Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,165)

Search Parameters:
Keywords = fuel electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3479 KB  
Review
Plasma-Assisted Catalytic Conversion of Methane at Low Temperatures
by Narayan Chandra Deb Nath and Guodong Du
Catalysts 2026, 16(2), 165; https://doi.org/10.3390/catal16020165 - 3 Feb 2026
Abstract
The conversion of methane (CH4) to value-added fuels (e.g., alcohol) is a promising technology for clean energy. However, conventional thermal methods of converting CH4 to fuels require high temperatures (700–1100 °C) and have low conversion efficiency and selectivity. Therefore, it [...] Read more.
The conversion of methane (CH4) to value-added fuels (e.g., alcohol) is a promising technology for clean energy. However, conventional thermal methods of converting CH4 to fuels require high temperatures (700–1100 °C) and have low conversion efficiency and selectivity. Therefore, it is highly desirable to develop novel cost-effective technologies that can convert CH4 to fuels and chemicals at low temperature and atmospheric pressure with improved conversion efficiency, selectivity, and durability of products. The low-temperature or non-thermal plasma-assisted catalytic conversion of CH4 is gaining increasing interest because the plasma species (e.g., electrons) have sufficient energies for producing higher hydrocarbons, alcohols, and oxygenates with higher yields and selectivity while reducing coke formation under mild conditions. The key challenges of this green technology are as follows: increasing conversion efficiency of CH4, design of hybrid plasma reactors with proper catalysts and optimized conditions, addition of efficient oxidants (e.g., O2 or CO2) and diluents, etc., at low temperature and atmospheric pressure. In this regard, the present review aims to provide a comprehensive account of the current development of plasma-assisted catalytic conversion of methane, with focus on conversion efficiency of CH4, selectivity and stability of products, and catalyst durability with the variation in plasmas, electrode design, and reactor configurations. Further, the review presents the current and future challenges. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

21 pages, 5441 KB  
Article
The Role of Plasma-Emitted Photons in Plasma-Catalytic CO2 Splitting over TiO2 Nanotube-Based Electrodes
by Palmarita Demoro, Nima Pourali, Francesco Pio Abramo, Christine Vantomme, Evgeny Rebrov, Gabriele Centi, Siglinda Perathoner, Sammy Verbruggen, Annemie Bogaerts and Salvatore Abate
Catalysts 2026, 16(2), 137; https://doi.org/10.3390/catal16020137 - 2 Feb 2026
Viewed by 76
Abstract
The plasma-catalytic conversion of CO2 is a promising route toward sustainable fuel and chemical production under mild operating conditions. However, many aspects still need to be better understood to improve performance and better understand the catalyst-plasma synergies. Among them, one aspect concerns [...] Read more.
The plasma-catalytic conversion of CO2 is a promising route toward sustainable fuel and chemical production under mild operating conditions. However, many aspects still need to be better understood to improve performance and better understand the catalyst-plasma synergies. Among them, one aspect concerns understanding whether photons emitted by plasma discharges could induce changes in the catalyst, thereby promoting interaction between plasma species and the catalyst. This question was addressed by investigating the CO2 splitting reaction in a planar dielectric barrier discharge (pDBD) reactor using titania-based catalysts that simultaneously act as discharge electrodes. Four systems were examined feeding pure CO2 at different flow rates and applied voltage: bare titanium gauze, anodically formed TiO2 nanotubes (TiNT), TiNT decorated with Ag–Au nanoparticles (TiNTAgAu), and TiNT supporting Ag–Au nanoparticles coated with polyaniline (TiNTAgAu/PANI). The TiNTAgAu exhibited the highest CO2 conversion (35% at 10 mL min−1 and 5.45 kV) and the most intense optical emission, even in the absence of external light irradiation, suggesting that the improvement is primarily attributed to plasma–nanoparticle interactions and self-induced localized surface plasmon resonance (si-LSPR) rather than conventional photocatalytic pathways. SEM analyses indicated severe plasma-induced degradation of TiNT and TiNTAgAu surfaces, leading to performance decay over time. In contrast, the TiNTAgAu/PANI catalyst retained structural integrity, with the polymeric coating mitigating plasma etching while maintaining competitive efficiency. There is thus a complex behavior with catalytic performance governed by nanostructure stability, plasmonic enhancement, and the interfacial protection. The results demonstrate how integrating plasmonic nanoparticles and conductive polymers can enable the rational design of durable and efficient plasma-photocatalysts for CO2 valorization and other plasma-assisted catalytic processes. Full article
Show Figures

Graphical abstract

10 pages, 3894 KB  
Communication
Phosphazene-Based Porous Polymer as Electrode Material for Electrochemical Applications
by Ekaterina A. Karpova, Alexander A. Sysoev, Ilya D. Tsvetkov, Alexey L. Klyuev, Oleg A. Raitman and Mikhail A. Soldatov
Polymers 2026, 18(3), 366; https://doi.org/10.3390/polym18030366 - 29 Jan 2026
Viewed by 207
Abstract
Porous highly cross-linked polymer (PIP) was synthesized by a polycondensation reaction between hexachlorocyclotriphosphazene and piperazine. The obtained polymer has a surface area of 76.9 m2/g and a mesoporous structure. After carbonization, the obtained product (PIP-C) has a surface area of 177 [...] Read more.
Porous highly cross-linked polymer (PIP) was synthesized by a polycondensation reaction between hexachlorocyclotriphosphazene and piperazine. The obtained polymer has a surface area of 76.9 m2/g and a mesoporous structure. After carbonization, the obtained product (PIP-C) has a surface area of 177 m2/g. The obtained carbon product contained nitrogen and phosphorus heteroatoms, which leads to a higher specific capacitance (155.6 F/g) and catalytical activity in the electroreduction of oxygen (15.9 A/g). This work shows the possibility of the use of such porous phosphazene polymers as precursors for heteroatom-doped carbon materials, which might be used in electrochemical devices like electrodes for supercapacitors or metal-free electrocatalysts in fuel cells. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

17 pages, 738 KB  
Review
Recent Advances in the Development of Noble Metal-Free Cathode Catalysts for Microbial Fuel Cell Technologies
by Farah Lachquer, Noureddine Touach, Abdellah Benzaouak and Jamil Toyir
Processes 2026, 14(3), 440; https://doi.org/10.3390/pr14030440 - 27 Jan 2026
Viewed by 146
Abstract
The accelerating growth of the global population and the depletion of conventional energy resources have intensified the dual challenges of water scarcity and sustainable energy production. Microbial fuel cells (MFCs) have emerged as a promising bioelectrochemical technology capable of simultaneously treating wastewater and [...] Read more.
The accelerating growth of the global population and the depletion of conventional energy resources have intensified the dual challenges of water scarcity and sustainable energy production. Microbial fuel cells (MFCs) have emerged as a promising bioelectrochemical technology capable of simultaneously treating wastewater and generating renewable electricity. Their performance is strongly dependent on electrode materials, particularly cathodes, which govern the kinetics of the oxygen reduction reaction (ORR) and overall energy conversion efficiency. Therefore, in order to improve the electro-kinetics of ORR, it is necessary to use catalysts with specific catalytic properties. An ideal catalyst for ORR must combine fast kinetics, high conductivity, high durability, and cost-effectiveness. Although platinum-based electrodes remain the most efficient ORR catalysts, their scarcity and prohibitive cost are hindering their commercialization. Therefore, research has focused on viable alternatives, such as metal oxides, perovskites, heterojunction composites, and emerging carbon-based materials, paving the way toward highly effective energy conversion and industrial-scale implementation of MFCs. Full article
(This article belongs to the Special Issue High-Effective Energy Conversion for Sustainable Environment)
Show Figures

Graphical abstract

21 pages, 4865 KB  
Article
Nanostructured POSS Crosslinked Polybenzimidazole with Free Radical Scavenging Function for High-Temperature Proton Exchange Membranes
by Chao Meng, Xiaofeng Hao, Shuanjin Wang, Dongmei Han, Sheng Huang, Jin Li, Min Xiao and Yuezhong Meng
Nanomaterials 2026, 16(3), 164; https://doi.org/10.3390/nano16030164 - 26 Jan 2026
Viewed by 221
Abstract
High-temperature proton exchange membranes (HT-PEMs) are critical components of high-temperature fuel cells, facilitating proton transport and acting as a barrier to fuel and electrons; however, their performance is hampered by persistent issues of phosphoric acid leaching and oxidative degradation. Herein, a novel HT-PEM [...] Read more.
High-temperature proton exchange membranes (HT-PEMs) are critical components of high-temperature fuel cells, facilitating proton transport and acting as a barrier to fuel and electrons; however, their performance is hampered by persistent issues of phosphoric acid leaching and oxidative degradation. Herein, a novel HT-PEM with abundant hydrogen bond network is constructed by incorporating nanoscale polyhedral oligomeric silsequioxane functionalized with eight pendent sulfhydryl groups (POSS-SH) into poly(4,4′-diphenylether-5,5′-bibenzimidazole) (OPBI) matrix. POSS, a cage-like nanostructured hybrid molecule, features a well-defined silica core and highly designable surface organic groups, offering unique potential for enhancing membrane performance at the molecular level. Through controlled reactions between sulfhydryl groups and allyl glycidyl ether (AGE), two functional POSS crosslinkers—octa-epoxide POSS (OE-POSS) and mixed sulfhydryl-epoxy POSS (POSS-S-E)—were synthesized. These were subsequently used to fabricate crosslinked OPBI membranes (OPBI-OE-POSS and OPBI-POSS-S-E) via epoxy–amine coupling. The OPBI-POSS-S-E membranes demonstrated exceptional oxidative stability, which is attributed to the free radical scavenging ability of the retained sulfhydryl groups on the nano-sized POSS framework. After soaking in Fenton’s reagent at 80 °C for 108 h, the OPBI-POSS-S-E-20% membrane retained 79.4% of its initial weight, significantly surpassing both the OPBI-OE-POSS-20% and pristine OPBI membranes. The PA-doped OPBI-POSS-S-E-20% membrane achieved a proton conductivity of 50.8 mS cm−1 at 160 °C, and the corresponding membrane electrode assembly delivered a peak power density of 724 mW cm−2, highlighting the key role of POSS as a nano-modifier in advancing HT-PEM performance. Full article
(This article belongs to the Special Issue Preparation and Characterization of Nanomaterials)
Show Figures

Figure 1

19 pages, 1188 KB  
Review
Advances in Microbial Fuel Cells Using Carbon-Rich Wastes as Substrates
by Kexin Ren, Jianfei Wang, Xurui Hou, Jiaqi Huang and Shijie Liu
Processes 2026, 14(3), 416; https://doi.org/10.3390/pr14030416 - 25 Jan 2026
Viewed by 180
Abstract
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to [...] Read more.
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to simultaneously address energy demand and waste management challenges. This review systematically examines the effects of various carbon-rich substrates on MFC performance, including lignocellulosic biomasses, molasses, lipid waste, crude glycerol, and C1 compounds. These substrates, characterized by wide availability, low cost, and high carbon content, have demonstrated considerable potential for efficient bioelectricity generation and resource recovery. Particular emphasis is placed on the roles of microbial community regulation and genetic engineering strategies in enhancing substrate utilization efficiency and power output. Additionally, the application of carbon-rich wastes in electrode fabrication is discussed, highlighting their contributions to improved electrical conductivity, sustainability, and overall system performance. The integration of carbon-rich substrates into MFCs offers promising prospects for alleviating energy shortages, improving wastewater treatment efficiency, and reducing environmental pollution, thereby supporting the development of a circular bioeconomy. Despite existing challenges related to scalability, operational stability, and system cost, MFCs exhibit strong potential for large-scale implementation across diverse industrial sectors. Full article
(This article belongs to the Special Issue Study on Biomass Conversion and Biorefinery)
Show Figures

Figure 1

13 pages, 1929 KB  
Article
Scanning Electrochemical Microscopy of Nystatin-Treated Yeast Used for Biofuel Cells
by Katazyna Blazevic, Antanas Zinovicius, Juste Rozene, Tomas Mockaitis, Ingrida Bruzaite, Laisvidas Striska, Evaldas Balciunas, Arunas Ramanavicius, Almira Ramanaviciene and Inga Morkvenaite
Sensors 2026, 26(2), 605; https://doi.org/10.3390/s26020605 - 16 Jan 2026
Viewed by 189
Abstract
Biofuel cells (BFCs) generate electricity by converting chemical energy into electrical energy using biological systems. Saccharomyces cerevisiae (yeast) is an attractive biocatalyst for BFCs due to its robustness, low cost, and metabolic versatility; however, electron transfer from the intracellular reactions to the electrode [...] Read more.
Biofuel cells (BFCs) generate electricity by converting chemical energy into electrical energy using biological systems. Saccharomyces cerevisiae (yeast) is an attractive biocatalyst for BFCs due to its robustness, low cost, and metabolic versatility; however, electron transfer from the intracellular reactions to the electrode is limited by the cell membrane. Nystatin is an antifungal antibiotic that increases the permeability of fungal membranes. We hypothesized that sub-lethal nystatin treatment could enhance mediator-assisted electron transfer without compromising cell viability. In this work, yeast was treated with nystatin during cultivation at concentrations of up to 6 µg/mL and combined with a dual-mediator system consisting of a lipophilic mediator (9,10-phenanthrenequinone, PQ) and a hydrophilic mediator (potassium ferricyanide). Scanning electrochemical microscopy revealed that the dual-mediator system increased local current responses by approximately fivefold compared to a single mediator (from ~11 pA to ~59 pA), and that nystatin-treated yeast exhibited higher local electrochemical activity than untreated yeast (maximum currents of ~0.476 nA versus ~0.303 nA). Microbial fuel cell measurements showed that nystatin treatment increased the maximum power density from approximately 0.58 mW/m2 to approximately 0.62 mW/m2 under identical conditions. Nystatin concentrations between 4 and 5 µg/mL maintain yeast viability at near-control levels, while higher concentrations cause a decrease in viability. These results demonstrate that controlled, sub-lethal membrane permeabilization combined with a dual-mediator strategy can enhance electron transfer in yeast-based biofuel cells. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

40 pages, 5340 KB  
Review
Emerging Electrode Materials for Next-Generation Electrochemical Devices: A Comprehensive Review
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Micromachines 2026, 17(1), 106; https://doi.org/10.3390/mi17010106 - 13 Jan 2026
Viewed by 339
Abstract
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence [...] Read more.
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence on costly or scarce elements, driving the need for continuous innovation. Emerging electrode materials are designed to overcome these challenges by delivering enhanced reaction activity, superior mechanical robustness, accelerated ion diffusion kinetics, and improved economic feasibility. In energy storage, for example, the shift from conventional graphite in lithium-ion batteries has led to the exploration of silicon-based anodes, offering a theoretical capacity more than tenfold higher despite the challenge of massive volume expansion, which is being mitigated through nanostructuring and carbon composites. Simultaneously, the rise of sodium-ion batteries, appealing due to sodium’s abundance, necessitates materials like hard carbon for the anode, as sodium’s larger ionic radius prevents efficient intercalation into graphite. In electrocatalysis, the high cost of platinum in fuel cells is being addressed by developing Platinum-Group-Metal-free (PGM-free) catalysts like metal–nitrogen–carbon (M-N-C) materials for the oxygen reduction reaction (ORR). Similarly, for the oxygen evolution reaction (OER) in water electrolysis, cost-effective alternatives such as nickel–iron hydroxides are replacing iridium and ruthenium oxides in alkaline environments. Furthermore, advancements in materials architecture, such as MXenes—two-dimensional transition metal carbides with metallic conductivity and high volumetric capacitance—and Single-Atom Catalysts (SACs)—which maximize metal utilization—are paving the way for significantly improved supercapacitor and catalytic performance. While significant progress has been made, challenges related to fundamental understanding, long-term stability, and the scalability of lab-based synthesis methods remain paramount for widespread commercial deployment. The future trajectory involves rational design leveraging advanced characterization, computational modeling, and machine learning to achieve holistic, system-level optimization for sustainable, next-generation electrochemical devices. Full article
Show Figures

Figure 1

27 pages, 1133 KB  
Review
Recent Advances in Scaling Up Microbial Fuel Cell Systems for Wastewater Treatment, Energy Recovery, and Environmental Sustainability
by Tahereh Jafary, Ali Mousavi, Anteneh Mesfin Yeneneh, Mohammed Saif Al-Kalbani and Buthaina Mahfoud Al-Wahaibi
Sustainability 2026, 18(2), 638; https://doi.org/10.3390/su18020638 - 8 Jan 2026
Viewed by 465
Abstract
Microbial fuel cells (MFCs) are a promising technology for simultaneously treating wastewater and recovering energy, yet scaling them from lab prototypes to practical systems poses persistent challenges. This review addresses the scale-up gap by systematically examining recent pilot-scale MFC studies from multiple perspectives, [...] Read more.
Microbial fuel cells (MFCs) are a promising technology for simultaneously treating wastewater and recovering energy, yet scaling them from lab prototypes to practical systems poses persistent challenges. This review addresses the scale-up gap by systematically examining recent pilot-scale MFC studies from multiple perspectives, including reactor design configurations, materials innovations, treatment performance, energy recovery, and environmental impact. The findings show that pilot MFCs reliably achieve significant chemical oxygen demand (COD) removal (often 50–90%), but power densities remain modest (typically 0.1–10 W m−3)—far below levels needed for major energy generation. Key engineering advances have improved performance; modular stacking maintains higher power output, low-cost electrodes and membranes reduce costs (with some efficiency trade-offs), and power-management strategies mitigate issues like cell reversal. Life cycle assessments indicate that while MFC systems can outperform conventional treatment in specific scenarios, overall sustainability gains depend on boosting energy yields and optimizing materials. The findings highlight common trade-offs and emerging strategies. By consolidating recent insights, a roadmap of design principles and research directions to advance MFC technology toward sustainable, energy-positive wastewater treatment was outlined. Full article
Show Figures

Figure 1

19 pages, 3240 KB  
Article
Pd/MnO2:Pd/C Electrocatalysts for Efficient Hydrogen and Oxygen Electrode Reactions in AEMFCs
by Ivan Cruz-Reyes, Balter Trujillo-Navarrete, Moisés Israel Salazar-Gastélum, José Roberto Flores-Hernández, Tatiana Romero-Castañón and Rosa María Félix-Navarro
Nanomaterials 2026, 16(1), 71; https://doi.org/10.3390/nano16010071 - 4 Jan 2026
Viewed by 455
Abstract
Developing cost-effective and durable electrocatalysts is essential for advancing anion exchange membrane fuel cells (AEMFCs). This work evaluates Pd-based catalysts supported on β-MnO2, Vulcan carbon (C), and their physical blend (Pd/MnO2:Pd/C) as bifunctional electrodes for the oxygen reduction reaction [...] Read more.
Developing cost-effective and durable electrocatalysts is essential for advancing anion exchange membrane fuel cells (AEMFCs). This work evaluates Pd-based catalysts supported on β-MnO2, Vulcan carbon (C), and their physical blend (Pd/MnO2:Pd/C) as bifunctional electrodes for the oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR). The catalysts were synthesized via chemical reduction and characterized by TGA, ICP-OES, TEM, BET, and XRD. Rotating disk electrode studies revealed that the hybrid exhibited superior activity and kinetics, with lower Tafel slopes and higher exchange current densities compared to the individual supports. In AEMFCs, the hybrid reached 128.0 mW cm−2 as a cathode and 221.7 mW cm−2 as an anode, outperforming individual components. This enhanced performance arises from the synergistic interaction between Pd nanoparticles and MnO2, where MnO2 modulates the catalyst’s microstructure and local reaction environment while the carbon phase ensures efficient electron transport. MnO2, although inactive for the HOR alone, acted as a structural spacer, enhancing mass transport and stability. Durability tests confirmed that the hybrid electrocatalyst retained over 99% of its initial activity after 3000 cycles. These results highlight the hybrid Pd/MnO2:Pd/C as a promising, bifunctional, and durable electrocatalyst for AEMFC applications. Full article
Show Figures

Figure 1

45 pages, 3067 KB  
Review
Direct Use in Electrochemical Energy Devices of Electrospun Nanofibres with Functional Nanostructures
by Maria Federica De Riccardis and Carmela Tania Prontera
Compounds 2026, 6(1), 3; https://doi.org/10.3390/compounds6010003 - 1 Jan 2026
Viewed by 364
Abstract
Electrospinning has emerged as a powerful technique for fabricating customised nanofibrous materials with integrated functional nanostructures, offering significant advantages for electrochemical energy applications. This review highlights recent advances in using electrospun nanofibres directly as active components in devices such as batteries, supercapacitors, and [...] Read more.
Electrospinning has emerged as a powerful technique for fabricating customised nanofibrous materials with integrated functional nanostructures, offering significant advantages for electrochemical energy applications. This review highlights recent advances in using electrospun nanofibres directly as active components in devices such as batteries, supercapacitors, and fuel cells. The emphasis is on the role of composite design, fibre morphology and surface chemistry in enhancing charge transport, catalytic activity and structural stability. Integrating carbon-based frameworks, conductive polymers, and inorganic nanostructures into electrospun matrices enables multifunctional behaviour and improves device performance. The resulting nanofibrous composite materials, often after heat treatment, can be used directly as electrodes or self-supporting layers, eliminating the need for additional processing steps such as size reduction or preparation of slurries and inks for creating functional nanofibre-based deposits. The importance of composite nanofibres as an emerging strategy for overcoming challenges related to scalability, long-term durability, and interface optimisation is also discussed. This review summarises the key results obtained to date and highlights the potential of electrospun nanofibres as scalable, high-performance materials for next-generation energy technologies, outlining future directions for their rational design and integration. Full article
Show Figures

Figure 1

18 pages, 4539 KB  
Article
A Combined FEM-CFD Method for Investigating Transport Properties of Compressed Porous Electrodes in PEMFC: A Microstructure Perspective
by Zhuo Zhang, Ruiyuan Zhang, Xiuli Zhang, Zhiyi Tang, Zixing Wang, Yang Wang, Yanjun Dai, Li Chen and Wenquan Tao
Energies 2026, 19(1), 99; https://doi.org/10.3390/en19010099 - 24 Dec 2025
Viewed by 251
Abstract
Hydrogen energy is vital for a clean, low-carbon society, and proton exchange membrane fuel cells (PEMFCs) represent a core technology for the conversion of hydrogen chemical energy into electrical energy. When PEMFC single cells are stacked under assembly force for high power output, [...] Read more.
Hydrogen energy is vital for a clean, low-carbon society, and proton exchange membrane fuel cells (PEMFCs) represent a core technology for the conversion of hydrogen chemical energy into electrical energy. When PEMFC single cells are stacked under assembly force for high power output, their porous electrodes (gas diffusion layers, GDLs; catalyst layers, CLs) undergo compressive deformation, altering internal transport processes and affecting cell performance. However, existing microscale studies on PEMFC porous electrodes insufficiently consider compression (especially in CLs) and have limitations in obtaining compressed microstructures. This study proposes a combined framework from a microstructure perspective. It integrates the finite element method (FEM) with computational fluid dynamics (CFD). It reconstructs microstructures of GDL, CL, and GDL-bipolar plate (BP) interface. FEM simulates elastic compressive deformation, and CFD calculates transport properties (solid zone: heat/charge conduction via Laplace equation; fluid zone: gas diffusion/liquid permeation via Fick’s/Darcy’s law). Validation shows simulated stress–strain curves and transport coefficients match experimental data. Under 2.5 MPa, GDL’s gas diffusivity drops 16.5%, permeability 58.8%, while conductivity rises 2.9-fold; CL compaction increases gas resistance but facilitates electron/proton conduction. This framework effectively investigates compression-induced transport property changes in PEMFC porous electrodes. Full article
Show Figures

Figure 1

13 pages, 3404 KB  
Article
A Dual-Function TiO2@CoOx Photocatalytic Fuel Cell for Sustainable Energy Production and Recovery of Metallic Copper from Wastewater
by Xiao-He Liu, Rui Yuan, Nan Li, Shaohui Wang, Xiaoyuan Zhang, Yunteng Ma, Chaoqun Fan and Peipei Du
Inorganics 2025, 13(12), 404; https://doi.org/10.3390/inorganics13120404 - 12 Dec 2025
Viewed by 407
Abstract
Developing photoelectrochemical systems that couple pollutant removal with resource recovery is of great significance for sustainable wastewater treatment. In this study, a dual-function photocatalytic fuel cell (PFC) was developed using a TiO2 nanotube photoanode modified with an amorphous CoOx cocatalyst, which markedly [...] Read more.
Developing photoelectrochemical systems that couple pollutant removal with resource recovery is of great significance for sustainable wastewater treatment. In this study, a dual-function photocatalytic fuel cell (PFC) was developed using a TiO2 nanotube photoanode modified with an amorphous CoOx cocatalyst, which markedly enhances charge separation and interfacial reaction kinetics. The optimized TiO2@CoOx electrode achieves a twofold enhancement in photocurrent compared to pristine TiO2. When applied to Cu2+-containing wastewater, the PFC achieved 91% Cu2+ removal under N2-purged conditions, with metallic Cu identified as the sole reduction product. Although dissolved oxygen reduced metal recovery efficiency through competitive electron consumption, it simultaneously increased power generation and improved anodic organic degradation. Overall, the results demonstrate that amorphous-CoOx-modified TiO2 photoanodes offer an effective platform for integrating sustainable energy production with wastewater remediation and valuable copper recovery. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

10 pages, 960 KB  
Proceeding Paper
Evolution and Trends in the Use of Biomaterials for Electrodes in Microbial Fuel Cells: A Bibliometric Approach
by Segundo Jonathan Rojas Flores, De La Cruz-Noriega, Renny Nazario-Naveda, Santiago M. Benites and Daniel Delfin-Narciso
Mater. Proc. 2025, 27(1), 4; https://doi.org/10.3390/materproc2025027004 - 11 Dec 2025
Viewed by 416
Abstract
This bibliometric study analyzes the evolution of biomaterials used for electrodes in microbial fuel cells (MFCs), highlighting a marked increase in publications since 2019. Key materials—including modified cellulose, lignin, and carbon nanocomposites—have improved electrode efficiency and structural stability. The findings indicate that high-impact [...] Read more.
This bibliometric study analyzes the evolution of biomaterials used for electrodes in microbial fuel cells (MFCs), highlighting a marked increase in publications since 2019. Key materials—including modified cellulose, lignin, and carbon nanocomposites—have improved electrode efficiency and structural stability. The findings indicate that high-impact journals, such as the Journal of Microbial Fuel Cell Research and Bioelectrochemistry & Sustainable Energy (with h-indices of 72 and 64, respectively), have played a pivotal role in advancing the field. Prominent researchers, including Yang J and Xie Q, have made significant contributions, as reflected in their high citation counts. Network analysis reveals limited international collaboration, underscoring the need to strengthen strategic partnerships. Ultimately, this study highlights the importance of future research that integrates artificial intelligence and nanotechnology to optimize biomaterial performance in MFCs, thereby enhancing their contribution to sustainable energy solutions. Full article
Show Figures

Figure 1

22 pages, 2552 KB  
Review
Sustainable Energy and Simultaneous Remediation: A Review of the Synergy Between Microbial Fuel Cells and Textile Dye Decolorization
by Segundo Jonathan Rojas-Flores, Rafael Liza, Renny Nazario-Naveda, Félix Díaz, Daniel Delfin-Narciso, Moisés Gallozzo Cardenas and Anibal Alviz-Meza
Processes 2025, 13(12), 3986; https://doi.org/10.3390/pr13123986 - 10 Dec 2025
Cited by 1 | Viewed by 480
Abstract
This study presents a bibliometric review of scientific progress concerning the synergy between microbial fuel cells (MFCs) and textile dye remediation. Drawing from the Scopus database, the analysis spans the years 2005–2025 and applies systematic filters to derive a final corpus of 239 [...] Read more.
This study presents a bibliometric review of scientific progress concerning the synergy between microbial fuel cells (MFCs) and textile dye remediation. Drawing from the Scopus database, the analysis spans the years 2005–2025 and applies systematic filters to derive a final corpus of 239 articles compatible with Bibliometrix software (4.2.1). Quantitative and structural analyses were conducted using RStudio with the Bibliometrix package, thematic network visualizations via VOSviewer (1.6.19), and frequency matrices, citation rates, and international collaboration indicators organized in Excel. Results reveal exponential growth in scholarly output, particularly within Environmental Sciences, Chemical Engineering, and Microbiology. China and India lead in publication volume, while countries such as the United Kingdom, United States, and Australia show high impact and international collaboration. Co-authorship networks reflect consolidated clusters, though connectivity gaps remain among emerging authors. Bioresource Technology is identified as a central journal, with terms like “wastewater treatment” and “microbial fuel cell” indicating thematic consolidation. Opportunities still exist in areas such as explainable artificial intelligence, integration with microalgae, and heavy metal remediation. Highly cited articles contribute key technical insights, highlighting hybrid configurations and advancements in electrode materials. Strategic mapping suggests that MFCs have evolved from experimental concepts to viable alternatives in industrial sustainability, though scalability, operational costs, and geographic representation remain significant challenges. This bibliometric review not only maps accumulated knowledge but also serves as a strategic compass for guiding future research toward integrated, accessible, and replicable bioelectrochemical technologies for textile dye treatment. Full article
Show Figures

Figure 1

Back to TopTop