The Influence of Plate Geometry on the Cyclic Bearing Behavior of Single Helical Piles in Silty Sand
Abstract
1. Introduction
2. Materials and Methods
2.1. Physical Modeling Tests
2.2. Finite Element Numerical Simulation
2.2.1. Model Construction and Material Selection
2.2.2. The Validation of the Finite Element Model
2.2.3. Simulation Conditions in FEM
3. Results
3.1. Results from Physical Modeling Tests
3.2. Results from Numerical Simulations
4. Discussion
4.1. The Variation in the Soil Around Plates with the Number of Cycles
4.2. The Effect of Plate Parameters on the Soil Around Plates
4.2.1. Effect of Plate Depth
4.2.2. Effect of Plate Diameter
4.2.3. The Effect of the Number of Plates
4.3. Sensitivity Analysis and Explanation of Plate Parameters
4.4. Post-Cyclic Pullout Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alexander, M. On sub-marine foundations; particularly the screw-pile and moorings. J. Franklin Inst. 1848, 45, 393–396. [Google Scholar] [CrossRef]
- Zhang, P.; Xiong, L.; Le, C.; Dong, H.; Ding, H. Comparison analysis of the bearing capacity of rock-socketed piles and sand piles for offshore wind turbines. J. Southeast Univ. 2023, 39, 384–392. [Google Scholar] [CrossRef]
- Cong, X.; Li, Z.; An, Z.; Liu, J.; Han, Y. Bearing performance of a helical pile for offshore photovoltaic under horizontal cyclic loading. J. Mar. Sci. Eng. 2024, 12, 1826. [Google Scholar] [CrossRef]
- Ullah, S.; Hu, Y.; O’Loughlin, C. A green foundation for offshore wind energy–helical piles. In Proceedings of the World Engineers Convention (WEC2019), Melbourne, Australia, 20–22 November 2019. [Google Scholar]
- Mohammad, E.; Abolfazl, E. Experimental study on performance and enhanced methods of helical piles using frustum confining vessel in anzali sand. Ocean Eng. 2025, 324, 120624. [Google Scholar] [CrossRef]
- Byrne, B.W.; Houlsby, G.T. Helical piles: An innovative foundation design option for offshore wind turbines. Philos. T. R. Soc. A 2015, 373, 20140081. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhou, M.; Tian, Y.; Zhang, X. Effects of strain rate and strain softening on the installation of helical pile in soft clay. Ocean Eng. 2023, 285, 115370. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; Tian, Y. The Influence of the shaft on the uplift capacity of single-plate helical pile in clay. J. Mar. Sci. Eng. 2023, 11, 955. [Google Scholar] [CrossRef]
- Lin, Y.; Xiao, J.; Le, C.; Zhang, P.; Chen, Q.; Ding, H. Bearing characteristics of helical pile foundations for offshore wind turbines in sandy soil. J. Mar. Sci. Eng. 2022, 10, 889. [Google Scholar] [CrossRef]
- Ammar, A.; Mais, M. Innovations in offshore wind: Reviewing current status and future prospects with a parametric analysis of helical pile performance for anchoring mooring lines. J. Mar. Sci. Eng. 2024, 12, 1040. [Google Scholar] [CrossRef]
- Wang, Y. Study on Cyclic Bearing Characteristics of Suction Caisson Foundation with Local Scour. Master’s Thesis, Southeast University, Nanjing, China, 2024. [Google Scholar]
- Liu, Y.; Xu, P.; Liu, X.; Ma, S.; Huang, Z. Weakening characteristics of pile group foundations in clayey soil under vertical cyclic loading: Experimental and numerical investigation. Ocean Eng. 2024, 313, 119317. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, T.; Cheng, X.; Xu, W.; Shen, Z.; Rui, S.; Tian, Y. Numerical investigation on the suction caisson response considering seabed trenches and cyclic loading. Ocean Eng. 2025, 315, 119839. [Google Scholar] [CrossRef]
- DL/T 5219–2023; Power Industry Standards of the People’s Republic of China. Code for Design of Foundation of Overhead Transmission Line. China Planning Press: Beijing, China, 2023.
- Masatoshi, W.; Kohji, T.; Sakae, M.; Masamichi, S. Effects of cyclic vertical loading on bearing and pullout capacities of piles with continuous helix wing. Soils Found. 2017, 57, 141–153. [Google Scholar] [CrossRef]
- Clemence, S.P.; Smithling, A.P. Dynamic uplift capacity of helical anchors in sand. Civ. Eng. Pract. Des. Eng. 1983, 2, 88–93. [Google Scholar] [CrossRef]
- Newgard, J.; Schneider, J.; Thompson, D. Cyclic response of shallow helical anchors in a medium dense sand. In Frontiers in Offshore Geotechnics III; CRC Press: Boca Raton, FL, USA, 2015; pp. 913–918. [Google Scholar] [CrossRef]
- Hao, D.; Che, J.; Chen, R.; Zhang, X.; Yuan, C.; Chen, X. Experimental investigation on behavior of single-helix anchor in sand subjected to uplift cyclic loading. J. Mar. Sci. Eng. 2022, 10, 1338. [Google Scholar] [CrossRef]
- Hao, D.; Chen, R.; Yuan, C.; Kong, G.; Shi, D. Centrifugal model tests on cyclic uplift performance of wished-in-place helical anchors in dense sand. Chin. J. Rock Mech. Eng. 2021, 40, 2896–2904. [Google Scholar] [CrossRef]
- Schiavon, J.A.; Tsuha, C.H.C.; Thorel, L. Cyclic and post-cyclic monotonic response of a single-helix anchor in sand. Geotech. Lett. 2017, 7, 11–17. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, O.; Kim, I.; Kim, G.; Lee, J. Cyclic pullout behavior of helical anchors for offshore floating structures under inclined loading condition. Appl. Ocean Res. 2019, 92, 101937. [Google Scholar] [CrossRef]
- Tsuha, C.H.C.; Foray, P.Y.; Jardine, R.J.; Yang, Z.X.; Silva, M.; Rimoy, S. Behaviour of displacement piles in sand under cyclic axial loading. Soils Found. 2012, 52, 393–410. [Google Scholar] [CrossRef]
- Jardine, R.J.; Standing, J.R. Field axial cyclic loading experiments on piles driven in sand. Soils Found. 2012, 52, 723–736. [Google Scholar] [CrossRef]
- Huang, Y.; Zong, Z.; Wang, P.; Lai, Y. Experimental and numerical investigation of cyclic behavior in single-helix anchors embedded in clay under vertical uplift loading. Comput. Geotech. 2025, 183, 107199. [Google Scholar] [CrossRef]
- Cerato, A.B.; Victor, R. Effects of long-term dynamic loading and fluctuating water table on helical anchor performance for small wind tower foundations. J. Perform Constr. Fac. 2009, 23, 251–261. [Google Scholar] [CrossRef]
- Buhler, R.; Cerato, A.B. Design of dynamically wind-loaded helical piers for small wind turbines. J. Perform Constr. Fac. 2010, 24, 417–426. [Google Scholar] [CrossRef]
- Schiavon, J.A.; Cavalcanti Tsuha, C.H.C.; Thorel, L. Monotonic, cyclic and post-cyclic performances of single-helix anchor in residual soil of sandstone. J. Rock. Mech Geotech. 2019, 11, 824–836. [Google Scholar] [CrossRef]
- Zhang, C. Bearing Characteristics of Helical Anchor Foundation in Sand. Master’s Thesis, Southeast University, Nanjing, China, 2019. [Google Scholar]
- Mohsen, S.; Shojaee, N.M. Displacement field around an uplifting innovated plate anchor. Acta Geodyn. Geomater. 2020, 17, 119–132. [Google Scholar] [CrossRef]
- Salehzadeh, H.; Nuri, H.; Rafsanjani, A.A.H. Failure mechanism of helical anchors in sand by centrifuge modeling and PIV. Int. J. Geomech. 2022, 22, 04022111. [Google Scholar] [CrossRef]
- Q/GDW 10584–2022; Enterprise Standard of State Grid Corporation of China. Code for Design of Helical Anchor Foundation of Overhead Transmission Line. State Grid. Xin Yuan Company Limited: Beijing, China, 2022.
- Hesham, M.; Abdelghany, Y. Helical screw piles (HSP) capacity for axial cyclic loadings in cohesive soils. In Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece, 25–28 June 2007. [Google Scholar]
- Schiavon, J.A.; Tsuha, C.H.C.; Thorel, L. Centrifuge modelling of a helical anchor under different cyclic loading conditions in sand. Int. J. Phys. Model. Geo. 2018, 19, 72–88. [Google Scholar] [CrossRef]
- Sakai, T.; Tanaka, T. Experimental and numerical study of uplift behavior of shallow circular anchor in two-layered sand. J. Geotech. Geoenviron. Eng. 2007, 133, 469–477. [Google Scholar] [CrossRef]
- Shi, D.; Mao, Y.; Yang, Y.; Yuan, Y.; Hao, D. Experimental study on the deformation characteristics of soils around uplift circular plate anchors using digital image correlation technology. Rock Soil Mech. 2020, 41, 3201–3213. [Google Scholar] [CrossRef]
- Shi, D.; Yu, K.; Mao, Y.; Yang, Y.; Hao, D.; Hu, W. Experimental study on the uplift behavior and soil deformation characteristics of the double-blade screw anchor in loose sand. Rock Soil Mech. 2022, 43, 3059–3072. [Google Scholar] [CrossRef]
- Qiu, G.; Henke, S.; Grabe, J. Application of a Coupled Eulerian—Lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech. 2011, 38, 30–39. [Google Scholar] [CrossRef]
- Chen, R.; Fu, S.; Hao, D.; Shi, D. Scale effects of uplift capacity of circular anchors in dense sand. Chin. J. Geotech. Eng. 2019, 41, 78–85. [Google Scholar] [CrossRef]
- Gong, F. Study on The Pullout Bearing Characteristics of Helical Anchor in Sandy Soil Under Cyclic Loading. Master’s Thesis, Southeast University, Nanjing, China, 2025. [Google Scholar]
- Hao, D.; Yuan, C.; Chen, R.; Zhang, X.; Shi, D.; Kong, G. Numerical analysis of the uplift bearing mechanism of shallow buried circular or spiral anchor plates in sandy soil. Adv. Eng. Sci. 2022, 54, 101–111. [Google Scholar] [CrossRef]
- Fu, S. The Uplift Capacity of Helical Anchors in Sand. Master’s Thesis, Northeast Dianli University, Jilin, China, 2016. [Google Scholar]
- Hao, D.; Wang, D.; O’Loughlin, C.D.; Gaudin, C. Tensile monotonic capacity of helical anchors in sand: Interaction between helices. Can. Geotech. J. 2019, 56, 1534–1543. [Google Scholar] [CrossRef]
- Bolton, M.D. The strength and dilatancy of sands. Géotechnique 1986, 36, 65–78. [Google Scholar] [CrossRef]
- Lv, X.; Zhou, Y.; Li, F. Centrifuge model test and numerical simulation of stability of excavation face of shield tunnel in silty sand. Rock Soil Mech. 2016, 37, 3324–3328. [Google Scholar] [CrossRef]
- Hsu, S.T.; Liao, H.J. Uplift behaviour of cylindrical anchors in sand. Can. Geotech. J. 1998, 34, 70–80. [Google Scholar] [CrossRef]
- Zheng, J.; Hua, J. Geological Engineering Handbook, 5th ed.; China Architecture: Beijing, China, 2018; pp. 151–184. [Google Scholar]
- Puech, A.; Garnier, J. Design of Piles Under Cyclic Loading: Solcyp Recommendations, 1st ed.; ISTE Ltd.: London, UK, 2017; pp. 101–122. [Google Scholar]
- Lu, Z. The Effect of Typhoon on the Long-Term Deformation of Monopile Foundation for Offshore Wind Turbines. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2020. [Google Scholar]
- Abadie, C. Cyclic Lateral Loading of Monopile Foundations in Cohesionless Soils. Ph.D. Thesis, University of Oxford, Oxford, UK, 2015. [Google Scholar]
- Hu, W.; Lin, Z.; Wang, H.; Zhao, P.; Hao, D.; Gong, J. Method for calculating the uplift capacity of a circular anchor plate at arbitrary depth in sand. Ocean Eng. 2023, 286, 115441. [Google Scholar] [CrossRef]
- Floravante, V. On the shaft friction modeling of non-displacement piles in sand. Soils Found 2002, 42, 23–33. [Google Scholar] [CrossRef] [PubMed]
Pile Type | Name | D (mm) | H/D | Pile Type | Name | D (mm) | H/D |
---|---|---|---|---|---|---|---|
Single-plate | SH4 | 50 | 4 | Double-plate | DH10S2 | 50 | 8–10 |
SH6 | 30, 50, 80 | 6 | DH10S3 | 7–10 | |||
SH8 | 50 | 8 | DH10S4 | 6–10 | |||
SH10 | 10 | Triple-plate | TH10S2 | 6–8–10 |
Property | Value |
Characteristic particle size, d50: mm | 0.15 |
Coefficient of uniformity, Cu | 2.28 |
Curvature coefficient, Cc | 1.00 |
Maximum dry density, ρdmax (g/cm3) | 1.54 |
Minimum dry density, ρdmin (g/cm3) | 1.18 |
Friction angle, φ (°) | 30.3 |
Cohesion, c (kPa) | 2.1 |
Name | State | Thickness (m) | Densities (kg/m3) | Friction Angle (°) | Cohesion (kPa) |
---|---|---|---|---|---|
Silty sand | Medium dense | 2.5 | 1959.2 | 28.0 | 0.0 |
Slightly dense | 2.0 | 1949.0 | 26.0 | 1.0 | |
Medium dense | 2.5 | 1959.2 | 27.0 | 0.0 | |
Medium dense | 3.5 | 1959.2 | 26.0 | 0.0 | |
Slightly dense | 2.0 | 1949.0 | 25.0 | 1.0 | |
Medium dense | 2.2 | 1989.8 | 29.0 | 0.0 | |
Medium dense | 0.3 | 1959.2 | 27.0 | 0.0 | |
Medium dense | 1.5 | 1969.4 | 29.0 | 0.0 |
Simulation Series | Loading Method | Parameter Investigated | Content Description |
---|---|---|---|
1P–C | Monotonic load and Cyclic load | Nf | 20, 50, 100 |
1P–H | H | 3D, 4D, 5D, 6D, 7D, 9D, 11D | |
1P–D | D | 500 mm, 600 mm, 810 mm, 900 mm, 1000 mm, 1200 mm | |
1P–S | S | 2D, 3D, 4D | |
1P–N | N | 1, 2, 3, 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, F.; Deng, W.; Zhao, X.; Wang, X.; Shen, K. The Influence of Plate Geometry on the Cyclic Bearing Behavior of Single Helical Piles in Silty Sand. J. Mar. Sci. Eng. 2025, 13, 1416. https://doi.org/10.3390/jmse13081416
Gong F, Deng W, Zhao X, Wang X, Shen K. The Influence of Plate Geometry on the Cyclic Bearing Behavior of Single Helical Piles in Silty Sand. Journal of Marine Science and Engineering. 2025; 13(8):1416. https://doi.org/10.3390/jmse13081416
Chicago/Turabian StyleGong, Faxiang, Wenni Deng, Xueliang Zhao, Xiaolong Wang, and Kanmin Shen. 2025. "The Influence of Plate Geometry on the Cyclic Bearing Behavior of Single Helical Piles in Silty Sand" Journal of Marine Science and Engineering 13, no. 8: 1416. https://doi.org/10.3390/jmse13081416
APA StyleGong, F., Deng, W., Zhao, X., Wang, X., & Shen, K. (2025). The Influence of Plate Geometry on the Cyclic Bearing Behavior of Single Helical Piles in Silty Sand. Journal of Marine Science and Engineering, 13(8), 1416. https://doi.org/10.3390/jmse13081416