Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (259)

Search Parameters:
Keywords = full-scale beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 308
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

17 pages, 2698 KiB  
Article
Behavior of Demountable and Replaceable Fabricated RC Beam with Bolted Connection Under Mid-Span Compression
by Dongping Wu, Yan Liang, Huachen Liu and Sheng Peng
Buildings 2025, 15(15), 2589; https://doi.org/10.3390/buildings15152589 - 22 Jul 2025
Viewed by 197
Abstract
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis [...] Read more.
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis of five full-scale RC beams, the effects of high-strength bolt specifications and stiffeners were compared, and the behavior of the fabricated RC beams with bolted connections was analyzed. The test process was observed and the test results were analyzed. The failure mode, cracking load, yield load, ultimate load, stiffness change, deflection measured value, ductility, and other indicators of the specimens were compared and analyzed. It was shown that the failure mode of the fabricated RC beam was reinforcement failure, which met the three stress stages of the normal section bending of the reinforcement beam. The failure position occurred at 10~15 cm of the concrete outside the bolt connection, and the beam support and the core area of the bolt connection were not damaged. The fabricated RC beam has good mechanical performance and high bearing capacity. In addition, comparing the test value with the simulation value, it is found that they are in good agreement, indicating that ABAQUS software of 2024 can be well used for the simulation analysis of the behavior of fabricated RC beam structure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 5060 KiB  
Article
Research on Fatigue Strength Evaluation Method of Welded Joints in Steel Box Girders with Open Longitudinal Ribs
by Bo Shen, Ming Liu, Yan Wang and Hanqing Zhuge
Crystals 2025, 15(7), 646; https://doi.org/10.3390/cryst15070646 - 15 Jul 2025
Viewed by 237
Abstract
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale [...] Read more.
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale fatigue loading test for the steel box girder local component were carried out. The accuracy of the finite-element model was verified by comparing it with the test results, and the rationality of the fatigue strength evaluation methods for welded joints was deeply explored. The results indicate that the maximum nominal stress occurs at the weld toe between the transverse diaphragm and the top plate at the edge of the loading area, which is the fatigue-vulnerable location for the steel box girder local components. The initial static-load stresses at each measuring point were in good agreement with the finite-element calculation results. However, the static-load stress at the measuring point in the fatigue-vulnerable position shows a certain decrease with the increase in the number of cyclic loads, while the stress at other measuring points remains basically unchanged. According to the finite-element model, the fatigue strengths obtained by the nominal stress method and the hot-spot stress method are 72.1 MPa and 93.8 MPa, respectively. It is reasonable to use the nominal stress S-N curve with a fatigue life of 2 million cycles at 70 MPa and the hot-spot stress S-N curve with a fatigue life of 2 million cycles at 90 MPa (FAT90) to evaluate the fatigue of the welded joints in steel box girders with open longitudinal ribs. According to the equivalent structural stress method, the fatigue strength corresponding to 2 million cycles is 94.1 MPa, which is slightly lower than the result corresponding to the main S-N curve but within the range of the standard deviation curve. The research results of this article can provide important guidance for the anti-fatigue design of welded joints in steel box girders with open longitudinal ribs. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

31 pages, 7677 KiB  
Article
Mechanical Performance and Interfacial Bonding Mechanism of High-Performance ECC in Steel-Concrete Composite Link Slab in Simply Supported Bridges
by Chengquan Wang, Rongyang Liu, Kangyu Wang, Yuhan Liang and Yingjie Ning
Buildings 2025, 15(13), 2277; https://doi.org/10.3390/buildings15132277 - 28 Jun 2025
Viewed by 358
Abstract
This paper proposes a steel-ECC ordinary concrete composite continuous bridge deck structure to address the cracking problem of simply supported beam bridge deck continuity. Through theoretical and experimental research, a high-performance ECC material was developed. The ECC material has a compressive strength of [...] Read more.
This paper proposes a steel-ECC ordinary concrete composite continuous bridge deck structure to address the cracking problem of simply supported beam bridge deck continuity. Through theoretical and experimental research, a high-performance ECC material was developed. The ECC material has a compressive strength of 57.58 MPa, a tensile strain capacity of 4.44%, and significantly enhanced bending deformation ability. Bonding tests showed that the bond strength of the ECC-reinforcing bar interface reaches 22.84 MPa when the anchorage length is 5d, and the splitting strength of the ECC-concrete interface is 3.58 MPa after 4–5 mm chipping treatment, with clear water moistening being the optimal interface treatment method. Full-scale tests indicated that under 1.5 times the design load, the crack width of the ECC bridge deck continuity structure is ≤0.12 mm, the maximum deflection is only 5.345 mm, and the interface slip is reduced by 42%, achieving a unified control of multiple cracks and coordinated deformation. The research results provide a new material system and interface design standards for seamless bridge design. Full article
(This article belongs to the Special Issue Research on Building Foundations and Underground Engineering)
Show Figures

Figure 1

28 pages, 10940 KiB  
Article
Torsional Strengthening of RC Beams with Openings Using Hybrid SHCC–Glass Fiber Mesh Composites
by Ahmed Hamoda, Saad A. Yehia, Mizan Ahmed, Aref A. Abadel, Khaled Sennah, Vipulkumar Ishvarbhai Patel and Hussam Alghamdi
Buildings 2025, 15(13), 2237; https://doi.org/10.3390/buildings15132237 - 26 Jun 2025
Viewed by 395
Abstract
This study investigates the effectiveness of strain-hardening cementitious composites (SHCC) reinforced with glass fiber (GF) mesh in enhancing the torsional behavior of reinforced concrete (RC) beams with circular openings. Eight full-scale RC beams were tested under pure torsion, including two control beams and [...] Read more.
This study investigates the effectiveness of strain-hardening cementitious composites (SHCC) reinforced with glass fiber (GF) mesh in enhancing the torsional behavior of reinforced concrete (RC) beams with circular openings. Eight full-scale RC beams were tested under pure torsion, including two control beams and six strengthened beams with varying configurations of horizontal, vertical, and combined SHCC-GF mesh retrofitting. The experimental program evaluated the influence of single- and double-layer GF mesh reinforcement on torsional capacity, crack propagation, stiffness, and energy absorption. The results demonstrated that the presence of an opening reduced the ultimate torsional capacity by 29%, elastic stiffness by 48%, and energy absorption by 64% compared to the solid control beam. Strengthening with horizontal SHCC strips restored 21–35% of the lost capacity, while vertical strips performed even better, achieving 44–61% improvement. The combined horizontal–vertical configuration with a double-layer GF mesh proved the most effective, increasing ultimate load by 91% compared to the unstrengthened beam with an opening. Finite element models (FEM) are developed using ABAQUS to simulate the performance of the tested beams. Full article
(This article belongs to the Special Issue Research on Concrete Filled Steel Materials in Building Engineering)
Show Figures

Figure 1

23 pages, 5213 KiB  
Article
Fire Test on Insulated Steel Beams with Fire-Protection Coating and Fiber Cement Board
by Weihua Wang, Tao Zhu, Xian Gao, Jingjie Yang, Xilong Chen and Weiyong Wang
Buildings 2025, 15(12), 2121; https://doi.org/10.3390/buildings15122121 - 18 Jun 2025
Viewed by 272
Abstract
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel [...] Read more.
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel beams with varying fire protection methods, cross-sectional dimensions, and heating curves. During the tests, the furnace temperature, specimen temperature, and deflection at mid-span were measured. The test results indicated that specimens mainly failed in lateral–torsional buckling. Additionally, a markedly non-uniform temperature distribution was observed across the cross-section, and the predictions made by GB 51249-2017 were found to be unsafe. The use of fiber cement board for fire protection may be ineffective, as it tends to become brittle at elevated temperatures, making it susceptible to breakage and detachment when the beams begin to bend. Furthermore, due to potential creep deformation, specimens subjected to longer heating durations exhibited lower critical temperatures compared to those with shorter heating durations. Finally, the design method outlined in BS EN 1993-1-2 and ANSI/AISC 360-22 was evaluated against the test results, indicating an accurate prediction of these methods for specimens with shorter heating durations, but an unconservative prediction for specimens with longer heating durations due to ignorance of creep deformation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 9633 KiB  
Article
Assessment of Knot-Induced Degradation in Timber Beams: Probabilistic Modeling and Data-Driven Prediction of Load Capacity Loss
by Peixuan Wang, Guoming Liu, Fanrong Li, Shengcai Li, Gabriele Milani and Donato Abruzzese
Buildings 2025, 15(12), 2058; https://doi.org/10.3390/buildings15122058 - 15 Jun 2025
Viewed by 357
Abstract
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing [...] Read more.
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing capacity degradation. This study introduces a multiscale evaluation framework that integrates physical testing, probabilistic modeling, and data-driven techniques. Firstly, static tests on full-scale timber beams with artificially introduced knots reveal the failure mechanisms and load capacity reduction associated with knots in the tension zone. Subsequently, a three-dimensional Monte Carlo simulation, modeling random distributions of knot position and size, demonstrates that the midspan region is most sensitive to knot effects, with load capacity loss being more pronounced on the tension side than on the compression side. Finally, a predictive model based on a fully connected neural network is developed; feature analysis indicates that the longitudinal position of knots exerts a stronger nonlinear influence on load capacity than radial depth or diameter. The results establish a mapping between knot characteristics, stress field distortion, and ultimate load capacity, providing a theoretical basis for safety evaluation of historic timber structures and the design of defect-tolerant timber beams in modern engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2577 KiB  
Article
Damage Detection of Seismically Excited Buildings Using Neural Network Arrays with Branch Pruning Optimization
by Jau-Yu Chou, Chia-Ming Chang and Chieh-Yu Liu
Buildings 2025, 15(12), 2052; https://doi.org/10.3390/buildings15122052 - 14 Jun 2025
Viewed by 444
Abstract
In structural health monitoring, visual inspection remains vital for detecting damage, especially in concealed elements such as columns and beams. To improve damage localization, many studies have investigated and implemented deep learning into damage detection frameworks. However, the practicality of such models is [...] Read more.
In structural health monitoring, visual inspection remains vital for detecting damage, especially in concealed elements such as columns and beams. To improve damage localization, many studies have investigated and implemented deep learning into damage detection frameworks. However, the practicality of such models is often limited by their computational demands, and the relative accuracy may suffer if input features lack sensitivity to localized damage. This study introduces an efficient method for estimating damage locations and severity in buildings using a neural network array. A synthetic dataset is first generated from a simplified building model that includes floor flexural behavior and reflects the target dynamics of the structures. A dense, single-layer neural network array is initially trained with full floor accelerations, then pruned iteratively via the Lottery Ticket Hypothesis to retain only the most effective sub-networks. Subsequently, critical event measurements are input into the pruned array to estimate story-wise stiffness reductions. The approach is validated through numerical simulation of a six-story model and further verified via shake table tests on a scaled twin-tower steel-frame building. Results show that the pruned neural network array based on the Lottery Ticket Hypothesis achieves high accuracy in identifying stiffness reductions while significantly reducing computational load and outperforming full-input models in both efficiency and precision. Full article
(This article belongs to the Special Issue Structural Health Monitoring Through Advanced Artificial Intelligence)
Show Figures

Figure 1

22 pages, 7158 KiB  
Article
Experimental Study on the Seismic Performance of Pre-Inserted Prefabricated Shear Walls
by Quanbiao Xu, Shenghang Yang, Benyue Li, Mingwei Xu and Mingshan Zhang
Buildings 2025, 15(11), 1945; https://doi.org/10.3390/buildings15111945 - 4 Jun 2025
Viewed by 350
Abstract
The pre-inserted method for precast shear walls involves casting concealed beams at floor slabs between upper and lower structures, with precast concrete supports spaced at intervals. Vertical rebars at the base of upper walls are pre-inserted and anchored in the beams before slab [...] Read more.
The pre-inserted method for precast shear walls involves casting concealed beams at floor slabs between upper and lower structures, with precast concrete supports spaced at intervals. Vertical rebars at the base of upper walls are pre-inserted and anchored in the beams before slab casting. It offers advantages such as convenient construction without the need for grouting, demonstrating broad application prospects and significant promotional value. To evaluate seismic performance, quasi-static cyclic loading tests were conducted on five specimens: three full-scale pre-inserted precast walls and two cast-in-place counterparts. Under increasing lateral displacement, low axial-load specimens failed via tensile fracture of the outermost rebars, while high axial-load specimens failed by concrete crushing in compression. The test results showed that under identical axial-load ratios, the precast walls exhibited comparable bearing capacity, stiffness degradation, and energy dissipation to cast-in-place walls, but superior deformation ductility. The ultimate drift ratios of pre-inserted walls exceeded those of cast-in-place walls by 16.7% (axial-load ratio 0.2) and 22.2% (axial-load ratio 0.4), demonstrating robust seismic performance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2136 KiB  
Article
Experimental Study on Shear Failure of 30 m Pre-Tensioned Concrete T-Beams Under Small Shear Span Ratio
by Qianyi Zhang, Hai Yan, Chunlei Zhang, Ding-Hao Yu, Jiaolei Zhang, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(11), 1946; https://doi.org/10.3390/buildings15111946 - 4 Jun 2025
Viewed by 347
Abstract
Pre-tensioned concrete T-beams with draped strands have been gradually promoted and used in bridge construction in recent years due to their advantages such as simple structure, efficient force distribution, and few defects. However, the current design codes exhibit conservative provisions for the calculation [...] Read more.
Pre-tensioned concrete T-beams with draped strands have been gradually promoted and used in bridge construction in recent years due to their advantages such as simple structure, efficient force distribution, and few defects. However, the current design codes exhibit conservative provisions for the calculation of the shear capacity of such beams under a small shear span ratio, which may lead to a large design value of beam web thickness. This is primarily due to insufficient experimental data. This paper details a full-scale experimental investigation on the shear failure mechanisms of two 30 m pre-tensioned concrete T-beams with draped strands, under a shear span ratio of 1, at which the shear capacity of the beams represents their upper limit. The specimens were tested to analyze their mechanical behavior, including load-deflection response, crack distribution, stirrup strain, and strand slip. The ultimate shear capacities of the test beams were 7107 kN and 6742 kN. To evaluate the applicability of current design codes, the experimental results were compared with theoretical predictions from five international design codes. The analysis revealed that the AASHTO code provided the highest upper limit of shear capacity for pre-tensioned concrete T-beams with draped strands, whereas the Chinese code (JTG 3362-2018) exhibited a significantly high safety factor of 4.09. These findings provide a basis for the optimized design of pre-tensioned concrete T-beams with draped strands and the determination of the upper limit of shear capacity. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

16 pages, 8568 KiB  
Article
A New Slice Template Matching Method for Full-Field Temporal–Spatial Deflection Measurement of Slender Structures
by Jiayan Zheng, Yongzhi Sang, Haijing Liu, Ji He and Zhixiang Zhou
Appl. Sci. 2025, 15(11), 6188; https://doi.org/10.3390/app15116188 - 30 May 2025
Viewed by 343
Abstract
A sufficient number of sensors installed in all structural components is a prerequisite for obtaining the full-field temporal–spatial displacement and is essential for large-scale structure health monitoring. In this paper, a novel lightweight vision-based temporal–spatial deflection measurement method is proposed to measure the [...] Read more.
A sufficient number of sensors installed in all structural components is a prerequisite for obtaining the full-field temporal–spatial displacement and is essential for large-scale structure health monitoring. In this paper, a novel lightweight vision-based temporal–spatial deflection measurement method is proposed to measure the full-field temporal–spatial displacement of slender structures. First, the geometric and mechanical properties of slender members are introduced as the priori information to vision-based measurement. Then, a slice template matching model is proposed by deploying a one-dimensional template matching model in every pixel column of each image frame, based on traditional digital image correlation (DIC) method. An indoor experiment was carried out to verify the proposed method, and experiment results show that measurement precision of STMM agrees well with the theory and the laser ranger, with a maximum measurement error of 0.03 pixels and the root-mean-square error (RMSE) of 0.052 mm, for transient beam deflection curve; with the correlation coefficient and coefficient of determination of 0.9994 and 0.9986, for dynamic deflection–time history curves at the middle-span point. Finally, further investigation reveals that brightness inconstancy is the source of STMM measurement error. Full article
(This article belongs to the Special Issue Advances in Solid Mechanics and Applications to Slender Structures)
Show Figures

Figure 1

15 pages, 4992 KiB  
Article
Low-Frequency Square Kilometer Array Pattern Optimization via Convex Programming
by Giada Maria Battaglia, Giuseppe Caruso, Pietro Bolli, Maria Grazia Labate, Roberta Palmeri and Andrea Francesco Morabito
Appl. Sci. 2025, 15(11), 5929; https://doi.org/10.3390/app15115929 - 24 May 2025
Viewed by 445
Abstract
A well-known and powerful convex optimization strategy is exploited to enhance the electromagnetic performance of the Square Kilometer Array Low-Frequency radio telescope. The proposed method minimizes the peak sidelobe level while ensuring full control of the receiving pattern across the entire angular domain. [...] Read more.
A well-known and powerful convex optimization strategy is exploited to enhance the electromagnetic performance of the Square Kilometer Array Low-Frequency radio telescope. The proposed method minimizes the peak sidelobe level while ensuring full control of the receiving pattern across the entire angular domain. The approach is validated through full-wave simulations that incorporate realistic embedded element patterns, demonstrating significant improvements in sidelobe suppression despite the geometric constraints of the array structure. The achieved results underscore the method’s potential for high-performance beam synthesis in large-scale radio astronomy arrays. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

19 pages, 3278 KiB  
Article
Study on Flexural Performance of Recycled Aggregate Concrete Beams Incorporating Glazed Hollow Beads
by Jingguang Hou, Yuanzhen Liu, Xiangzheng Li and Zhaoxu Wang
Materials 2025, 18(11), 2435; https://doi.org/10.3390/ma18112435 - 23 May 2025
Cited by 1 | Viewed by 355
Abstract
Recycled aggregate concrete incorporating glazed hollow beads (GHBRC) achieves the dual objectives of energy conservation and emission reduction by combining recycled coarse aggregate with glazed hollow bead aggregate, aligning with the construction industry’s “dual-carbon” goals for the development of low-carbon concrete. This study [...] Read more.
Recycled aggregate concrete incorporating glazed hollow beads (GHBRC) achieves the dual objectives of energy conservation and emission reduction by combining recycled coarse aggregate with glazed hollow bead aggregate, aligning with the construction industry’s “dual-carbon” goals for the development of low-carbon concrete. This study systematically investigates the flexural performance of GHBRC beams to establish calculation formulas for ultimate limit state bearing capacity and serviceability limit state verification. Six full-scale GHBRC beams were tested under simply supported conditions with two-point symmetric mid-span loading. Three critical variables (concrete composition, longitudinal tensile reinforcement ratio, and stirrup reinforcement configuration) were examined. Experimental results indicate that GHBRC beams exhibit failure modes consistent with conventional concrete beams, confirming the validity of the plane section assumption. At identical reinforcement ratios, GHBRC beams demonstrated a 3.1% increase in ultimate bearing capacity and an 18.78% higher mid-span deflection compared to ordinary concrete beams, highlighting their superior deformation performance. Building on methodologies for conventional concrete beams, this study recalibrated key short-term stiffness parameters using a stiffness analytical method and proposed a computational model for mid-span deflection prediction. These findings provide theoretical and practical foundations for optimizing the structural design of GHBRC beams in alignment with sustainable construction objectives. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 7642 KiB  
Article
Efficiency of Modular Bridge Configurations: A Study on the Structural Stability and Capacity of Single- and Double-Story Modular Bridges
by Mohamed Embaby and M. Hesham El Naggar
Buildings 2025, 15(10), 1709; https://doi.org/10.3390/buildings15101709 - 18 May 2025
Viewed by 579
Abstract
This study investigates the structural performance and load-bearing capacity of single- and double-story modular bridge configurations using both experimental testing and finite element analysis. A full-scale field test was conducted on a 45.7 m double-story bridge subjected to truck loading at ten distinct [...] Read more.
This study investigates the structural performance and load-bearing capacity of single- and double-story modular bridge configurations using both experimental testing and finite element analysis. A full-scale field test was conducted on a 45.7 m double-story bridge subjected to truck loading at ten distinct positions along the span. Midspan deflections and axial strains of key members were measured and analyzed at each loading position to assess the bridge’s response under service loads. The experimental data were used to validate three-dimensional finite element (FE) models and refine modeling techniques for the double-story modular bridge. The validated FE models enabled further analysis of the structural performance of double-truss–double-story (DD) and quadruple-truss–single-story (QS) modular bridge configurations, both in single- and double-lane setups. The numerical results demonstrated that the double-story configuration with double truss lines per side provided a notable improvement in stiffness and load-carrying capacity compared to the single-story configuration with quadruple truss lines. Moreover, single-lane bridges exhibited better performance than their double-lane equivalents, emphasizing the impact of bridge width on structural stability. Wider, double-lane bridges were found to be more prone to out-of-plane buckling at midspan, with the top chords experiencing significantly greater deformation. Buckling analyses indicated that, although the DD and QS configurations had comparable critical loads, their failure mechanisms differed. Finally, live load factors predicted through the models were compared with the requirements of the Canadian Highway Bridge Design Code (CHBDC), confirming that the DD configuration in a two-lane setup meets code expectations and demonstrates effective structural performance. Full article
(This article belongs to the Special Issue Sustainable and Low-Carbon Building Materials and Structures)
Show Figures

Figure 1

26 pages, 18959 KiB  
Review
A Review on the Progressive Collapse of Reinforced Concrete Flat Slab–Column Structures
by Xiao Li, Tengfang Dong, Chengquan Wang, Weiwei Zhang, Rongyang Liu and Jingjing Wang
Materials 2025, 18(9), 2056; https://doi.org/10.3390/ma18092056 - 30 Apr 2025
Viewed by 600
Abstract
Reinforced concrete flat slab–column structures, lacking the redundancy provided by a beam–column system, are susceptible to punching shear failure under extreme loading conditions, which may lead to progressive collapse with catastrophic consequences. A systematic review of recent advancements in the progressive collapse resistance [...] Read more.
Reinforced concrete flat slab–column structures, lacking the redundancy provided by a beam–column system, are susceptible to punching shear failure under extreme loading conditions, which may lead to progressive collapse with catastrophic consequences. A systematic review of recent advancements in the progressive collapse resistance of flat slab–column systems has been provided, categorizing the methodologies into experimental investigation, theoretical analysis, and numerical simulation. Experimental studies primarily utilize the Alternative Load Path methodology, incorporating both quasi-static and dynamic loading protocols to assess structural performance. Different column removal scenarios (e.g., corner, edge, and interior column failures) clarify the load redistribution patterns and the evolution of resistance mechanisms. Theoretical frameworks focus on tensile and compressive membrane actions, punching shear mechanism, and post-punching shear mechanism. Analytical models, incorporating strain-hardening effects and deformation compatibility constraints, show improved correlation with experimental results. Numerical simulations use multi-scale modeling strategies, integrating micro-level joint models with macro-level structural assemblies. Advanced finite element analysis techniques effectively replicate collapse behaviors under various column failure scenarios, validated by full-scale test data. This synthesis identifies key research priorities and technical challenges in collapse-resistant design, establishing theoretical foundations for future investigations of flat slab systems under multi-hazard coupling effects. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop