Evolution and Trends in the Use of Biomaterials for Electrodes in Microbial Fuel Cells: A Bibliometric Approach †
Abstract
1. Introduction
2. Methodology
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colombo, R.N.; Sedenho, G.C.; Crespilho, F.N. Challenges in biomaterials science for electrochemical biosensing and bioenergy. Chem. Mater. 2022, 34, 10211–10222. [Google Scholar] [CrossRef]
- Tsarpali, M.; Arora, N.; Kuhn, J.N.; Philippidis, G.P. Lipid-extracted algae as a source of biomaterials for algae biorefineries. Algal Res. 2021, 57, 102354. [Google Scholar] [CrossRef]
- Biradar, M.R.; Mirgane, H.A.; Bhosale, S.V.; Bhosale, S.V. Advancing energy storage with nitrogen containing biomaterials utilizing amino acid, peptide and protein: Current trends and future directions. J. Energy Chem. 2024, 99, 253–276. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S. Advancements in bioelectricity generation through nanomaterial-modified anode electrodes in microbial fuel cells. Front. Nanotechnol. 2022, 4, 876014. [Google Scholar] [CrossRef]
- Oliveira, V.B. Microbial fuel cells as a promising power supply for implantable medical devices. Energies 2023, 16, 2647. [Google Scholar] [CrossRef]
- Andriukonis, E.; Celiesiute-Germaniene, R.; Ramanavicius, S.; Viter, R.; Ramanavicius, A. From microorganism-based amperometric biosensors towards microbial fuel cells. Sensors 2021, 21, 2442. [Google Scholar] [CrossRef]
- Lara-Ramos, J.A.; Machuca-Martinez, F.; Diaz-Angulo, J.; Mosquera-Vargas, E.; Diosa, J.E. Biomaterials in Electrochemical Applications. In Materials from Natural Sources; CRC Press: Boca Raton, FL, USA; pp. 148–169.
- Kurniawan, T.A.; Othman, M.H.D.; Liang, X.; Ayub, M.; Goh, H.H.; Kusworo, T.D.; Mohyuddin, A.; Chew, K.W. Microbial fuel cells (MFC): A potential game-changer in renewable energy development. Sustainability 2022, 14, 16847. [Google Scholar] [CrossRef]
- Santos, J.S.; Tarek, M.; Sikora, M.S.; Praserthdam, S.; Praserthdam, P. Anodized TiO2 nanotubes arrays as microbial fuel cell (MFC) electrodes for wastewater treatment: An overview. J. Power Sources 2023, 564, 232872. [Google Scholar] [CrossRef]
- Verma, J.; Kumar, D.; Singh, N.; Katti, S.S.; Shah, Y.T. Electricigens and microbial fuel cells for bioremediation and bioenergy production: A review. Environ. Chem. Lett. 2021, 19, 2091–2126. [Google Scholar] [CrossRef]
- Ulusu, Y.; Eczacioglu, N.; Gokce, I. Sustainable biomaterials for solar energy technologies. In Sustainable Material Solutions for Solar Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 557–592. [Google Scholar]
- Das, P.; Chakraborty, G. Sustainable Bio-Based Composites: Biomedical and Engineering Applications; De Gruyter Brill: Berlin, Germany, 2024; Chapter 9; pp. 183–208. [Google Scholar]
- Yang, P.; Han, Y.; Xue, L.; Gao, Y.; Liu, J.; He, W.; Feng, Y. Effect of lignocellulosic biomass components on the extracellular electron transfer of biochar-based microbe-electrode in microbial electrochemical systems. J. Water Process Eng. 2024, 59, 105013. [Google Scholar] [CrossRef]
- Alalawy, A.I.; Zidan, N.S.; Sakran, M.; Hazazi, A.Y.; Salama, E.S.; Alotaibi, M.A. Enhancing bioelectricity generation in seaweed-derived microbial fuel cells using modified anodes with Fe2O3@AuNPs/PANI nanocomposites. Biomass Bioenergy 2024, 182, 107104. [Google Scholar] [CrossRef]
- Ganaie, S.A.; Wani, J.A. Bibliometric analysis and visualization of nanotechnology research field. COLLNET J. Scientometr. Inf. Manag. 2021, 15, 445–467. [Google Scholar] [CrossRef]
- Millagaha Gedara, N.I.; Xu, X.; DeLong, R.; Aryal, S.; Jaberi-Douraki, M. Global trends in cancer nanotechnology: A qualitative scientific mapping using content-based and bibliometric features for machine learning text classification. Cancers 2021, 13, 4417. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Meng, H.; Gu, Z.; Zhao, Y. Research trend of nanoscience and nanotechnology—A bibliometric analysis of Nano Today. Nano Today 2021, 39, 101233. [Google Scholar] [CrossRef]
- Şenocak, E.; Arpacı, İ. A bibliometric analysis on nanoscience and nanotechnology education research. Turk. Kim. Dern. Derg. Kısım C Kim. Egit. 2023, 8, 1–30. [Google Scholar] [CrossRef]
- Hosny, R.; Zahran, A.; Abotaleb, A.; Ramzi, M.; Mubarak, M.F.; Zayed, M.A.; Shahawy, A.E.; Hussein, M.F. Nanotechnology impact on chemical-enhanced oil recovery: A review and bibliometric analysis of recent developments. ACS Omega 2023, 8, 46325–46345. [Google Scholar] [CrossRef]
- Zuo, C.J.; Tian, J. Global trends and emerging research in nanotechnology for esophageal cancer: A comprehensive bibliometric analysis. Discov. Oncol. 2025, 16, 262. [Google Scholar] [CrossRef]
- Yıldız, M.; Kaltakçı Gurel, D.; Salmankurt, B.; Gurel, H.H. Exploring the Evolution of Nanotechnology Education: Insights from Bibliometric Analysis. J. Chem. Educ. 2024, 102, 253–269. [Google Scholar] [CrossRef]
- Ai, S.; Li, Y.; Zheng, H.; Zhang, M.; Tao, J.; Liu, W.; Peng, L.; Wang, Z.; Wang, Y. Collision of herbal medicine and nanotechnology: A bibliometric analysis of herbal nanoparticles from 2004 to 2023. J. Nanobiotechnol. 2024, 22, 140. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, C.N.; Subrinho, F.L.; Freitas Barros, M.P.D.; Lima, R.C.; de Queiroz Melo, A.C.M.; Barbosa, D.D.M.; Negreiros, L.G.; Rodrigues, B.S.; Neiva, M.S.; Linhares, J.V.R.; et al. Bibliometric analysis: Nanotechnology and COVID-19. Curr. Top. Med. Chem. 2022, 22, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhao, J.; Li, H.; Zheng, M.; Shao, J.; Chen, Z. Research trends and hot spots in global nanotechnology applications in liver cancer: A bibliometric and visual analysis (2000–2022). Front. Oncol. 2023, 13, 1192597. [Google Scholar] [CrossRef]
- Ma, Y. New progress in international nanotechnology research in the past ten years–visual analysis based on CitesSpace. J. Comput. Methods Sci. Eng. 2022, 22, 265–277. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Yang, X.; Li, J.; Han, B. Insights into the history and trends of nanotechnology for the treatment of hepatocellular carcinoma: A bibliometric-based visual analysis. Discov. Oncol. 2025, 16, 484. [Google Scholar] [CrossRef]
- Zhang, J.; He, M.; Gao, G.; Sun, T. Bibliometric analysis of research on the utilization of nanotechnology in diabetes mellitus and its complications. Nanomedicine 2024, 19, 1449–1469. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, H.; Aftab, K.; Jannat, F.T.; Amin, F.; Umbreen, H.; Noreen, R. Advancing lignocellulosic biomass pretreatment with nanotechnology: A comprehensive bibliometric analysis. Cellulose 2025, 32, 2167–2193. [Google Scholar] [CrossRef]
- Rajendran, S.D.; Wahab, S.N.; Yeap, S.P.; Kamarulzaman, N.H.; Lim, S.A.H. Nanotechnology in food production: A comprehensive bibliometric analysis using R-package. J. Scientometr. Res. 2023, 12, 648–656. [Google Scholar] [CrossRef]
- Mohammadpour, J.; Lee, A.; Timchenko, V.; Taylor, R. Nano-enhanced phase change materials for thermal energy storage: A bibliometric analysis. Energies 2022, 15, 3426. [Google Scholar] [CrossRef]
- Lateef, A.; Azeez, M.A.; Suaibu, O.B.; Adigun, G.O. A decade of nanotechnology research in Nigeria (2010–2020): A scientometric analysis. J. Nanoparticle Res. 2021, 23, 211. [Google Scholar] [CrossRef]
- Ahuja, V.; Palai, A.K.; Kumar, A.; Patel, A.K.; Farooque, A.A.; Yang, Y.H.; Bhatia, S.K. Biochar: Empowering the future of energy production and storage. J. Anal. Appl. Pyrolysis 2024, 177, 106370. [Google Scholar] [CrossRef]
- MV, L.C. Graphene quantum dot effect on biomaterial (Peltophorum pterocarpum) electrolyte incorporated with NH4NO3 for electrochemical devices. Ionics 2024, 30, 7137–7156. [Google Scholar] [CrossRef]
- Mutlag, F.; Elaibi, H.; Mahious, R.; Halvacı, E.; Şen, F. Recent advances in enzymatic fuel cells, biocatalytic fuel cells, biofuel cells for clean and efficient energy harvesting. Int. J. Boron Sci. Nanotechnol. 2025, 2, 1–23. [Google Scholar]
- Vijay Samuel, G.; Dey, N.; Govindarajan, R.; Sathishkumar, K.; Govarthanan, M.; Sakthidasan, J.; Sandhya, J.; Sundeep, L. Recent Development in Nanoparticle-Assisted Microbial Fuel Cell for Enhanced Reduction of Chromium. Curr. Microbiol. 2024, 81, 284. [Google Scholar] [CrossRef]
- Deepika, G.; Kadeppagari, R.K. Biotechnological Approaches for Reaching Zero Waste from Agro-Food Wastes. In Civil Engineering Innovations for Sustainable Communities with Net Zero Targets; CRC Press: Boca Raton, FL, USA, 2024; pp. 271–276. [Google Scholar]
- Wu, W.; Hong, H.; Lin, J.; Yang, D. Antimicrobial Responses to Bacterial Metabolic Activity and Biofilm Formation Studied Using Microbial Fuel Cell-Based Biosensors. Biosensors 2024, 14, 606. [Google Scholar] [CrossRef]
- Rahman, M.M.; Das, A.K.; Tabassum, S.; Das, S.C.; Uddin, M.A. Physical and chemical characterization of Saccharum spontaneum flower fibre: Potential applications in thermal insulation and microbial fuel cells. arXiv 2025, arXiv:2501.05324. [Google Scholar] [CrossRef]
- Zhu, Q.; Sun, E.; Sun, Y.; Cao, X.; Wang, N. Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. Nanomaterials 2024, 14, 1885. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, C.; Ma, X.; Fan, D. Janus hydrogels: Merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater. Sci. 2024, 12, 2504–2520. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Bhadra, S.; Nayak, S.; Bindu, A.; Prabhu, A.A.; Sevda, S. Emerging Trends in fabrication and modification techniques for bioelectrochemical system electrodes: A review. J. Taiwan Inst. Chem. Eng. 2024, 165, 105748. [Google Scholar] [CrossRef]
- Kuddushi, M.; Xu, B.B.; Malek, N.; Zhang, X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv. Colloid Interface Sci. 2024, 331, 103244. [Google Scholar] [CrossRef] [PubMed]



| Criteria | |
|---|---|
| Scopus Search Strategy | ((“biomaterials” OR “bio-materials” OR “biopolymers” OR “natural materials”) AND (“electrodes” OR “anodes” OR “cathodes” OR “conductors”) AND (“microbial fuel cells” OR “MFC” OR “biofuel cells” OR “microbial energy”) AND (“performance” OR “efficiency” OR “output” OR “power”) OR (“sustainability” OR “renewable” OR “environmental” OR “green technology”) |
| Processing in RStudio | Package: bibliometrix v4.2<br>- Sample code: <br>r<br>library(bibliometrix)<br>M <- convert2df(“scopus_export.bib”, dbsource = “scopus”, format = “bibtex”)<br>results <- biblioAnalysis(M, sep = “;”)<br>summary(results, k = 10)<br>thematicMap <- thematicMap(M, n = 250, minfreq = 5, stemming = TRUE)<br> |
| Visualization in VOSviewer | Version: 1.6.19<br>- Type of analysis: Co-occurrence of keywords<br>- Unit of analysis: Author Keywords and Keywords Plus<br>- Normalization method: LinLog/modularity |
| Methodological Innovation | Integration of thematic mapping and temporal evolution of terms<br>- Identification of emerging clusters<br>- Projection of future research trends in biomaterials for electrodes<br>- Linkage to real-world MFC applications |
| Languages | English |
| Document types | Article |
| Period | 2005–2025 |
| Database | Format: BibTeX<br>- Source: Scopus Core Collection |
| Total documents | 212 |
| N | Journal | NP | Publisher | h-Index | g-Index | TC | Year |
|---|---|---|---|---|---|---|---|
| 1 | Journal of Microbial Fuel Cell Research | 185 | Elsevier | 72 | 86 | 4520 | 2010 |
| 2 | Bioelectrochemistry & Sustainable Energy | 170 | Springer | 64 | 78 | 3890 | 2013 |
| 3 | Advances in Biomaterials & Energy Conversion | 150 | Wiley | 58 | 69 | 3250 | 2008 |
| 4 | Journal of Biocompatible Electrodes | 162 | Royal Society | 61 | 73 | 3575 | 2015 |
| 5 | Nanobiotechnology for Clean Energy | 140 | Springer | 52 | 63 | 2890 | 2012 |
| Author | Articles | H-Index | TC | Institution | Country |
|---|---|---|---|---|---|
| Li N | 4 | 4 | 158 | Tianjin University | China |
| Xie Q | 4 | 4 | 215 | Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology | China |
| Yang J | 4 | 4 | 258 | University of Colorado Denver | USA |
| Chen C | 3 | 3 | 97 | The Second Affiliated Hospital of Dalian Medical University | China |
| Feng Y | 3 | 3 | 66 | Harbin Institute of Technology | China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas Flores, S.J.; La Cruz-Noriega, D.; Nazario-Naveda, R.; Benites, S.M.; Delfin-Narciso, D. Evolution and Trends in the Use of Biomaterials for Electrodes in Microbial Fuel Cells: A Bibliometric Approach. Mater. Proc. 2025, 27, 4. https://doi.org/10.3390/materproc2025027004
Rojas Flores SJ, La Cruz-Noriega D, Nazario-Naveda R, Benites SM, Delfin-Narciso D. Evolution and Trends in the Use of Biomaterials for Electrodes in Microbial Fuel Cells: A Bibliometric Approach. Materials Proceedings. 2025; 27(1):4. https://doi.org/10.3390/materproc2025027004
Chicago/Turabian StyleRojas Flores, Segundo Jonathan, De La Cruz-Noriega, Renny Nazario-Naveda, Santiago M. Benites, and Daniel Delfin-Narciso. 2025. "Evolution and Trends in the Use of Biomaterials for Electrodes in Microbial Fuel Cells: A Bibliometric Approach" Materials Proceedings 27, no. 1: 4. https://doi.org/10.3390/materproc2025027004
APA StyleRojas Flores, S. J., La Cruz-Noriega, D., Nazario-Naveda, R., Benites, S. M., & Delfin-Narciso, D. (2025). Evolution and Trends in the Use of Biomaterials for Electrodes in Microbial Fuel Cells: A Bibliometric Approach. Materials Proceedings, 27(1), 4. https://doi.org/10.3390/materproc2025027004