrossRef]
- Kou, X.; Meng, F.; Chen, K.; Wang, T.; Sun, P.; Liu, F.; Yan, X.; Sun, Y.; Liu, F.; Shimanoe, K.; et al. High-Performance Acetone Gas Sensor Based on Ru-Doped SnO2 Nanofibers. Sens. Actuators B Chem. 2020, 320, 128292. [Google Scholar] [CrossRef]
- Xie, Q.; Ding, Y.; Wang, Q.; Song, P. Fabrication of 1D/2D In2O3 Nanofibers/Ti3C2Tx MXene Composites for High Performance Detection of Trimethylamine at Low Temperature. Sens. Actuators B Chem. 2024, 405, 135338. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Cao, J.; Qin, C.; Wang, Y. SnO2/NiO/Al2O3 Heterojunction Driven Charge Transfer for High-Temperature Hydrogen Detection. Chem. Eng. J. 2025, 510, 161847. [Google Scholar] [CrossRef]
- Shin, H.; Ko, J.; Park, C.; Kim, D.-H.; Ahn, J.; Jang, J.-S.; Kim, Y.H.; Cho, S.-H.; Baik, H.; Kim, I.-D. Sacrificial Template-Assisted Synthesis of Inorganic Nanosheets with High-Loading Single-Atom Catalysts: A General Approach. Adv. Funct. Mater. 2022, 32, 2110485. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, H.; Liu, D.; Lin, G.; Wan, J.; Jiang, H.; Lai, X.; Hao, S.; Liu, X. Lychee-like ZnO/ZnFe2O4 Core-Shell Hollow Microsphere for Improving Acetone Gas Sensing Performance. Ceram. Int. 2020, 46, 5960–5967. [Google Scholar] [CrossRef]
- Zong, S.; Qin, C.; Bala, H.; Zhang, Y.; Wang, Y.; Cao, J. Iso-Elemental SnO/SnO2 Heterojunction Composites for Enhanced Formaldehyde Gas Sensing. Mater. Chem. Phys. 2025, 330, 130167. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.; Zhao, X.; Duanmu, F.; Yu, H.; Ji, H. Rational Shape Control of Porous Co3O4 Assemblies Derived from MOF and Their Structural Effects on N-Butanol Sensing. J. Hazard. Mater. 2019, 371, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Ji, H.; Yuan, Z.; Chen, Y.; Zhang, H.; Qin, W.; Gao, H. Dynamic Measurement and Recognition Methods of SnO2 Sensor to VOCs Under Zigzag-Rectangular Wave Temperature Modulation. IEEE Sens. J. 2021, 21, 10915–10922. [Google Scholar] [CrossRef]
- Zhu, X.; Ola, O.; Li, C.; Gao, W.; Wang, Z.; Dai, C.; Jiang, Y.; Sun, S.; Chang, X. Highly Sensitive and Selective Detection of Ppb-Level Acetone Sensor Using WO3/Au/SnO2 Ternary Composite Gas Sensor. Ceram. Int. 2025, 51, 20094–20102. [Google Scholar] [CrossRef]
- Gao, D.; Gao, S.; Deng, H.; Liu, H.; Hou, D.; Lu, Q.; He, X.; Huang, S. Surface Electronic Structure Modulation of PdO/SnO2 through Loading Pd for Superior Hydrogen Sensing Performance. Chem. Eng. J. 2025, 515, 163694. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, H.; Li, Q.; Song, Y.; An, F.; Wang, H.; Wang, S.; Zhu, L.; Zhang, D.; Yang, Z. High Performance H2S Sensor Based on Ordered Fe2O3/Ti3C2 Nanostructure at Room Temperature. ACS Sens. 2024, 9, 5926–5935. [Google Scholar] [CrossRef]
- Liu, B.; Li, K.; Luo, Y.; Gao, L.; Duan, G. Sulfur Spillover Driven by Charge Transfer between AuPd Alloys and SnO2 Allows High Selectivity for Dimethyl Disulfide Gas Sensing. Chem. Eng. J. 2021, 420, 129881. [Google Scholar] [CrossRef]
Materials | Temperature | Concentration | Response | Res. | Ref. |
---|---|---|---|---|---|
WO3/CeO2 | 250 °C | 2.5 ppm | 1.7 a | 34 s | [28] |
SnO2/rGO | RT | 10 ppm | 21.9% b | 107 s | [29] |
ZnO/IGO | 300 °C | 100 ppm | 27.1 a | 6.8 s | [30] |
Ti3C2 MXene | RT | 10 ppm | 0.6% b | 45 s | [31] |
Na-doped ZnO | RT | 0.2 ppm | 6.55 a | 18 s | [32] |
SnO2/Fe2O3 | 270 °C | 200 ppm | 9.3 a | 6 s | [33] |
SnO2/Nb2CTx | RT | 1 ppm | 146.5% b | 155 s | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Liu, Y.; Hu, S.; Han, H.; Guo, L.; Xiao, Y. Rapid Detection of VOCs from Pocket Park Surfaces for Health Risk Monitoring Using SnO2/Nb2C Sensors. Biosensors 2025, 15, 457. https://doi.org/10.3390/bios15070457
Wang P, Liu Y, Hu S, Han H, Guo L, Xiao Y. Rapid Detection of VOCs from Pocket Park Surfaces for Health Risk Monitoring Using SnO2/Nb2C Sensors. Biosensors. 2025; 15(7):457. https://doi.org/10.3390/bios15070457
Chicago/Turabian StyleWang, Peng, Yuhang Liu, Sheng Hu, Haoran Han, Liangchao Guo, and Yan Xiao. 2025. "Rapid Detection of VOCs from Pocket Park Surfaces for Health Risk Monitoring Using SnO2/Nb2C Sensors" Biosensors 15, no. 7: 457. https://doi.org/10.3390/bios15070457
APA StyleWang, P., Liu, Y., Hu, S., Han, H., Guo, L., & Xiao, Y. (2025). Rapid Detection of VOCs from Pocket Park Surfaces for Health Risk Monitoring Using SnO2/Nb2C Sensors. Biosensors, 15(7), 457. https://doi.org/10.3390/bios15070457