Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,787)

Search Parameters:
Keywords = gap depth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1885 KiB  
Article
Advancements in Hole Quality for AISI 1045 Steel Using Helical Milling
by Pedro Mendes Silva, António José da Fonseca Festas, Robson Bruno Dutra Pereira and João Paulo Davim
J. Manuf. Mater. Process. 2025, 9(8), 256; https://doi.org/10.3390/jmmp9080256 (registering DOI) - 31 Jul 2025
Abstract
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, [...] Read more.
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, remains underexplored in the literature. This study addresses this gap by systematically evaluating the influence of key process parameters—cutting speed (Vc), axial depth of cut (ap), and tool diameter (Dt)—on hole quality attributes, including surface roughness, burr formation, and nominal diameter accuracy. A full factorial experimental design (23) was employed, coupled with analysis of variance (ANOVA), to quantify the effects and interactions of these parameters. The results reveal that, with a higher Vc, it is possible to reduce surface roughness (Ra) by 30% to 40%, while an increased ap leads to a 50% increase in Ra. Additionally, Dt emerged as the most critical factor for nominal diameter accuracy, reducing geometrical errors by 1% with a larger Dt. Burr formation was predominantly observed at the lower end of the hole, highlighting challenges specific to this technique. These findings provide valuable insights into optimizing helical milling for low-carbon steels, offering a foundation for broader industrial adoption and further research. Full article
Show Figures

Figure 1

17 pages, 475 KiB  
Review
The Rationale and Explanation for Rehabilitation Interventions in the Management of Treatment-Induced Trismus in People with Head and Neck Cancer: A Scoping Review of Randomized Controlled Trials
by Ernesto Anarte-Lazo, Ana Bravo-Vazquez, Carlos Bernal-Utrera, Daniel Torres-Lagares, Deborah Falla and Cleofas Rodríguez-Blanco
Medicina 2025, 61(8), 1392; https://doi.org/10.3390/medicina61081392 (registering DOI) - 31 Jul 2025
Abstract
Background and objectives: Trismus is a frequent and debilitating complication in people with head and neck cancer (HNC) which leads to significant functional limitations and reduced quality of life. Rehabilitation interventions are commonly recommended to manage or prevent trismus. However, in many [...] Read more.
Background and objectives: Trismus is a frequent and debilitating complication in people with head and neck cancer (HNC) which leads to significant functional limitations and reduced quality of life. Rehabilitation interventions are commonly recommended to manage or prevent trismus. However, in many randomized controlled trials (RCTs), the theoretical justification for these interventions is poorly articulated, and the underlying biological or physiological mechanisms are not described in detail, limiting our understanding of why certain treatments may (or may not) work. This review aimed to identify and analyze how RCTs report the rationale for rehabilitation interventions and the explanations used to manage this population. Materials and Methods: A scoping review was conducted in accordance with the PRISMA-ScR guidelines. Five databases (PubMed, PEDro, Web of Science, Scopus, and EMBASE) were searched up to May 2025 for RCTs evaluating rehabilitation interventions for the management or prevention of treatment-induced trismus in patients with HNC. Data were extracted and synthesized narratively, focusing on the type of intervention, the rationale for its use, and the proposed mechanisms of action. Results: Of 2215 records identified, 24 RCTs met the inclusion criteria. Thirteen studies focused on preventive interventions—primarily exercise therapy—while the remainder addressed established trismus using exercise, manual therapy, electrotherapy, or combined treatment modalities. The rationales provided for intervention selection were heterogeneous and often lacked depth, with most studies justifying interventions based on their potential to improve mouth opening or reduce fibrosis but rarely grounding these claims in detailed pathophysiological models. Only half of the studies provided any mechanistic explanation for the intervention’s effects, and these were typically generic or speculative. Conclusions: RCTs investigating rehabilitation interventions for treatment-induced trismus in patients with HNC frequently lack comprehensive rationales and mechanistic explanations for their interventions. This gap limits the ability to refine and optimize treatment approaches, as the underlying processes driving clinical improvements remain poorly understood. Future research should be guided by theoretical models and include objective outcomes to better elucidate the mechanisms of action of interventions to inform clinical practice. Full article
(This article belongs to the Special Issue Advances in Head and Neck Cancer Management)
Show Figures

Figure 1

20 pages, 890 KiB  
Article
Enhancing Cultural Sustainability in Ethnographic Museums: A Multi-Dimensional Visitor Experience Framework Based on Analytic Hierarchy Process (AHP)
by Chao Ruan, Suhui Qiu and Hang Yao
Sustainability 2025, 17(15), 6915; https://doi.org/10.3390/su17156915 - 30 Jul 2025
Abstract
This study examines how a visitor-centered approach enhances engagement, participation, and intangible heritage transmission to support cultural sustainability in ethnographic museums. We conducted online and on-site behavioral observations, questionnaire surveys, and in-depth interviews at the She Ethnic Minority Museum to identify gaps in [...] Read more.
This study examines how a visitor-centered approach enhances engagement, participation, and intangible heritage transmission to support cultural sustainability in ethnographic museums. We conducted online and on-site behavioral observations, questionnaire surveys, and in-depth interviews at the She Ethnic Minority Museum to identify gaps in current visitor experience design. We combined the Analytic Hierarchy Process (AHP) with the Contextual Model of Learning (POE) and Emotional Experience Theory (EET) to develop a hierarchical evaluation model. The model comprises one goal layer, three criterion layers (Experience, Participation, Transmission), and twelve sub-criteria, each evaluated across People, Object, and Environment dimensions. Quantitative weighting revealed that participation exerts the greatest influence, followed by transmission and experience. Findings indicate that targeted interventions promoting active participation most effectively foster emotional resonance and heritage transmission, while strategies supporting intergenerational engagement and immersive experiences also play a significant role. We recommend prioritizing small-scale, low-cost participatory initiatives and integrating online and offline community engagement to establish a participatory chain where engagement leads to meaningful experiences and sustained cultural transmission. These insights offer practical guidance for museum practitioners and policymakers seeking to enhance visitor experiences and ensure the long-term preservation and vibrancy of ethnic minority cultural heritage. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

27 pages, 2565 KiB  
Review
The Role of ESG in Driving Sustainable Innovation in Water Sector: From Gaps to Governance
by Gabriel Minea, Elena Simina Lakatos, Roxana Maria Druta, Alina Moldovan, Lucian Marius Lupu and Lucian Ionel Cioca
Water 2025, 17(15), 2259; https://doi.org/10.3390/w17152259 - 29 Jul 2025
Viewed by 23
Abstract
The water sector is facing a convergence of systemic challenges generated by climate change, increasing demand, and increasingly stringent regulations, which threaten its operational and strategic sustainability. In this context, the article examines how ESG (environmental, social, governance) principles are integrated into the [...] Read more.
The water sector is facing a convergence of systemic challenges generated by climate change, increasing demand, and increasingly stringent regulations, which threaten its operational and strategic sustainability. In this context, the article examines how ESG (environmental, social, governance) principles are integrated into the governance, financing, and management of water resources, with a comparative focus on Romania and the European Union. It aims to assess the extent to which ESG practices contribute to the sustainable transformation of the water sector in the face of growing environmental and socio-economic challenges. The methodology is based on a systematic analysis of policy documents, regulatory frameworks, and ESG standards applicable to the water sector at both national (Romania) and EU levels. This study also investigates investment strategies and their alignment with the EU Taxonomy for Sustainable Activities, enabling a comparative perspective on implementation, gaps and strengths. Findings reveal that while ESG principles are increasingly recognized across Europe, their implementation remains uneven (particularly in Romania) due to unclear standards, limited funding mechanisms, and fragmented policy coordination. ESG integration shows clear potential to foster innovation, improve governance transparency, and support long-term resilience in the water sector. These results underline the need for coherent, integrated policies and stronger institutional coordination to ensure consistent ESG adoption across Member States. Policymakers should prioritize the development of clear guidelines and supportive funding instruments to accelerate sustainable outcomes. The originality of our study lies in its comparative approach, offering an in-depth analysis of ESG integration in the water sector across different governance contexts. It provides valuable insights for advancing policy coherence, investment alignment, and sustainable water resource management at both national and European levels. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

36 pages, 856 KiB  
Systematic Review
Is Blockchain the Future of AI Alignment? Developing a Framework and a Research Agenda Based on a Systematic Literature Review
by Alexander Neulinger, Lukas Sparer, Maryam Roshanaei, Dragutin Ostojić, Jainil Kakka and Dušan Ramljak
J. Cybersecur. Priv. 2025, 5(3), 50; https://doi.org/10.3390/jcp5030050 - 29 Jul 2025
Viewed by 40
Abstract
Artificial intelligence (AI) agents are increasingly shaping vital sectors of society, including healthcare, education, supply chains, and finance. As their influence grows, AI alignment research plays a pivotal role in ensuring these systems are trustworthy, transparent, and aligned with human values. Leveraging blockchain [...] Read more.
Artificial intelligence (AI) agents are increasingly shaping vital sectors of society, including healthcare, education, supply chains, and finance. As their influence grows, AI alignment research plays a pivotal role in ensuring these systems are trustworthy, transparent, and aligned with human values. Leveraging blockchain technology, proven over the past decade in enabling transparent, tamper-resistant distributed systems, offers significant potential to strengthen AI alignment. However, despite its potential, the current AI alignment literature has yet to systematically explore the effectiveness of blockchain in facilitating secure and ethical behavior in AI agents. While existing systematic literature reviews (SLRs) in AI alignment address various aspects of AI safety and AI alignment, this SLR specifically examines the gap at the intersection of AI alignment, blockchain, and ethics. To address this gap, this SLR explores how blockchain technology can overcome the limitations of existing AI alignment approaches. We searched for studies containing keywords from AI, blockchain, and ethics domains in the Scopus database, identifying 7110 initial records on 28 May 2024. We excluded studies which did not answer our research questions and did not discuss the thematic intersection between AI, blockchain, and ethics to a sufficient extent. The quality of the selected studies was assessed on the basis of their methodology, clarity, completeness, and transparency, resulting in a final number of 46 included studies, the majority of which were journal articles. Results were synthesized through quantitative topic analysis and qualitative analysis to identify key themes and patterns. The contributions of this paper include the following: (i) presentation of the results of an SLR conducted to identify, extract, evaluate, and synthesize studies on the symbiosis of AI alignment, blockchain, and ethics; (ii) summary and categorization of the existing benefits and challenges in incorporating blockchain for AI alignment within the context of ethics; (iii) development of a framework that will facilitate new research activities; and (iv) establishment of the state of evidence with in-depth assessment. The proposed blockchain-based AI alignment framework in this study demonstrates that integrating blockchain with AI alignment can substantially enhance robustness, promote public trust, and facilitate ethical compliance in AI systems. Full article
Show Figures

Figure 1

31 pages, 3855 KiB  
Article
Exploring Sidewalk Built Environment Design Strategies to Promote Walkability in Tropical Humid Climates
by Pakin Anuntavachakorn, Purinat Pawarana, Tarid Wongvorachan, Chaniporn Thampanichwat and Suphat Bunyarittikit
Buildings 2025, 15(15), 2659; https://doi.org/10.3390/buildings15152659 - 28 Jul 2025
Viewed by 266
Abstract
The world is facing a state of “global boiling,” causing damage to various sectors. Developing pedestrian systems is a key to mitigating it, especially in tropical and humid cities where the climate discourages walking and increases the need for shaded walkways. Recent research [...] Read more.
The world is facing a state of “global boiling,” causing damage to various sectors. Developing pedestrian systems is a key to mitigating it, especially in tropical and humid cities where the climate discourages walking and increases the need for shaded walkways. Recent research shows a lack of data and in-depth studies on the built environment promoting walkability in such climates, creating a research gap this study aims to fill. Using Singapore as a case study, four locations—Marina Bay, Orchard Road, Boat Quay, and Chinatown—were surveyed and analyzed through visual decoding and questionnaires. Results show that natural light is the most frequently observed and important element in pedestrian pathway design in tropical and humid areas. Trees and sidewalks are also important in creating a walk-friendly environment. Green spaces significantly influence the desire to walk, though no clear positive outcomes were found. Additionally, “Other Emotions” negatively affect the decision to walk, suggesting these should be avoided in future pedestrian pathway designs to encourage walking. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 400 KiB  
Article
Debt Before Departure: The Role of Informal Credit in Trapping Migrant Workers
by Abdelaziz Abdalla Alowais and Abubakr Suliman
Soc. Sci. 2025, 14(8), 465; https://doi.org/10.3390/socsci14080465 - 28 Jul 2025
Viewed by 153
Abstract
In the last two decades, the prevalence of South Asian migrant workers has significantly increased in the UAE’s construction sector, and they are under huge debt. Although researchers heavily stress the role of employers in migrant workers’ debt, the role of debt before [...] Read more.
In the last two decades, the prevalence of South Asian migrant workers has significantly increased in the UAE’s construction sector, and they are under huge debt. Although researchers heavily stress the role of employers in migrant workers’ debt, the role of debt before departure has not been investigated. Thus, this study bridges this gap in the literature in the context of South Asian construction migrant workers. The objective of this study is to investigate how informal recruitment fees and debt arrangements contribute to bonded labor and dependency among migrant workers. A qualitative approach was used to conduct in-depth interviews with 30 South Asian migrants employed in the construction sector. This article highlights how pre-migration debt—which is often accrued through informal loans and exploitative recruitment fees—has been underexplored in migration studies. Drawing on interviews with 30 South Asian laborers, this study identifies five interconnected themes: pre-migration debt bondage, exploitative lending practices, lack of legal recourse, emotional manipulation, and a cycle of dependency. While UAE labor policies have improved, the real vulnerabilities lie in the informal recruitment systems and weak oversight in migrant workers’ countries of origin. Consequently, five themes were generated from the analysis: pre-migration debt bondage, exploitative lending practices, no legal recourse, emotional manipulation, and cycles of dependency. This study contributes to our existing knowledge by revealing the experiences of migrant construction workers from South Asia in the UAE. While the UAE has established one of the region’s most progressive legal frameworks to protect migrant workers and set clear labor standards, many exploitative practices occur outside its jurisdiction, particularly in the workers’ countries of origin. This study underscores that the root of the problem lies in weak enforcement and informal recruitment networks in sending countries, not in UAE policy itself. Addressing these challenges requires coordinated international action to ensure that migrant protection begins well before arrival. Full article
(This article belongs to the Special Issue Civil Society, Migration and Citizenship)
17 pages, 3191 KiB  
Article
Optimizing Graphene Ring Modulators: A Comparative Study of Straight, Bent, and Racetrack Geometries
by Pawan Kumar Dubey, Ashraful Islam Raju, Rasuole Lukose, Christian Wenger and Mindaugas Lukosius
Nanomaterials 2025, 15(15), 1158; https://doi.org/10.3390/nano15151158 - 27 Jul 2025
Viewed by 212
Abstract
Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach [...] Read more.
Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach critical coupling. This work presents a comprehensive comparative analysis of straight, bent, and racetrack bus geometries in graphene-on-silicon nitride (Si3N4) micro-ring modulators operating near 1.31 µm. Based on finite-difference time-domain simulation results, a proposed racetrack-based modulator structure demonstrates that extending the coupling region enables critical coupling at larger gaps—up to 300 nm—while preserving high modulation efficiency. With only 6–12% graphene coverage, this geometry achieves extinction ratios of up to 28 dB and supports electrical bandwidths approaching 90 GHz. Findings from this work highlight a new co-design framework for coupling geometry and graphene coverage, offering a pathway to high-speed and high-modulation-depth graphene photonic modulators suitable for scalable integration in next-generation photonic interconnects devices. Full article
(This article belongs to the Special Issue 2D Materials for High-Performance Optoelectronics)
Show Figures

Figure 1

34 pages, 12831 KiB  
Article
Behavior of Large-Diameter Circular Deep Excavation Under Asymmetric Surface Surcharge
by Ping Zhao, Youqiang Qiu, Feng Liu, Zhanqi Wang and Panpan Guo
Symmetry 2025, 17(8), 1194; https://doi.org/10.3390/sym17081194 - 25 Jul 2025
Viewed by 203
Abstract
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity [...] Read more.
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity of relevant investigations. This study addresses this knowledge gap by establishing a three-dimensional finite element model (3D-FEA) based on the anchor deep excavation project of a specific bridge. The model is utilized to investigate the influence of asymmetric surcharge on the forces and deformations within the supporting structure. The results show that both the internal force and displacement cloud diagrams of the support structure exhibit asymmetric characteristics. The distribution of displacement and internal forces has spatial effects, and the maximum values all occur in the areas where asymmetric loads are applied. The maximum values of the displacement, axial force, and shear force of underground continuous walls increase with the increase in the excavation depth. The total displacement curves all show the feature of a “bulging belly”. The maximum displacement is 13.3 mm. The axial force is mainly compression, with a maximum value of −9514 kN/m. The maximum positive and negative values of the shear force are 333 kN/m and −705 kN/m, respectively. The bending moment diagram of different monitoring points shows the characteristics of “bow knot”. The maximum values of the positive bending moment and negative bending moment are 1509.4 kN·m/m and −2394.3 kN·m/m, respectively. The axial force of the ring beam is mainly compression, with a maximum value of −5360 kN, which occurs in ring beams 3, 4, and 5. The displacement cloud diagram of the support structure under symmetrical loads shows symmetrical characteristics. Under different load conditions, the displacement curve of the diaphragm wall shows the characteristics of “bulge belly”. The forms of loads with displacements from largest to smallest at the same position are as follows: asymmetric loads, symmetrical loads, and no loads. These findings provide valuable insights for optimizing the structural design of similar deep excavation projects and contribute to promoting sustainable urban underground development. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

22 pages, 9506 KiB  
Article
The Influence of Plate Geometry on the Cyclic Bearing Behavior of Single Helical Piles in Silty Sand
by Faxiang Gong, Wenni Deng, Xueliang Zhao, Xiaolong Wang and Kanmin Shen
J. Mar. Sci. Eng. 2025, 13(8), 1416; https://doi.org/10.3390/jmse13081416 - 25 Jul 2025
Viewed by 171
Abstract
Helical piles are widely used in geotechnical engineering, and their rapid installation and service reliability have attracted significant interest from the offshore wind industry. These piles are frequently subjected to cyclic loading in complex marine environments. Although the cyclic bearing behavior of helical [...] Read more.
Helical piles are widely used in geotechnical engineering, and their rapid installation and service reliability have attracted significant interest from the offshore wind industry. These piles are frequently subjected to cyclic loading in complex marine environments. Although the cyclic bearing behavior of helical piles has been studied, most research has focused on soil properties and loading conditions, with a limited systematic analysis of plate parameters. Moreover, the selection of plate parameters is not explicitly defined. As a crucial preliminary step in the capacity calculation, it is vital for the design of helical piles. To address this gap, the present study combines physical modeling tests and finite element simulations to systematically evaluate the influence of plate parameters on their cyclic bearing behavior. The parameters investigated include the plate depth, the plate diameter, plate spacing, and the number of plates. The results indicate that, under the same embedment conditions, cumulative displacement increases with the plate depth, with a critical embedment depth ratio of Hcr/D = 6 under cyclic loading conditions, but decreases with the number of plates. Axial stiffness increases with the plate depth, diameter, and number of plates, with an increase ranging from 0.5 to 3.0. However, the normalized axial stiffness decreases with these parameters, reaching a minimum value of 1.63. The plate spacing has a minimal influence on cyclic bearing behavior. Additionally, this study examines the evolution of displacement and stiffness parameters over repeated cycles in numerical simulations, as well as the post-cyclic pullout capacity of the helical pile foundation, which varies between −5% and +12%. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 5115 KiB  
Article
Study the Effect of Heat Treatment on the Corrosion Resistance of AISI 347H Stainless Steel
by Yunyan Peng, Bo Zhao, Jianhua Yang, Fan Bai, Hongchang Qian, Bingxiao Shi and Luntao Wang
Materials 2025, 18(15), 3486; https://doi.org/10.3390/ma18153486 - 25 Jul 2025
Viewed by 189
Abstract
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet [...] Read more.
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet fully understood. This study addresses this knowledge gap by systematically investigating the influence of solution treatment on the corrosion and oxidation resistance of AISI 347H stainless steel. The specimens were subjected to solution heat treatment at 1050 °C, followed by air cooling, and then evaluated through electrochemical testing, high-temperature oxidation experiments at 550 °C, and multiscale surface characterization techniques. The solution treatment refined the austenitic microstructure by dissolving coarse Nb-rich precipitates, as confirmed by SEM and EBSD, and improved passive film integrity. The stabilizing effect of Nb also played a critical role in suppressing sensitization, thereby enhancing resistance to intergranular attack. Electrochemical measurements and EIS analysis revealed a lower corrosion current density and higher charge transfer resistance in the treated samples, indicating enhanced passivation behavior. ToF-SIMS depth profiling and oxide thickness analysis confirmed a slower parabolic oxide growth rate and reduced oxidation rate constant in the solution-treated condition. At 550 °C, oxidation was suppressed by the formation of compact, Cr-rich scales with dual-distributed Nb oxides, effectively limiting diffusion pathways and stabilizing the protective layer. These findings demonstrate that solution treatment is an effective strategy to improve the long-term corrosion and oxidation performance of AISI 347H stainless steel in harsh service environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 2539 KiB  
Article
Empowering End-Users with Cybersecurity Situational Awareness: Findings from IoT-Health Table-Top Exercises
by Fariha Tasmin Jaigirdar, Carsten Rudolph, Misita Anwar and Boyu Tan
J. Cybersecur. Priv. 2025, 5(3), 49; https://doi.org/10.3390/jcp5030049 - 25 Jul 2025
Viewed by 238
Abstract
End-users in a decision-oriented Internet of Things (IoT) healthcare system are often left in the dark regarding critical security information necessary for making informed decisions about potential risks. This is partly due to the lack of transparency and system security awareness end-users have [...] Read more.
End-users in a decision-oriented Internet of Things (IoT) healthcare system are often left in the dark regarding critical security information necessary for making informed decisions about potential risks. This is partly due to the lack of transparency and system security awareness end-users have in such systems. To empower end-users and enhance their cybersecurity situational awareness, it is imperative to thoroughly document and report the runtime security controls in place, as well as the security-relevant aspects of the devices they rely on, while the need for better transparency is obvious, it remains uncertain whether current systems offer adequate security metadata for end-users and how future designs can be improved to ensure better visibility into the security measures implemented. To address this gap, we conducted table-top exercises with ten security and ICT experts to evaluate a typical IoT-Health scenario. These exercises revealed the critical role of security metadata, identified the available ones to be presented to users, and suggested potential enhancements that could be integrated into system design. We present our observations from the exercises, highlighting experts’ valuable suggestions, concerns, and views, backed by our in-depth analysis. Moreover, as a proof-of-concept of our study, we simulated three relevant use cases to detect cyber risks. This comprehensive analysis underscores critical considerations that can significantly improve future system protocols, ensuring end-users are better equipped to navigate and mitigate security risks effectively. Full article
Show Figures

Figure 1

15 pages, 4180 KiB  
Article
Quantitative and Correlation Analysis of Pear Leaf Dynamics Under Wind Field Disturbances
by Yunfei Wang, Xiang Dong, Weidong Jia, Mingxiong Ou, Shiqun Dai, Zhenlei Zhang and Ruohan Shi
Agriculture 2025, 15(15), 1597; https://doi.org/10.3390/agriculture15151597 - 24 Jul 2025
Viewed by 212
Abstract
In wind-assisted orchard spraying operations, the dynamic response of leaves—manifested through changes in their posture—critically influences droplet deposition on both sides of the leaf surface and the penetration depth into the canopy. These factors are pivotal in determining spray coverage and the spatial [...] Read more.
In wind-assisted orchard spraying operations, the dynamic response of leaves—manifested through changes in their posture—critically influences droplet deposition on both sides of the leaf surface and the penetration depth into the canopy. These factors are pivotal in determining spray coverage and the spatial distribution of pesticide efficacy. However, current research lacks comprehensive quantification and correlation analysis of the temporal response characteristics of leaves under wind disturbances. To address this gap, a systematic analytical framework was proposed, integrating real-time leaf segmentation and tracking, geometric feature quantification, and statistical correlation modeling. High-frame-rate videos of fluttering leaves were acquired under controlled wind conditions, and background segmentation was performed using principal component analysis (PCA) followed by clustering in the reduced feature space. A fine-tuned Segment Anything Model 2 (SAM2-FT) was employed to extract dynamic leaf masks and enable frame-by-frame tracking. Based on the extracted masks, time series of leaf area and inclination angle were constructed. Subsequently, regression analysis, cross-correlation functions, and Granger causality tests were applied to investigate cooperative responses and potential driving relationships among leaves. Results showed that the SAM2-FT model significantly outperformed the YOLO series in segmentation accuracy, achieving a precision of 98.7% and recall of 97.48%. Leaf area exhibited strong linear coupling and directional causality, while angular responses showed weaker correlations but demonstrated localized synchronization. This study offers a methodological foundation for quantifying temporal dynamics in wind–leaf systems and provides theoretical insights for the adaptive control and optimization of intelligent spraying strategies. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 1040 KiB  
Systematic Review
A Systematic Review on Risk Management and Enhancing Reliability in Autonomous Vehicles
by Ali Mahmood and Róbert Szabolcsi
Machines 2025, 13(8), 646; https://doi.org/10.3390/machines13080646 - 24 Jul 2025
Viewed by 262
Abstract
Autonomous vehicles (AVs) hold the potential to revolutionize transportation by improving safety, operational efficiency, and environmental impact. However, ensuring reliability and safety in real-world conditions remains a major challenge. Based on an in-depth examination of 33 peer-reviewed studies (2015–2025), this systematic review organizes [...] Read more.
Autonomous vehicles (AVs) hold the potential to revolutionize transportation by improving safety, operational efficiency, and environmental impact. However, ensuring reliability and safety in real-world conditions remains a major challenge. Based on an in-depth examination of 33 peer-reviewed studies (2015–2025), this systematic review organizes advancements across five key domains: fault detection and diagnosis (FDD), collision avoidance and decision making, system reliability and resilience, validation and verification (V&V), and safety evaluation. It integrates both hardware- and software-level perspectives, with a focus on emerging techniques such as Bayesian behavior prediction, uncertainty-aware control, and set-based fault detection to enhance operational robustness. Despite these advances, this review identifies persistent challenges, including limited cross-layer fault modeling, lack of formal verification for learning-based components, and the scarcity of scenario-driven validation datasets. To address these gaps, this paper proposes future directions such as verifiable machine learning, unified fault propagation models, digital twin-based reliability frameworks, and cyber-physical threat modeling. This review offers a comprehensive reference for developing certifiable, context-aware, and fail-operational autonomous driving systems, contributing to the broader goal of ensuring safe and trustworthy AV deployment. Full article
Show Figures

Figure 1

23 pages, 2363 KiB  
Review
Handover Decisions for Ultra-Dense Networks in Smart Cities: A Survey
by Akzhibek Amirova, Ibraheem Shayea, Didar Yedilkhan, Laura Aldasheva and Alma Zakirova
Technologies 2025, 13(8), 313; https://doi.org/10.3390/technologies13080313 - 23 Jul 2025
Viewed by 243
Abstract
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, [...] Read more.
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, heterogeneous smart city environments. Existing studies often fail to provide integrated HO solutions that consider key concerns such as energy efficiency, security vulnerabilities, and interoperability across diverse network domains, including terrestrial, aerial, and satellite systems. Moreover, the dynamic and high-mobility nature of smart city ecosystems further complicate real-time HO decision-making. This survey aims to highlight these critical gaps by systematically categorizing state-of-the-art HO approaches into AI-based, fuzzy logic-based, and hybrid frameworks, while evaluating their performance against emerging 6G requirements. Future research directions are also outlined, emphasizing the development of lightweight AI–fuzzy hybrid models for real-time decision-making, the implementation of decentralized security mechanisms using blockchain, and the need for global standardization to enable seamless handovers across multi-domain networks. The key outcome of this review is a structured and in-depth synthesis of current advancements, which serves as a foundational reference for researchers and engineers aiming to design intelligent, scalable, and secure HO mechanisms that can support the operational complexity of next-generation smart cities. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

Back to TopTop