Challenges and Applications of Bio-Sniffers for Monitoring Volatile Organic Compounds in Medical Diagnostics
Abstract
:1. Introduction
Methods | VOCs | Applications | Results | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|---|
GC-MS | Styrene | Cancer | Detection of five VOCs associated with lung cancer in the nanomolar concentration range | High resolution and good detection sensitivity | High equipment cost, difficult to operate, and long analysis time | [51] |
GC-TOF-MS | Ethanol, isopropanol, acetone, ethylbenzene, tetrahydrofuran | VAP | Distinguishing ICU patients with and without VAP, based on 12 VOCs | Better response to high-molecular-weight VOCs | Low automation, High equipment cost | [35] |
PTR-MS | Isoprene | Head and neck tumors | VOCs can screen for HNSCC | High precision | High response to alcohols and low response to aldehydes | [52] |
SIFT-MS | 2-propanol, acetaldehyde, acetone, ethanol, pentane, and trimethylamine (TMA) | Alcoholic hepatitis | A low correlation between exhaled TMA levels and AH severity was determined (r = 0.38) | Highly sensitive analysis | Complicated operation | [53] |
SIFT-MS | Acetone | Diabetes mellitus | A linear correlation between acetone levels, as quantified by SIFT-MS and blood glucose concentrations. | Highly sensitive analysis | Complicated operation | [54] |
2. Characteristics of VOCs
2.1. Physical Properties and Chemical Structure of VOCs
2.2. Metabolic Processes in the Human Body
3. Application of Bio-Sniffers in VOC Detection
3.1. Electrical Bio-Sniffers
3.1.1. Resistance Bio-Sniffers
3.1.2. Conductivity Bio-Sniffers
3.1.3. Cyclic Voltammetry Bio-Sniffers
Sensing Methods | Materials | VOCs | Performance | Results | Ref. |
---|---|---|---|---|---|
Resistance | CuO | Toluene, methanol, isopropanol, acetonitrile, and acetone | Accurately and selectively detect volatile organic compound mixtures | 93.8% accuracy rate | [74] |
Resistance | MOS | Ethylbenzene and xylene | High sensitivity and long service life | Different nanoparticles are able to increase the response value under UV light excitation | [75] |
Conductance | Sm2O3 | Ethanol and acetone | High sensitivity, fast response, high selectivity, and stability | The tested bio-sniffer exhibits high sensitivity to low concentrations of ethanol and acetone, and shows a fast response to 20 ppm of ethanol | [76] |
Conductance | Conductive polymers | Acetone, ethanol, and methanol | Good stability and repeatability | 400 ppb for acetone, 150 ppb for ethanol, 300 ppb for methanol, and less than 10% of deviation in resistance change | [77] |
CV | Fc@ZIF-8 | Ammonia | High sensitivity and specificity | Fc@ZIF-8 has a clear response to ammonia, which is about 3 times more specific than the non-specific signal of cross-reactive gases | [82] |
CV | Ptm@Auto | Alcohol homologs | Good stability and repeatability | The normalized currents of Pt0.8@Auto NPs in methanol, ethanol, and isopropanol remained at the initial values of 69.6%, 68.7%, and 112.9%, respectively | [83] |
3.2. Optical Bio-Sniffers
3.2.1. Colorimetric Bio-Sniffers
3.2.2. Fluorescence Bio-Sniffers
3.2.3. Fiberoptic Bio-Sniffers
Sensing Methods | VOCs | Performance | Related Applications | Detection Range | Ref. |
---|---|---|---|---|---|
Colorimetric | Acetone, ethanol, and acetic acid | Results are provided fast and show high sensitivity | - | 1 ppm, 0.1 ppm, 0.02 ppm | [86] |
Colorimetric | 28 VOCs | High sensitivity, high selectivity, and good stability | Efficiently differentiated between 5 human cancer cells and 2 normal human cells. | – | [87] |
Luminous | Acetaldehyde | Has high sensitivity and specificity | Assess alcohol metabolism | 20 ppb–10 ppm | [89] |
Luminous | Acetone | Low power consumption and heat generation | Screening for diabetes | 20 ppb–5300 ppb | [92] |
Luminous | Isopropanol | High sensitivity and selectivity, wide dynamic range and real-time monitoring capability | Screening for type 2 diabetes | 1 ppb–9060 ppb | [99] |
Luminous | Methanol | High sensitivity | Assess the intestinal microbiota | 0.32–20 ppm | [101] |
Optic fiber | Ethanol | High sensitivity | Assess alcohol metabolism | 25 ppb–128 ppm | [104] |
Optic fiber | Ethanol | High sensitivity | Assess alcohol metabolism | 1 ppb–3100 ppb | [105] |
Optic fiber | Ethanol | High sensitivity | Assess alcohol metabolism | 26 ppb–554 ppm | [106] |
4. Challenges and Prospects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruderer, T.; Gaisl, T.; Gaugg, M.T.; Nowak, N.; Streckenbach, B.; Müller, S.; Moeller, S.; Kohler, S.; Zenobi, R. On-Line Analysis of Exhaled Breath. Chem. Rev. 2019, 119, 10803–10828. [Google Scholar]
- Moor, C.C.; Oppenheimer, J.C.; Nakshbandi, G.; Aerts, J.G.J.V.; Brinkman, P. Exhaled breath analysis by use of eNose technology: A novel diagnostic tool for interstitial lung disease. Eur. Respir. J. 2021, 57, 2002042. [Google Scholar] [PubMed]
- Wlodzimirow, K.A.; Abu-Hanna, A.; Schultz, M.J. Exhaled breath analysis with electronic nose technology for detection of acute liver failure in rats. Biosens. Bioelectron. 2014, 53, 129–134. [Google Scholar] [PubMed]
- Chen, T.; Liu, T.; Li, T. Exhaled breath analysis in disease detection. Clin. Chim. Acta 2021, 515, 61–72. [Google Scholar] [PubMed]
- Wallace, M.A.G.; Pleil, J.D. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal. Chim. Acta 2018, 1024, 18–38. [Google Scholar] [PubMed]
- Bakali, U.; Killawala, C.; Monteagudo, E. Exhaled breath analysis applications for evaluating occupational and environmental exposures. Trends Anal. Chem. 2024, 177, 117787. [Google Scholar]
- Popov, T.A. Human exhaled breath analysis. Ann. Allergy Asthma Immunol. 2011, 106, 451–456. [Google Scholar] [PubMed]
- Zhou, J.; Huang, Z.-A.; Kumar, U.; Chen, D.D.Y. Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal. Chim. Acta 2017, 996, 1–9. [Google Scholar] [CrossRef]
- Bax, C.; Lotesoriere, B.J.; Sironi, S.; Capelli, L. Review and Comparison of Cancer Biomarker Trends in Urine as a Basis for New Diagnostic Pathways. Cancers 2019, 11, 1244. [Google Scholar] [CrossRef]
- Xu, W.; Zou, X.; Ding, Y. Rapid screen for ventilator associated pneumonia using exhaled volatile organic compounds. Talanta 2023, 253, 124069. [Google Scholar]
- Wojciech, F.; Pawel, M.; Anna, F. A Compendium of Volatile Organic Compounds (VOCs) Released By Human Cell Lines. Curr. Med. Chem. 2016, 23, 2112–2131. [Google Scholar]
- Moura, P.C.; Raposo, M.; Vassilenko, V. Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review. Biomed. J. 2023, 46, 100623. [Google Scholar] [CrossRef]
- Bajo-Fernández, M.; Souza-Silva, É.A.; Barbas, C. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: Applications in health and disease. A review. Front. Mol. Biosci. 2024, 10, 1295955. [Google Scholar] [CrossRef]
- Baranska, A.; Mujagic, Z.; Smolinska, A. Volatile organic compounds in breath as markers for irritable bowel syndrome: A metabolomic approach. Aliment. Pharmacol. Ther. 2016, 44, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Yang, J.; Zhu, H. Volatile organic compound exposure in relation to lung cancer: Insights into mechanisms of action through metabolomics. J. Hazard. Mater. 2024, 480, 135856. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V. Hybrid Volatolomics and Disease Detection. Angew. Chem. Int. Ed. 2015, 54, 11036–11048. [Google Scholar] [CrossRef] [PubMed]
- Arulvasan, W.; Chou, H.; Greenwood, J. High-quality identification of volatile organic compounds (VOCs) originating from breath. Metabolomics 2024, 20, 102. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; de Lacy Costello, B.; Miekisch, W. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8, 034001. [Google Scholar] [CrossRef]
- Das, S.; Pal, M. Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J. Electrochem. Soc. 2020, 167, 037562. [Google Scholar] [CrossRef]
- Jalal, A.H.; Alam, F.; Roychoudhury, S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens. 2018, 3, 1246–1263. [Google Scholar] [CrossRef]
- Velusamy, P.; Su, C.-H.; Ramasamy, P. Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review. Crit. Rev. Anal. Chem. 2023, 53, 1828–1839. [Google Scholar] [CrossRef] [PubMed]
- Mohaghegh Montazeri, M.; O’brien, A.; Hoorfar, M. Understanding microfluidic-based gas detectors: A numerical model to investigate fundamental sensor operation, influencing phenomena and optimum geometries. Sens. Actuators B Chem. 2019, 300, 126904. [Google Scholar]
- Novikov, S.; Lebedeva, N.; Satrapinski, A. Graphene based sensor for environmental monitoring of NO2. Sens. Actuators B Chem. 2016, 236, 1054–1060. [Google Scholar]
- Kaushik, A.; Kumar, R.; Arya, S.K. Organic–Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring. Chem. Rev. 2015, 115, 4571–4606. [Google Scholar] [PubMed]
- Loutfi, A.; Coradeschi, S.; Mani, G.K. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Siadat, M. Biomimetic-based odor and taste sensing systems to food quality and safety characterization: An overview on basic principles and recent achievements. J. Food Eng. 2010, 100, 377–387. [Google Scholar]
- Kim, I.-D.; Choi, S.-J.; Kim, S.-J.; Jang, J.-S. Exhaled Breath Sensors. In Smart Sensors for Health and Environment Monitoring; Kyung, C.-M., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 19–49. [Google Scholar]
- Kim, K.-H.; Jahan, S.A.; Kabir, E. A review of breath analysis for diagnosis of human health. Trends Anal. Chem. 2012, 33, 1–8. [Google Scholar] [CrossRef]
- Gregis, G.; Sanchez, J.-B.; Bezverkhyy, I. Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sens. Actuators B Chem. 2018, 255, 391–400. [Google Scholar]
- Pang, X.; Nan, H.; Zhong, J. Low-cost photoionization sensors as detectors in GC × GC systems designed for ambient VOC measurements. Sci. Total Environ. 2019, 664, 771–779. [Google Scholar] [CrossRef]
- Edwards, S.J.; Lewis, A.C.; Andrews, S.J. A compact comprehensive two-dimensional gas chromatography (GC×GC) approach for the analysis of biogenic VOCs. Anal. Methods 2013, 5, 141–150. [Google Scholar] [CrossRef]
- Wyszynski, B.; Yatabe, R.; Nakao, A. Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study. Sensors 2017, 17, 1606. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, F.; Talebpour, Z.; Sanati-Nezhad, A. Through the years with on-a-chip gas chromatography: A review. Lab A Chip 2015, 15, 2559–2575. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.M.; Sacks, R.D. GC Analysis of Human Breath with A Series-Coupled Column Ensemble and A Multibed Sorption Trap. Anal. Chem. 2003, 75, 2231–2236. [Google Scholar] [CrossRef]
- Schnabel, R.; Fijten, R.; Smolinska, A. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci. Rep. 2015, 5, 17179. [Google Scholar]
- Branković, Z.; Rostovtsev, Y. A resonant single frequency molecular detector with high sensitivity and selectivity for gas mixtures. Sci. Rep. 2020, 10, 1537. [Google Scholar]
- Cheng, F.; Zhang, A.; Wang, T. Research based on double coverage rate and reliability of gas detector layout optimization. J. Loss Prev. Process Ind. 2020, 68, 104285. [Google Scholar] [CrossRef]
- Davies, S.; Hu, Y.; Jiang, N. Holographic Sensors in Biotechnology. Adv. Funct. Mater. 2021, 31, 2105645. [Google Scholar] [CrossRef]
- Giraldo, J.P.; Wu, H.; Newkirk, G.M.; Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019, 14, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Patwari, P.; Pruckner, F.; Fabris, M. Biosensors in microalgae: A roadmap for new opportunities in synthetic biology and biotechnology. Biotechnol. Adv. 2023, 68, 108221. [Google Scholar]
- Farquhar, A.K.; Henshaw, G.S.; Williams, D.E. Errors in ambient gas concentration measurement caused by acoustic response of electrochemical gas sensors. Sens. Actuators A Phys. 2023, 354, 114254. [Google Scholar]
- Hao, X.; Wu, D.; Wang, Y. Gas sniffer (YSZ-based electrochemical gas phase sensor) toward acetone detection. Sens. Actuators B Chem. 2019, 278, 1–7. [Google Scholar]
- Emam, S.; Adedoyin, A.; Geng, X. A Molecularly Imprinted Electrochemical Gas Sensor to Sense Butylated Hydroxytoluene in Air. J. Sens. 2018, 2018, 3437149. [Google Scholar]
- Liao, H.-C.; Hsu, C.-P.; Wu, M.-C. Conjugated Polymer/Nanoparticles Nanocomposites for High Efficient and Real-Time Volatile Organic Compounds Sensors. Anal. Chem. 2013, 85, 9305–9311. [Google Scholar] [CrossRef]
- Zhong, X.; Li, D.; Du, W. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening. Anal. Bioanal. Chem. 2018, 410, 3671–3681. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, D.; Sarswat, P.K.; Free, M.L. Quantum dots and carbon dots based fluorescent sensors for TB biomarkers detection. Vacuum 2017, 146, 606–613. [Google Scholar]
- Kaloumenou, M.; Skotadis, E.; Lagopati, N. Breath Analysis: A Promising Tool for Disease Diagnosis—The Role of Sensors. Sensors 2022, 22, 1238. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Gopal, R.A.; Lkhagvaa, T.; Choi, D. Metal-oxide gas sensors for exhaled-breath analysis: A review. Meas. Sci. Technol. 2021, 32, 102004. [Google Scholar]
- Zhang, L.; Khan, K.; Zou, J. Recent Advances in Emerging 2D Material-Based Gas Sensors: Potential in Disease Diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329. [Google Scholar]
- Shooshtari, M.; Salehi, A. An electronic nose based on carbon nanotube -titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- Giardina, M.; Olesik, S.V. Application of Low-Temperature Glassy Carbon-Coated Macrofibers for Solid-Phase Microextraction Analysis of Simulated Breath Volatiles. Anal. Chem. 2003, 75, 1604–1614. [Google Scholar] [CrossRef]
- Schmutzhard, J.; Rieder, J.; Deibl, M. Pilot study: Volatile organic compounds as a diagnostic marker for head and neck tumors. Head Neck 2008, 30, 743–749. [Google Scholar] [PubMed]
- Hanouneh, I.A.; Zein, N.N.; Cikach, F. The breathprints in patients with liver disease identify novel breath biomarkers in alcoholic hepatitis. Clin. Gastroenterol. Hepatol. 2014, 12, 516–523. [Google Scholar] [PubMed]
- Walton, C.; Patel, M.; Pitts, D. The use of a portable breath analysis device in monitoring type 1 diabetes patients in a hypoglycaemic clamp: Validation with SIFT-MS data. J. Breath Res. 2014, 8, 037108. [Google Scholar] [PubMed]
- Jakubowski, M.; Czerczak, S. Calculating the retention of volatile organic compounds in the lung on the basis of their physicochemical properties. Environ. Toxicol. Pharmacol. 2009, 28, 311–315. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Kok, G. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef]
- Yan, C.; Hu, W.; Tu, J. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J. Transl. Med. 2023, 21, 300. [Google Scholar] [CrossRef] [PubMed]
- Quintans, L.N.; Castro, G.D.; Castro, J.A. Oxidation of ethanol to acetaldehyde and free radicals by rat testicular microsomes. Arch. Toxicol. 2005, 79, 25–30. [Google Scholar] [CrossRef]
- Helander, A.; Beck, O. Ethyl Sulfate: A Metabolite of Ethanol in Humans and a Potential Biomarker of Acute Alcohol Intake. J. Anal. Toxicol. 2005, 29, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Chen, G. Ethanol up-regulates phenol sulfotransferase (SULT1A1) and hydroxysteroid sulfotransferase (SULT2A1) in rat liver and intestine. Arch. Physiol. Biochem. 2015, 121, 68–74. [Google Scholar] [CrossRef]
- Kechagias, S.; Dernroth, D.N.; Blomgren, A. Phosphatidylethanol Compared with Other Blood Tests as a Biomarker of Moderate Alcohol Consumption in Healthy Volunteers: A Prospective Randomized Study. Alcohol Alcohol. 2015, 50, 399–406. [Google Scholar] [CrossRef]
- Vela, S.; Guerra, A.; Farrell, G. Pathophysiology and Biomarker Potential of Fatty Acid Ethyl Ester Elevation During Alcoholic Pancreatitis. Gastroenterology 2021, 161, 1513–1525. [Google Scholar] [CrossRef]
- Saasa, V.; Beukes, M.; Lemmer, Y.; Mwakikunga, B. Blood Ketone Bodies and Breath Acetone Analysis and Their Correlations in Type 2 Diabetes Mellitus. Diagnostics 2019, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Ruzsányi, V.; Péter Kalapos, M. Breath acetone as a potential marker in clinical practice. J. Breath Res. 2017, 11, 024002. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Mizukoshi, N.; Iitani, K. A Bio-Fluorometric Acetone Gas Imaging System for the Dynamic Analysis of Lipid Metabolism in Human Breath. Chemosensors 2021, 9, 258. [Google Scholar] [CrossRef]
- Alkedeh, O.; Priefer, R. The Ketogenic Diet: Breath Acetone Sensing Technology. Biosensors 2021, 11, 26. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, C.; Fan, T. Mixed Potential Type Acetone Sensor with Ultralow Detection Limit for Diabetic Ketosis Breath Analysis. ACS Sens. 2024, 9, 464–473. [Google Scholar] [CrossRef]
- Wei, S.; Li, Z.; Murugappan, K. Nanowire Array Breath Acetone Sensor for Diabetes Monitoring. Adv. Sci. 2024, 11, 2309481. [Google Scholar]
- Dorokhov, Y.L.; Shindyapina, A.V.; Sheshukova, E.V.; Komarova, T.V. Metabolic Methanol: Molecular Pathways and Physiological Roles. Physiol. Rev. 2015, 95, 603–644. [Google Scholar] [PubMed]
- Toma, K.; Iwasaki, K.; Arakawa, T. Sensitive and selective methanol biosensor using two-enzyme cascade reaction and fluorometry for non-invasive assessment of intestinal bacteria activity. Biosens. Bioelectron. 2021, 181, 113136. [Google Scholar]
- Razzaghy-Azar, M.; Nourbakhsh, M.; Vafadar, M. A novel metabolic disorder in the degradation pathway of endogenous methanol due to a mutation in the gene of alcohol dehydrogenase. Clin. Biochem. 2021, 90, 66–72. [Google Scholar]
- Laakso, O.; Haapala, M.; Jaakkola, P. FT-IR Breath Test in the Diagnosis and Control of Treatment of Methanol Intoxications. J. Anal. Toxicol. 2001, 25, 26–30. [Google Scholar] [PubMed]
- Chen, H.; Gao, P.; Zhu, X. Monitoring, fate and transport, and risk assessment of organic pollutants in the environment: CREST publications during 2019–2023. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1–12. [Google Scholar]
- Kulkarni, S.; Ghosh, R. Development of 2D CuO based chemiresistive sensors for detecting binary mixture of volatile organic compounds and investigation of the adsorption kinetics via Eley-Rideal mechanism. Appl. Surf. Sci. 2024, 665, 160328. [Google Scholar] [CrossRef]
- Paul, S.; Mendoza, E.R.; To, D.T.H. Enhancing room-temperature gas sensing performance of metal oxide semiconductor chemiresistors through 400 nm UV photoexcitation. Sens. Actuators Rep. 2024, 7, 100194. [Google Scholar]
- Jamnani, S.R.; Moghaddam, H.M.; Leonardi, S.G.; Neri, G. A novel conductometric sensor based on hierarchical self-assembly nanoparticles Sm2O3 for VOCs monitoring. Ceram. Int. 2018, 44, 16953–16959. [Google Scholar]
- Mondal, D.; Nair, A.M.; Mukherji, S. Volatile organic compound sensing in breath using conducting polymer coated chemi-resistive filter paper sensors. Med. Biol. Eng. Comput. 2023, 61, 2001–2011. [Google Scholar]
- Xiong, L.; Compton, R.G. Amperometric Gas detection: A Review. Int. J. Electrochem. Sci. 2014, 9, 7152–7181. [Google Scholar]
- Ueda, T.; Abe, H.; Kamada, K. Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode. Sens. Actuators B Chem. 2017, 252, 268–276. [Google Scholar]
- Gross, P.-A.; Jaramillo, T.; Pruitt, B. Cyclic-Voltammetry-Based Solid-State Gas Sensor for Methane and Other VOC Detection. Anal. Chem. 2018, 90, 6102–6108. [Google Scholar]
- Tan, W.C.; Ang, K.-W. Volatile Organic Compound Sensors Based on 2D Materials. Adv. Electron. Mater. 2021, 7, 2001071. [Google Scholar]
- Banga, I.; Paul, A.; Muthukumar, S.; Prasad, S. ZENose (ZIF-Based Electrochemical Nose) Platform for Noninvasive Ammonia Detection. ACS Appl. Mater. Interfaces 2021, 13, 16155–16165. [Google Scholar] [PubMed]
- Ma, H.; Cheng, P.; Chen, C. Highly Selective Wearable Alcohol Homologue Sensors Derived from Pt-Coated Truncated Octahedron Au. ACS Sens. 2022, 7, 3067–3076. [Google Scholar] [PubMed]
- Qu, X.; Hu, Y.; Xu, C. Optical sensors of volatile organic compounds for non-invasive diagnosis of diseases. Chem. Eng. J. 2024, 485, 149804. [Google Scholar]
- Khatib, M.; Haick, H. Sensors for Volatile Organic Compounds. ACS Nano 2022, 16, 7080–7115. [Google Scholar]
- Nah, S.H.; Kim, J.B.; Chui, H.N.T. Enhanced Colorimetric Detection of Volatile Organic Compounds Using a Dye-Incorporated Photonic Crystal-Based Sensor Array. Adv. Mater. 2024, 36, 2409297. [Google Scholar]
- Hou, J.; Liu, X.; Hou, C. A PVDF-based colorimetric sensor array for noninvasive detection of multiple disease-related volatile organic compounds. Anal. Bioanal. Chem. 2023, 415, 6647–6661. [Google Scholar] [PubMed]
- Shin, Y.-H.; Teresa Gutierrez-Wing, M.; Choi, J.-W. Review—Recent Progress in Portable Fluorescence Sensors. J. Electrochem. Soc. 2021, 168, 017502. [Google Scholar] [CrossRef]
- Iitani, K.; Chien, P.-J.; Suzuki, T. Fiber-Optic Bio-sniffer (Biochemical Gas Sensor) Using Reverse Reaction of Alcohol Dehydrogenase for Exhaled Acetaldehyde. ACS Sens. 2018, 3, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Blaikie, T.P.J.; Edge, J.A.; Hancock, G. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes. J. Breath Res. 2014, 8, 046010. [Google Scholar] [CrossRef] [PubMed]
- Toyooka, T.; Hiyama, S.; Yamada, Y. A prototype portable breath acetone analyzer for monitoring fat loss. J. Breath Res. 2013, 7, 036005. [Google Scholar] [PubMed]
- Ye, M.; Chien, P.-J.; Toma, K. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath. Biosens. Bioelectron. 2015, 73, 208–213. [Google Scholar]
- Phillips, M.; Cataneo, R.N.; Ditkoff, B.A. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res. Treat. 2006, 99, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Cikach, F.S.; Tonelli, A.R.; Barnes, J. Breath Analysis in Pulmonary Arterial Hypertension. Chest 2014, 145, 551–558. [Google Scholar] [CrossRef]
- Buszewski, B.; Ligor, T.; Jezierski, T. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: Comparison with discrimination by canines. Anal. Bioanal. Chem. 2012, 404, 141–146. [Google Scholar] [PubMed]
- Rudnicka, J.; Walczak, M.; Kowalkowski, T. Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs. Sens. Actuators B Chem. 2014, 202, 615–621. [Google Scholar] [CrossRef]
- Wehinger, A.; Schmid, A.; Mechtcheriakov, S. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass Spectrom. 2007, 265, 49–59. [Google Scholar]
- Palmiere, C.; Sporkert, F.; Werner, D. Blood, urine and vitreous isopropyl alcohol as biochemical markers in forensic investigations. Leg. Med. 2012, 14, 17–20. [Google Scholar] [CrossRef]
- Chien, P.-J.; Suzuki, T.; Tsujii, M. Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker. Biosens. Bioelectron. 2017, 91, 341–346. [Google Scholar] [CrossRef]
- Chien, P.-J.; Suzuki, T.; Ye, M. Ultra-Sensitive Isopropanol Biochemical Gas Sensor (Bio-Sniffer) for Monitoring of Human Volatiles. Sensors 2020, 20, 6827. [Google Scholar] [CrossRef]
- Toma, K.; Iwasaki, K.; Zhang, G. Biochemical Methanol Gas Sensor (MeOH Bio-Sniffer) for Non-Invasive Assessment of Intestinal Flora from Breath Methanol. Sensors 2021, 21, 4897. [Google Scholar] [CrossRef] [PubMed]
- Hernaez, M.; Zamarreño, C.R.; Melendi-Espina, S. Optical Fibre Sensors Using Graphene-Based Materials: A Review. Sensors 2017, 17, 155. [Google Scholar] [CrossRef] [PubMed]
- Mathur, M.; Yeh, Y.-T.; Arya, R.K. Adipose lipolysis is important for ethanol to induce fatty liver in the National Institute on Alcohol Abuse and Alcoholism murine model of chronic and binge ethanol feeding. Hepatology 2023, 77, 1688–1701. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Suzuki, T.; Tsujii, M. Real-time monitoring of skin ethanol gas by a high-sensitivity gas phase biosensor (bio-sniffer) for the non-invasive evaluation of volatile blood compounds. Biosens. Bioelectron. 2019, 129, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Aota, T.; Iitani, K. Skin ethanol gas measurement system with a biochemical gas sensor and gas concentrator toward monitoring of blood volatile compounds. Talanta 2020, 219, 121187. [Google Scholar] [CrossRef] [PubMed]
- Toma, K.; Suzuki, S.; Arakawa, T. External ears for non-invasive and stable monitoring of volatile organic compounds in human blood. Sci. Rep. 2021, 11, 10415. [Google Scholar] [CrossRef]
- Yammouri, G.; Ait Lahcen, A. AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests. J. Pers. Med. 2024, 14, 1088. [Google Scholar] [CrossRef]
- Cao, H.; Shi, H.; Tang, J. Ultrasensitive discrimination of volatile organic compounds using a microfluidic silicon SERS artificial intelligence chip. iScience 2023, 26, 107821. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.; Palzur, E.; Broza, Y.Y. Noninvasive Detection of Stress by Biochemical Profiles from the Skin. ACS Sens. 2023, 8, 1339–1347. [Google Scholar] [CrossRef]
- Syed, I.B.; Sundaram, B.; Ayothiraman, S.; Yuvaraj, S. Planar Microwave Sensor suitable for Artificial-Intelligence (AI) based detection of Volatile Organic Compounds. AEU-Int. J. Electron. Commun. 2024, 185, 155444. [Google Scholar] [CrossRef]
- Li, L.; Fu, C.; Lou, Z. Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano Energy 2017, 41, 261–268. [Google Scholar] [CrossRef]
- Hong, G.; Kim, M.E.; Lee, J.S. Respiration Monitoring Using Humidity Sensor Based on Hydrothermally Synthesized Two-Dimensional MoS2. Nanomaterials 2024, 14, 1826. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Pan, Z.; Ye, S. Interface engineering of NiCo LDH and 2D materials for advanced non-invasive glucose sensors. J. Alloys Compd. 2025, 1010, 177231. [Google Scholar] [CrossRef]
- Ismail, S.N.A.; Nayan, N.A.; Mohammad Haniff, M.A.S. Wearable Two-Dimensional Nanomaterial-Based Flexible Sensors for Blood Pressure Monitoring: A Review. Nanomaterials 2023, 13, 852. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.T.T.; Tohl, D.; Wallace, A. Developing a fluorescent sensing based portable medical open-platform—A case study for albuminuria measurement in chronic kidney disease screening and monitoring. Sens. Bio-Sens. Res. 2022, 37, 100504. [Google Scholar]
- Senthilnathan, N.; Oral, C.M.; Novobilsky, A.; Pumera, M. Intelligent Magnetic Microrobots with Fluorescent Internal Memory for Monitoring Intragastric Acidity. Adv. Funct. Mater. 2024, 34, 2401463. [Google Scholar]
VOCs | Other Names | CAS | Exterior Condition | Solubility | Molecular Formula | Vapour Pressure | Boiling Point | Structure |
---|---|---|---|---|---|---|---|---|
Ethanol | Alcohol | 64-17-5 | Colorless transparent liquid with aromatic odour | Soluble | C2H6O | 43.9 mmHg (5.85 kPa) | 78.3 °C | |
Acetaldehyde | - | 75-07-0 | Colorless and transparent liquid | Soluble | C2H4O | 520 mmHg (69.3 kPa) | 21 °C | |
Acetone | 2-Propanone | 67-64-1 | Colorless and transparent liquid | Soluble | C3H6O | 184 mmHg (24.5 kPa) | 56.2 °C | |
Isopropanol | - | 67-63-0 | Colorless and transparent liquid | Soluble | C3H8O | 33.4 mmHg (4.45 kPa) | 81–83 °C | |
Methanol | Wood alcohol | 67-56-1 | Colorless liquid | Soluble | CH4O | 96.0 mmHg (12.8 kPa) | 64.7 °C | |
Methane | - | 74-82-8 | Colorless and odorless gas | Insoluble | CH4 | 3.2 × 104 mmHg (4.27 × 103 kPa) | −161.5 °C | |
Benzene | - | 71-43-2 | Colorless and transparent liquid | Slightly soluble | C6H6 | 74.7 mmHg (9.96 kPa) | 80.1 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, X.; Mao, S.; Chen, S.; Guo, Z. Challenges and Applications of Bio-Sniffers for Monitoring Volatile Organic Compounds in Medical Diagnostics. Chemosensors 2025, 13, 127. https://doi.org/10.3390/chemosensors13040127
Wang Y, Zhou X, Mao S, Chen S, Guo Z. Challenges and Applications of Bio-Sniffers for Monitoring Volatile Organic Compounds in Medical Diagnostics. Chemosensors. 2025; 13(4):127. https://doi.org/10.3390/chemosensors13040127
Chicago/Turabian StyleWang, Yang, Xunda Zhou, Siying Mao, Shiwei Chen, and Zhenzhong Guo. 2025. "Challenges and Applications of Bio-Sniffers for Monitoring Volatile Organic Compounds in Medical Diagnostics" Chemosensors 13, no. 4: 127. https://doi.org/10.3390/chemosensors13040127
APA StyleWang, Y., Zhou, X., Mao, S., Chen, S., & Guo, Z. (2025). Challenges and Applications of Bio-Sniffers for Monitoring Volatile Organic Compounds in Medical Diagnostics. Chemosensors, 13(4), 127. https://doi.org/10.3390/chemosensors13040127