Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,343)

Search Parameters:
Keywords = fruit tissues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6231 KiB  
Article
Integrating In Vitro Propagation and Machine Learning Modeling for Efficient Shoot and Root Development in Aronia melanocarpa
by Mehmet Yaman, Esra Bulunuz Palaz, Musab A. Isak, Serap Demirel, Tolga İzgü, Sümeyye Adalı, Fatih Demirel, Özhan Şimşek, Gheorghe Cristian Popescu and Monica Popescu
Horticulturae 2025, 11(8), 886; https://doi.org/10.3390/horticulturae11080886 - 1 Aug 2025
Viewed by 224
Abstract
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L [...] Read more.
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L BAP in large 660 mL jars, which yielded up to 27 shoots per explant. Optimal rooting (100%) was achieved with 0.5 mg/L NAA + 0.25 mg/L IBA in half-strength SPM. In the second phase, supervised machine learning models, including Random Forest (RF), XGBoost, Gaussian Process (GP), and Multilayer Perceptron (MLP), were employed to predict morphogenic traits based on culture conditions. XGBoost and RF outperformed other models, achieving R2 values exceeding 0.95 for key variables such as shoot number and root length. These results demonstrate that data-driven modeling can enhance protocol precision and reduce experimental workload in plant tissue culture. The study also highlights the potential for combining physiological understanding with artificial intelligence to streamline future in vitro applications in woody species. Full article
(This article belongs to the Special Issue Tissue Culture and Micropropagation Techniques of Horticultural Crops)
Show Figures

Figure 1

12 pages, 1678 KiB  
Article
Molecular Surveillance of Plasmodium spp. Infection in Neotropical Primates from Bahia and Minas Gerais, Brazil
by Luana Karla N. S. S. Santos, Sandy M. Aquino-Teixeira, Sofía Bernal-Valle, Beatriz S. Daltro, Marina Noetzold, Aloma Roberta C. Silva, Denise Anete M. Alvarenga, Luisa B. Silva, Ramon S. Oliveira, Cirilo H. Oliveira, Iago A. Celestino, Maria E. Gonçalves-dos-Santos, Thaynara J. Teixeira, Anaiá P. Sevá, Fabrício S. Campos, Bergmann M. Ribeiro, Paulo M. Roehe, Danilo Simonini-Teixeira, Filipe V. S. Abreu, Cristiana F. A. Brito and George R. Albuquerqueadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 757; https://doi.org/10.3390/pathogens14080757 - 31 Jul 2025
Viewed by 323
Abstract
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial [...] Read more.
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial for understanding the distribution of these parasites and assessing the risk of zoonotic transmission. This study aimed to detect the presence of Plasmodium spp. genetic material in Platyrrhini primates from 47 municipalities in the states of Bahia and Minas Gerais. The animals were captured using Tomahawk-type live traps baited with fruit or immobilized with tranquilizer darts. Free-ranging individuals were chemically restrained via inhalation anesthesia using VetBag® or intramuscular anesthesia injection. Blood samples were collected from the femoral vein. A total of 298 blood and tissue samples were collected from 10 primate species across five genera: Alouatta caraya (25), Alouatta guariba clamitans (1), Callicebus melanochir (1), Callithrix geoffroyi (28), Callithrix jacchus (4), Callithrix kuhlii (31), Callithrix penicillata (175), Callithrix spp. hybrids (15), Leontopithecus chrysomelas (16), Sapajus robustus (1), and Sapajus xanthosthernos (1). Molecular diagnosis was performed using a nested PCR targeting the 18S small subunit ribosomal RNA (18S SSU rRNA) gene, followed by sequencing. Of the 298 samples analyzed, only one (0.3%) from Bahia tested positive for Plasmodium brasilianum/P. malariae. This represents the first detection of this parasite in a free-living C. geoffroyi in Brazil. These findings highlight the importance of continued surveillance of Plasmodium infections in NHPs to identify regions at risk for zoonotic transmission. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

14 pages, 1512 KiB  
Article
Postharvest NMR Metabolomic Profiling of Pomegranates Stored Under Low-Pressure Conditions: A Pilot Study
by Keeton H. Montgomery, Aya Elhabashy, Brendon M. Anthony, Yong-Ki Kim and Viswanathan V. Krishnan
Metabolites 2025, 15(8), 507; https://doi.org/10.3390/metabo15080507 - 30 Jul 2025
Viewed by 318
Abstract
Background: There is a high demand for long-term postharvest storage of valuable perishables with high-quality preservation and minimal product loss due to decay and physiological disorders. Postharvest low-pressure storage (LPS) provides a viable option for many fruits. While recent studies have presented the [...] Read more.
Background: There is a high demand for long-term postharvest storage of valuable perishables with high-quality preservation and minimal product loss due to decay and physiological disorders. Postharvest low-pressure storage (LPS) provides a viable option for many fruits. While recent studies have presented the details of technology, this pilot study presents the metabolomics changes due to the hypobaric storage of pomegranates as a model system. Methods: Nuclear magnetic resonance (NMR)-based metabolomics studies were performed on pomegranate fruit tissues, comparing fruit stored under LPS conditions versus the traditional storage system, with modified atmosphere packaging (MAP) as the control. The metabolomic changes in the exocarp, mesocarp, and arils were measured using 1H NMR spectroscopy, and the results were analyzed using multivariate statistics. Results: Distinguishable differences were noted between the MAP and LPS conditions in fruit quality attributes and metabolite profiles. Sucrose levels in the aril, mesocarp, and exocarp samples were higher under LPS, while sucrose levels were reduced in MAP. In addition, alanine levels were more abundant in the mesocarp and exocarp samples, and ethanol concentration decreased in the exocarp samples, albeit less significantly. Conclusions: This pilot investigation shows the potential for using NMR as a valuable assessment tool for monitoring the performance of viable long-term storage conditions in horticultural commodities. Full article
Show Figures

Figure 1

19 pages, 13626 KiB  
Article
Genome-Wide Identification and Co-Expression Analysis of WRKY Genes Unveil Their Role in Regulating Anthocyanin Accumulation During Euscaphis japonica Fruit Maturation
by Bobin Liu, Qingying Wang, Dongmei He, Xiaqin Wang, Guiliang Xin, Xiaoxing Zou, Daizhen Zhang, Shuangquan Zou and Jiakai Liao
Biology 2025, 14(8), 958; https://doi.org/10.3390/biology14080958 - 29 Jul 2025
Viewed by 269
Abstract
Anthocyanins, crucial water-soluble pigments in plants, determine coloration in floral and fruit tissues, while fulfilling essential physiological roles in terms of plant growth, development, and stress adaptation. The biosynthesis of anthocyanins is transcriptionally regulated by WRKY factors, one of the largest plant-specific transcription [...] Read more.
Anthocyanins, crucial water-soluble pigments in plants, determine coloration in floral and fruit tissues, while fulfilling essential physiological roles in terms of plant growth, development, and stress adaptation. The biosynthesis of anthocyanins is transcriptionally regulated by WRKY factors, one of the largest plant-specific transcription factor families. Euscaphis japonica is an East Asian species, prized for its exceptionally persistent butterfly-shaped fruits that undergo pericarp dehiscence, overturning, and a color transition to scarlet red. This species represents an ideal system for studying anthocyanin regulation. However, the mechanisms by which WRKY transcription factors orchestrate anthocyanin accumulation during this process remain unknown. In this study, we identified 87 WRKY genes (EjaWRKYs) from the E. japonica genome. Phylogenetic analysis was used to classify these genes into three primary groups, with five subgroups, revealing conserved gene structures and motif compositions, supported by collinearity and comparative synteny analyses. Crucially, ten EjaWRKYs exhibited peak expression during the mature fruit stages, showing positive correlations with key anthocyanin biosynthesis genes. Functional validation through the use of transient transactivation assays in Nicotiana benthamiana confirmed that the five selected EjaWRKYs bind W-box elements and strongly activate reporter gene expression. Our results reveal EjaWRKYs’ regulation of anthocyanin accumulation in E. japonica fruit, provide the first comprehensive WRKY family characterization of this species, and establish a foundation for manipulating ornamental traits in horticultural breeding. Full article
(This article belongs to the Special Issue Recent Advances in Biosynthesis and Degradation of Plant Anthocyanin)
Show Figures

Figure 1

17 pages, 2535 KiB  
Article
Climate-Induced Heat Stress Responses on Indigenous Varieties and Elite Hybrids of Mango (Mangifera indica L.)
by Amar Kant Kushwaha, Damodaran Thukkaram, Dheerendra Rastogi, Ningthoujam Samarendra Singh, Karma Beer, Prasenjit Debnath, Vishambhar Dayal, Ashish Yadav, Swosti Suvadarsini Das, Anju Bajpai and Muthukumar Manoharan
Agriculture 2025, 15(15), 1619; https://doi.org/10.3390/agriculture15151619 - 26 Jul 2025
Viewed by 360
Abstract
Mango is highly sensitive to heat stress, which directly affects the yield and quality. The extreme heat waves of 2024, with temperatures reaching 41–47 °C over 25 days, caused significant impacts on sensitive cultivars. The impact of heat waves on ten commercial cultivars [...] Read more.
Mango is highly sensitive to heat stress, which directly affects the yield and quality. The extreme heat waves of 2024, with temperatures reaching 41–47 °C over 25 days, caused significant impacts on sensitive cultivars. The impact of heat waves on ten commercial cultivars from subtropical regions viz.,‘Dashehari’, ‘Langra’, ‘Chausa’, ‘Bombay Green’, ‘Himsagar’, ‘Amrapali’, ‘Mallika’, ‘Sharda Bhog’, ‘Kesar’, and ‘Rataul’, and thirteen selected elite hybrids H-4208, H-3680, H-4505, H-3833, H-4504, H-1739, H-3623, H-1084, H-4264, HS-01, H-949, H-4065, and H-2805, is reported. The predominant effects that were observed include the following: burning symptoms or blackened tips, surrounded by a yellow halo, with premature ripening in affected parts and, in severe cases, tissue mummification. Among commercial cultivars, viz., ‘Amrapali’ (25%), ‘Mallika’ (30%), ‘Langra’ (30%), ‘Dashehari’ (50%), and ‘Himsagar’ and ‘Bombay Green’ had severe impacts, with ~80% of fruits being affected, followed by ‘Sharda Bhog’. In contrast, mid-maturing cultivars like ‘Kesar’, ‘Rataul’, and late-maturing elite hybrids, which were immature during the stress period, showed no symptoms, indicating they are tolerant. Biochemical analyses revealed significantly elevated total soluble solids (TSS > 25 °B) in affected areas of sensitive genotypes compared to non-affected tissues and tolerant genotypes. Aroma profiling indicated variations in compounds such as caryophyllene and humulene between affected and unaffected parts. The study envisages that the phenological maturity scales are indicators for the selection of climate-resilient mango varieties/hybrids and shows potential for future breeding programs. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Horticultural Crops)
Show Figures

Figure 1

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 279
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

22 pages, 2429 KiB  
Article
Integrated Physical–Mechanical Characterization of Fruits for Enhancing Post-Harvest Quality and Handling Efficiency
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(14), 2521; https://doi.org/10.3390/foods14142521 - 18 Jul 2025
Viewed by 509
Abstract
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between [...] Read more.
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between the mechanical and physical properties of seven economically important fruits—nectarine, kiwi, cherry, apple, peach, pear, and apricot—to assess their mechanical behavior and post-harvest quality. Standardized compression, creep, and puncture tests were conducted to establish mechanical parameters, such as rupture force, elasticity, and deformation energy. Physical characteristics including size, weight, density, and moisture content were also measured. The results indicated significant differences among the various categories of fruits; apples and pears were most suitable for mechanical harvesting and long storage periods, whereas cherries and apricots were least resistant and susceptible to injury. Correlations were high among the physical measurements, tissue firmness, and viscoelastic properties, thereby confirming structural properties’ contribution in influencing fruit quality and handling efficiency. The originality of this research is in its holistic examination of physical and mechanical properties under standardized testing conditions, thus offering an integrated framework for enhancing post-harvest operations. These findings offer practical insights for optimizing harvesting, packaging, transportation, and quality monitoring strategies based on fruit-specific mechanical profiles. Full article
Show Figures

Figure 1

18 pages, 5627 KiB  
Article
The Influence of Bud Positions on the Changes in Carbohydrates and Nitrogen in Response to Hydrogen Cyanamide During Budbreak in Low-Chill Kiwifruit
by Wanichaya Chaiwimol, Wisuwat Songnuan, Hitoshi Ohara, Yotin Juprasong and Aussanee Pichakum
Horticulturae 2025, 11(7), 847; https://doi.org/10.3390/horticulturae11070847 - 17 Jul 2025
Viewed by 887
Abstract
Climate change has contributed to a decline in winter chilling accumulation, a critical requirement for budbreak in temperate fruit crops. Its consequence has been a reduction in fruit production. To compensate for insufficient chilling, hydrogen cyanamide (HC) is widely applied, though its effectiveness [...] Read more.
Climate change has contributed to a decline in winter chilling accumulation, a critical requirement for budbreak in temperate fruit crops. Its consequence has been a reduction in fruit production. To compensate for insufficient chilling, hydrogen cyanamide (HC) is widely applied, though its effectiveness remains limited. This study investigated the effect of HC application on budbreak in low-chill kiwifruit under warm conditions by correlating phenological responses with changes in carbohydrate and nitrogen concentrations in bark tissues across bud positions. Phenological observations revealed the highest budbreak percentage and total flower buds at the apical position. HC significantly increased budbreak by 58.82% at the apical position and by 375% at the middle position, with corresponding increases in total flower buds by 148.78% and 1066.67%, respectively. Additionally, shoot lengths were uniform among bud positions in HC-treated canes, whereas non-treated canes showed shoot length heterogeneity. Moreover, HC treatment triggered an earlier and more pronounced reduction in soluble sugars (sucrose and hexoses) concentrations along the gradient from apical to basal bud positions, where the response was strongest at the apical position, which was strongly associated with enhanced budbreak percentages and total flower bud formation. While total nitrogen content was highest in the apical position, it was unaffected by HC application. These findings indicate that HC may promote budbreak by enhancing the mobilization and consumption of soluble sugars for bud growth, thereby improving budbreak performance, flower bud production, and uniform shoot development in low-chill kiwifruit under warm conditions. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

18 pages, 1051 KiB  
Review
Unraveling ADAR-Mediated Protein Recoding: A Proteogenomic Exploration in Model Organisms and Human Pathology
by Viacheslav V. Kudriavskii, Anna A. Kliuchnikova, Anton O. Goncharov, Ekaterina V. Ilgisonis and Sergei A. Moshkovskii
Int. J. Mol. Sci. 2025, 26(14), 6837; https://doi.org/10.3390/ijms26146837 - 16 Jul 2025
Viewed by 366
Abstract
This paper summarizes the results of multi-year studies performed by our research team, focusing on an analysis of protein recoding mediated by messenger RNA editing by ADAR adenosine deaminases. Searching for ADAR-mediated protein recoding was performed in the central nervous system of the [...] Read more.
This paper summarizes the results of multi-year studies performed by our research team, focusing on an analysis of protein recoding mediated by messenger RNA editing by ADAR adenosine deaminases. Searching for ADAR-mediated protein recoding was performed in the central nervous system of the model organisms, fruit fly and mouse, as well as in the human proteomic datasets. The proteogenomic approach has made it possible to identify dozens of editing events in the proteome, thus validating the results of transcriptomic studies. The observed recoding events in animals, ranging from insects to mammals, mainly affect the cytoskeletal components and proteins involved in synaptic transmission. In humans, recoding changes are most often observed in the central nervous system or tumor tissues. Over 15 million editing sites have been identified in humans; only a few thousand of those can potentially yield amino acid substitutions. Using a proteogenomic approach, dozens of protein recoding sites are identified, demonstrating their origin in ADAR RNA editing. Moreover, this revealed that the level of recoding at specific sites is not directly related to the abundance of ADAR enzymes per se or their target proteins. The recoding processes probably have differential regulation of interactions at the mRNA level that is yet to be clarified. Full article
(This article belongs to the Special Issue RNA Editing/Modification in Health and Disease)
Show Figures

Figure 1

11 pages, 2777 KiB  
Article
Bioinformatics Analysis and Functional Verification of Phytoene Synthase Gene PjPSY1 of Panax japonicus C. A. Meyer
by Tingting Tang, Rui Jin, Xilun Huang, E Liang and Lai Zhang
Curr. Issues Mol. Biol. 2025, 47(7), 551; https://doi.org/10.3390/cimb47070551 - 16 Jul 2025
Viewed by 280
Abstract
Phytoene synthase (PSY) is a multimeric enzyme that serves as the first enzyme in carotenoid synthesis within plant tissues and plays a crucial role in the production of carotenoids in plants. To understand the function of the PSY gene in Panax japonicus C. [...] Read more.
Phytoene synthase (PSY) is a multimeric enzyme that serves as the first enzyme in carotenoid synthesis within plant tissues and plays a crucial role in the production of carotenoids in plants. To understand the function of the PSY gene in Panax japonicus C. A. Meyer. fruit, the gene’s transcript was obtained by analyzing the transcriptome sequencing data of Panax japonicus fruit. The CDS sequence of the gene was cloned from Panax japonicus fruit using the RT-PCR cloning technique and named PjPSY1, which was then subjected to biosynthetic analysis and functional verification. The results showed that the open reading frame of the gene was 1269 bp, encoding 423 amino acids, with a protein molecular mass of 47,654.67 KDa and an isoelectric point (pI) of 8.63; the protein encoded by these amino acids was hydrophilic and localized in chloroplasts, and its three-dimensional structure was predicted by combining the pymol software to annotate the N site of action and active centre of the protein. Phylogenetic analysis demonstrated that PjPSY1 had the closest affinity to DcPSY from Daucus carota. Overexpression of PjPSY1 led to a significant increase in the content of carotenoid-related monomers in Arabidopsis thaliana, with Violaxanthin being synthesized in transgenic Arabidopsis thaliana but not in wild-type Arabidopsis thaliana. The PjPSY1 clone obtained in this study was able to promote carotenoid synthesis in the fruits of Panax japonicus, revealing that the mode of action of PjPSY1 in the carotenoid biosynthesis pathway of Panax japonicus fruits has a positive regulatory effect. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

17 pages, 7155 KiB  
Article
Microbial Community Structure and Metabolic Potential Shape Soil-Mediated Resistance Against Fruit Flesh Spongy Tissue Disorder of Peach
by Weifeng Chen, Dan Tang, Jia Huang, Yu Yang and Liangbo Zhang
Agronomy 2025, 15(7), 1697; https://doi.org/10.3390/agronomy15071697 - 14 Jul 2025
Viewed by 344
Abstract
Peach fruit flesh spongy tissue disorder causes dry, porous, and brown areas in the flesh, severely compromising fruit quality and market value. While soil properties and calcium nutrition have been linked to the disorder, the role of rhizosphere microbial communities in disorder resistance [...] Read more.
Peach fruit flesh spongy tissue disorder causes dry, porous, and brown areas in the flesh, severely compromising fruit quality and market value. While soil properties and calcium nutrition have been linked to the disorder, the role of rhizosphere microbial communities in disorder resistance remains unclear. This study investigated both the physicochemical properties and the root-associated microbiomes of disordered (CK) and healthy (TT) peach orchards to explore microbial mechanisms underlying disorder suppression. TT soils exhibited higher pH, greater organic matter, increased exchangeable calcium, and more balanced trace elements compared to CK. Microbial analysis revealed significantly higher diversity and enrichment of beneficial taxa in TT associated with plant growth and disorder resistance. Functional gene prediction showed TT was enriched in siderophore production, auxin biosynthesis, phosphate solubilization, and acetoin–butanediol synthesis pathways. Co-occurrence network analysis demonstrated that TT harbored a more complex and cooperative microbial community structure, with 274 nodes and 6013 links. Metagenomic binning recovered high-quality MAGs encoding diverse resistance and growth-promoting traits, emphasizing the ecological roles of Gemmatimonadaceae, Reyranella, Nitrospira, Bacillus megaterium, and Bryobacteraceae. These findings highlight the combined importance of soil chemistry and microbiome structure in disorder suppression and provide a foundation for microbiome-informed soil management to enhance fruit quality and promote sustainable orchard practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 723
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

23 pages, 11933 KiB  
Article
Combined Metabolomics and Network Pharmacology to Reveal Anti-Diabetic Mechanisms and Potential Pharmacological Components of Synsepalum dulcificum
by Yong Huang, Shiyu Wang, Rong Ding and Shaohua Wu
Plants 2025, 14(14), 2132; https://doi.org/10.3390/plants14142132 - 10 Jul 2025
Viewed by 437
Abstract
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, [...] Read more.
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, and the biological activities and mechanisms underlying its blood glucose-lowering effects remain incompletely understood. In this study, we conducted a widely targeted metabolomics analysis of the stems, leaves, and fruits of S. dulcificum using UPLC-ESI-MS/MS to compare the differences in metabolite profiles among these three tissue types. Our analysis identified a total of 2544 secondary metabolites, primarily consisting of flavonoids and triterpenes, categorized into thirteen distinct compound classes. We selected differential metabolites through multivariate statistical analysis, revealing significant differences among the metabolite profiles of the three tissue types, with flavonoids being the most abundant compounds. Furthermore, we investigated the anti-diabetic mechanisms and potential pharmacological components of S. dulcificum utilizing network pharmacology and molecular docking techniques. Finally, the α-glucosidase inhibitory activity of the potential active components was evaluated using in vitro experiments. These findings establish a foundation for the future application of S. dulcificum in the prevention and treatment of diabetes. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 638
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

17 pages, 2953 KiB  
Article
Effects of Aronia melanocarpa-Based Fruit Juices on Metabolic Dysfunction-Associated Fatty Liver Disease in Rats
by Antoaneta Georgieva, Miroslav Eftimov, Nadezhda Stefanova, Maria Tzaneva, Petko Denev and Stefka Valcheva-Kuzmanova
Gastroenterol. Insights 2025, 16(3), 23; https://doi.org/10.3390/gastroent16030023 - 8 Jul 2025
Viewed by 423
Abstract
Background/Objective: Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined by the presence of hepatic steatosis, and is associated with obesity, diabetes, and other metabolic alterations. Feeding rats with a high-fat high-fructose (HFHF) diet is a reproducible experimental model of obesity/metabolic syndrome and [...] Read more.
Background/Objective: Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined by the presence of hepatic steatosis, and is associated with obesity, diabetes, and other metabolic alterations. Feeding rats with a high-fat high-fructose (HFHF) diet is a reproducible experimental model of obesity/metabolic syndrome and the related MAFLD. Aronia melanocarpa, Rosa canina, and Alchemilla vulgaris are polyphenol-rich plants with proven health benefits. The aim of this study was to reveal the effects of four Aronia melanocarpa-based fruit juices (AMBFJs) in HFHF-fed rats. Methods: The AMBFJs were AM20 and AM60 (produced from aronia berries at 20 °C and 60 °C, respectively), AMRC (aronia juice with Rosa canina), and AMAV (aronia juice with Alchemilla vulgaris). Male Wistar rats were allocated to 6 groups. Except for the Control, the rest of the groups were fed an HFHF diet for 60 days. Throughout the experiment, each of the AMBFJs was administered to one HFHF-fed group. Results: HFHF-fed rats had an increased calorie intake on the background of increased liquid and decreased food consumption. At the end of the experiment, they had similar body weights, slightly increased fat indices, increased levels of blood lipids and liver enzymes, as well as typical histopathological changes in liver and adipose tissue. AMBFJs-treated animals showed improvement in most of these parameters, especially in triglyceride levels, liver enzymes, and the histopathological changes in the liver and fat. AMAV, the juice with the highest polyphenolic content, had the highest effect on adiposity. Conclusion: In HFHF-fed rats, AMBFJs exerted beneficial effects on MAFLD probably due to their polyphenolic ingredients. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Graphical abstract

Back to TopTop