Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = front and rear wheels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Viewed by 141
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Method for Assessing Numbness and Discomfort in Cyclists’ Hands
by Flavia Marrone, Nicole Sanna, Giacomo Zanoni, Neil J. Mansfield and Marco Tarabini
Sensors 2025, 25(15), 4708; https://doi.org/10.3390/s25154708 - 30 Jul 2025
Viewed by 201
Abstract
Road irregularities generate vibrations that are transmitted to cyclists’ hands. This paper describes a purpose-designed laboratory setup and data processing method to assess vibration-induced numbness and discomfort. The rear wheel of a road bike was coupled with a smart trainer for indoor cycling, [...] Read more.
Road irregularities generate vibrations that are transmitted to cyclists’ hands. This paper describes a purpose-designed laboratory setup and data processing method to assess vibration-induced numbness and discomfort. The rear wheel of a road bike was coupled with a smart trainer for indoor cycling, while the front wheel was supported by a vibrating platform to simulate road–bike interaction. The vibrotactile perception threshold (VPT) is measured in the fingers, and a questionnaire was used to assess the discomfort in different parts of the hand using a unipolar scale. To validate the method, ten male volunteers underwent two one-hour cycling sessions, one for each of the two handlebar designs tested. VPT was measured in the index and little fingers of the right hand at 8 and 31.5 Hz before and after each session, while the discomfort questionnaire was completed at the end of each session. The discomfort scores showed a strong inter-subject variability, indicating the necessity to combine them with the objective measurements of the VPT, which is shown to be sensitive in identifying the perception shift due to vibration exposure and the differences between the fingers. This study demonstrates the effectiveness of the proposed method for assessing hand numbness and discomfort in cyclists. Full article
(This article belongs to the Special Issue Sensor Technologies in Sports and Exercise)
Show Figures

Figure 1

29 pages, 7365 KiB  
Article
Energy Management Design of Dual-Motor System for Electric Vehicles Using Whale Optimization Algorithm
by Chien-Hsun Wu, Chieh-Lin Tsai and Jie-Ming Yang
Sensors 2025, 25(14), 4317; https://doi.org/10.3390/s25144317 - 10 Jul 2025
Viewed by 318
Abstract
Dual-motor electric vehicles enhance power performance and overall output capabilities by enabling the real-time control of the torque distribution between the front and rear wheels, thereby improving handling, stability, and safety. In addition to increased energy efficiency, a dual-motor system provides redundancy: if [...] Read more.
Dual-motor electric vehicles enhance power performance and overall output capabilities by enabling the real-time control of the torque distribution between the front and rear wheels, thereby improving handling, stability, and safety. In addition to increased energy efficiency, a dual-motor system provides redundancy: if one motor fails, the other can still supply partial power, further enhancing driving safety. This study aimed to optimize the energy management strategies of the front- and rear-axis motors, examining the application effects of rule-based control (RBC), global grid search (GGS), and the whale optimization algorithm (WOA). A simulation platform based on MATLAB/Simulink® (R2021b, MATLAB, Natick, MA, USA) was constructed and validated through hardware-in-the-loop (HIL) testing to ensure the authenticity and reliability of the simulation results. Detailed tests and analyses of the dual-motor system were conducted under FTP-75 driving cycles. Compared to the RBC strategy, GGS and WOA achieved energy efficiency improvements of 9.1% and 8.9%, respectively, in the pure simulation, and 4.2% and 3.8%, respectively, in the HIL simulation. Compared to the pure RBC strategy, the RBC and GGS strategies incorporating regenerative braking achieved energy efficiency improvements of 26.1% and 29.4%, respectively, in the HIL simulation. Overall, GGS and WOA each present distinct advantages, with WOA emerging as a highly promising alternative energy management strategy. Future research should further explore WOA applications to enhance energy savings in real-world vehicle operations. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

18 pages, 16108 KiB  
Article
Development of roCaGo for Forest Observation and Forestry Support
by Yoshinori Kiga, Yuzuki Sugasawa, Takumi Sakai, Takuma Nemoto and Masami Iwase
Forests 2025, 16(7), 1067; https://doi.org/10.3390/f16071067 - 26 Jun 2025
Viewed by 284
Abstract
This study addresses the ’last-mile’ transportation challenges that arise in steep and narrow forest terrain by proposing a novel robotic palanquin system called roCaGo. It is inspired by the mechanical principles of two-wheel-steering and two-wheel-drive (2WS/2WD) bicycles. The roCaGo system integrates front- and [...] Read more.
This study addresses the ’last-mile’ transportation challenges that arise in steep and narrow forest terrain by proposing a novel robotic palanquin system called roCaGo. It is inspired by the mechanical principles of two-wheel-steering and two-wheel-drive (2WS/2WD) bicycles. The roCaGo system integrates front- and rear-wheel-drive mechanisms, as well as a central suspension structure for carrying loads. Unlike conventional forestry machinery, which requires wide, well-maintained roads or permanent rail systems, the roCaGo system enables flexible, operator-assisted transport along narrow, unprepared mountain paths. A dynamic model of the system was developed to design a stabilization control strategy, enabling roCaGo to maintain transport stability and assist the operator during navigation. Numerical simulations and preliminary physical experiments demonstrate its effectiveness in challenging forest environments. Furthermore, the applicability of roCaGo has been extended to include use as a mobile third-person viewpoint platform to support the remote operation of existing forestry equipment; specifically the LV800crawler vehicle equipped with a front-mounted mulcher. Field tests involving LiDAR sensors mounted on roCaGo were conducted to verify its ability to capture the environmental data necessary for non-line-of-sight teleoperation. The results show that roCaGo is a promising solution for improving labor efficiency and ensuring operator safety in forest logistics and remote-controlled forestry operations. Full article
Show Figures

Figure 1

24 pages, 8207 KiB  
Article
Research on Energy-Saving Optimization Control Strategy for Distributed Hub Motor-Driven Vehicles
by Bin Huang, Jinyu Wei, Minrui Ma and Xu Yang
Energies 2025, 18(12), 3025; https://doi.org/10.3390/en18123025 - 6 Jun 2025
Viewed by 421
Abstract
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving [...] Read more.
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving and braking conditions, the front and rear axle torque distribution coefficients are optimized by an adaptive particle swarm algorithm based on simulated annealing and a multi-objective co-optimization strategy based on variable weight coefficients, respectively. During emergency braking, the anti-lock braking strategy (ABS) based on sliding mode control realizes the independent distribution of torque among four wheels. The joint simulation verification based on MATLAB R2023a/Simulink-Carsim 2020.0 shows that under World Light Vehicle Test Cycle (WLTC) conditions, the optimization strategy reduces the driving energy consumption by 3.20% and 2.00%, respectively, compared with the average allocation and the traditional strategy. The braking recovery energy increases by 4.07% compared with the fixed proportion allocation, improving the energy utilization rate of the entire vehicle. The wheel slip rate can be quickly stabilized near the optimal value during emergency braking under different adhesion coefficients, which ensures the braking stability of the vehicle. The effectiveness of the strategy is verified. Full article
Show Figures

Figure 1

21 pages, 6961 KiB  
Article
Research on the Stability Control of Four-Wheel Steering for Distributed Drive Electric Vehicles
by Hongyu Pang, Qiping Chen, Yuanhao Cai, Chunhui Gong and Zhiqiang Jiang
Symmetry 2025, 17(5), 732; https://doi.org/10.3390/sym17050732 - 9 May 2025
Viewed by 560
Abstract
To address the challenge of optimizing system adaptability, disturbance rejection, control precision, and convergence speed simultaneously in four-wheel steering (4WS) stability control, a 4WS controller with a variable steering ratio (VSR) strategy and fast adaptive super-twisting (FAST) sliding mode control is proposed to [...] Read more.
To address the challenge of optimizing system adaptability, disturbance rejection, control precision, and convergence speed simultaneously in four-wheel steering (4WS) stability control, a 4WS controller with a variable steering ratio (VSR) strategy and fast adaptive super-twisting (FAST) sliding mode control is proposed to control and output the steering angles of four wheels. The ideal VSR strategy is designed based on the constant yaw rate gain, and a cubic quasi-uniform B-spline curve fitting method is innovatively used to optimize the VSR curve, effectively mitigating steering fluctuations and obtaining precise reference front wheel angles. A controller based on FAST is designed for active rear wheel steering control using a symmetric 4WS vehicle model. Under double-lane change conditions with varying speeds, the simulations show that, compared with the constant steering ratio, the proposed VSR strategy enhances low-speed sensitivity and high-speed stability, improving the system’s adaptability to different operating conditions. Compared with conventional sliding mode control methods, the proposed FAST algorithm reduces chattering while increasing convergence speed and control precision. The VSR-FAST controller achieves optimization levels of more than 7.3% in sideslip angle and over 41% in yaw rate across different speeds, achieving an overall improvement in the stability control performance of the 4WS system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 4821 KiB  
Article
Pilot Performance Testing of a Battery-Powered Salamander Micro-Skidder in Timber Harvesting
by Grzegorz Szewczyk, Jozef Krilek, Paweł Tylek, Ján Hanes, Slavomír Petrenec, Miłosz Szczepańczyk and Dominik Józefczyk
Forests 2025, 16(5), 753; https://doi.org/10.3390/f16050753 - 28 Apr 2025
Viewed by 493
Abstract
The objective of our research was to ascertain the time intensity of timber skidding with a prototype ATV Salamander 600 4 × 4 micro-skidder and to characterize the operator’s field of view. The time intensity of skidding amounts to approximately 20 min/m3 [...] Read more.
The objective of our research was to ascertain the time intensity of timber skidding with a prototype ATV Salamander 600 4 × 4 micro-skidder and to characterize the operator’s field of view. The time intensity of skidding amounts to approximately 20 min/m3 at a distance of 20 m when skidding timber from the forest stand and approximately 10 min/m3 when skidding along the skid trail for a distance of 80 m, which is comparable to other machines of this type, despite reported problems with raw material causing jamming on rugged terrain in the first phase of the skidding process. The significant discrepancy (6%) in wheel slippage between the front and rear axles was particularly pronounced during the process of pulling timber up to the skid trail. This can be attributed to the transport hitch being positioned excessively high, thereby relieving the force on the hitch and causing the front axle to be affected. The observed difficulties in skidding resulted in the need to scan a wide visual scene when working in the stand. The initial phase of timber skidding in the forest stand exhibited a deficiency in its smooth flow, which led to an augmentation in mental workload, as indicated by the elongation of saccades. On average, these saccades were approximately 80% longer compared to those in work conducted on the skid trail. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

27 pages, 10784 KiB  
Article
Design of Static Output Feedback Integrated Path Tracking Controller for Autonomous Vehicles
by Manbok Park and Seongjin Yim
Processes 2025, 13(5), 1335; https://doi.org/10.3390/pr13051335 - 27 Apr 2025
Viewed by 437
Abstract
This paper presents a method for designing a static output feedback integrated path tracking controller for autonomous vehicles. For path tracking, state–space model-based control methods, such as linear quadratic regulator, H control, sliding mode control, and model predictive control, have been selected [...] Read more.
This paper presents a method for designing a static output feedback integrated path tracking controller for autonomous vehicles. For path tracking, state–space model-based control methods, such as linear quadratic regulator, H control, sliding mode control, and model predictive control, have been selected as controller design methodologies. However, these methods adopt full-state feedback. Among the state variables, the lateral velocity, or the side-slip angle, is hard to measure in real vehicles. To cope with this problem, it is desirable to use a state estimator or static output feedback (SOF) control. In this paper, an SOF control is selected as the controller structure. To design the SOF controller, a linear quadratic optimal control and sliding mode control are adopted as controller design methodologies. Front wheel steering (FWS), rear wheel steering (RWS), four-wheel steering (4WS), four-wheel independent braking (4WIB), and driving (4WID) are adopted as actuators for path tracking and integrated as several actuator configurations. For better performance, a lookahead or preview function is introduced into the state–space model built for path tracking. To verify the performance of the SOF path tracking controller, simulations are conducted on vehicle simulation software. From the simulation results, it is shown that the SOF path tracking controller presented in this paper is effective for path tracking with limited sensor outputs. Full article
(This article belongs to the Special Issue Advances in the Control of Complex Dynamic Systems)
Show Figures

Figure 1

15 pages, 5685 KiB  
Article
Six-Wheeled Mobile Manipulator for Brush Cleaning in Difficult Areas: Stability Analysis and Grip Condition Estimation
by Giandomenico Di Massa, Stefano Pagano, Ernesto Rocca and Sergio Savino
Machines 2025, 13(5), 359; https://doi.org/10.3390/machines13050359 - 25 Apr 2025
Cited by 1 | Viewed by 436
Abstract
This paper aims to analyze a six-wheeled mobile manipulator as a solution for brush clearing difficult areas. To this end, a rover with a rocker–bogie suspension system, like those used for space explorations, is considered; the cutting head is moved by a robotic [...] Read more.
This paper aims to analyze a six-wheeled mobile manipulator as a solution for brush clearing difficult areas. To this end, a rover with a rocker–bogie suspension system, like those used for space explorations, is considered; the cutting head is moved by a robotic arm fixed to the rover so that it can reach areas to clean in front of the rover or on its sides. The change of the pose of the robotic arm shifts the centre of mass of the rover and, although the shift is not important, it can be used to improve stability, to overcome an obstacle, or to change the load distribution between the wheels to prevent the wheels from slipping or sinking. Some analyses of the interaction between the rover and robotic arm are reported in this paper. To prevent the rover from entering a low-grip area, the possibility of estimating the grip conditions of the terrain is considered, using the front wheels as tactile sensors. By keeping the rear wheels stationary and gradually increasing the torque on the front wheels, it is possible to evaluate the conditions under which slippage occurs. In case of poor grip, using the other drive wheels, the rover can reverse its direction and look for an alternative path. Full article
Show Figures

Figure 1

14 pages, 2065 KiB  
Review
Tire Wear, Tread Depth Reduction, and Service Life
by Barouch Giechaskiel, Christian Ferrarese and Theodoros Grigoratos
Vehicles 2025, 7(2), 29; https://doi.org/10.3390/vehicles7020029 - 26 Mar 2025
Viewed by 2314
Abstract
Tires are important for the transmission of forces, good traction of the vehicle, and safety of the passengers. Tires also influence vehicle fuel consumption and cause tire and road wear pollution to the environment in the form of microplastics. In the United States, [...] Read more.
Tires are important for the transmission of forces, good traction of the vehicle, and safety of the passengers. Tires also influence vehicle fuel consumption and cause tire and road wear pollution to the environment in the form of microplastics. In the United States, the Uniform Tire Quality Grading (UTQG) for tread wear is reported on the tire sidewall and is used as an indicator of the expected service life of a tire. In Europe, a similar approach that applies tread depth reduction measurements and projection to the minimum tread depth is under discussion. Tread depth measurements will be carried out in parallel with abrasion measurements over the recently introduced abrasion rate test in the United Nations regulation 117. Testing is carried out with an on-road convoy method accompanied by a vehicle fitted with reference tires to minimize the influence of external parameters. In this brief review, we start with a short historical overview of the methods that have been applied so far for the measurement of tire service life. Based on the limited publicly available data, we calculate the average tread depth reduction per distance driven for summer and winter tires fitted both in the front and rear axles of passenger cars (1–1.2 mm for front wheels and 0.5–0.6 mm for rear wheels per 10,000 km). We theoretically estimate the tread mass loss per mm of tread depth reduction (250 g per 1 mm tread depth reduction, depending on the tire size) and we compare the values to experimental data obtained in recent campaigns. We give estimations of the tire service life as a function of the tread wear UTQG (100 times the indicated tread wear rating). We also discuss the projected service life using tread depth reduction and mass loss. Full article
Show Figures

Figure 1

16 pages, 6255 KiB  
Article
Development of a Path Tracker Based on a 4WS Vehicle for Low-Speed Automated Driving Systems
by Heung-Sik Park and Moon-Sik Kim
Appl. Sci. 2025, 15(6), 3043; https://doi.org/10.3390/app15063043 - 11 Mar 2025
Cited by 1 | Viewed by 916
Abstract
With the increasing demand for various autonomous driving services in urban environments, low-speed autonomous vehicles, such as autonomous shuttles and purpose-built vehicles, equipped with enhanced driving characteristics suitable for urban roads featuring narrow streets, intersections, congested traffic, and small radii, are emerging. In [...] Read more.
With the increasing demand for various autonomous driving services in urban environments, low-speed autonomous vehicles, such as autonomous shuttles and purpose-built vehicles, equipped with enhanced driving characteristics suitable for urban roads featuring narrow streets, intersections, congested traffic, and small radii, are emerging. In particular, the 4WS (four-wheel steering) system, which is being integrated into these vehicles, is designed to steer both the front and rear wheels. This system improves steering responsiveness and stability, providing maneuverability under various driving conditions and making it highly suitable for urban environments. However, the 4WS system involves complex dynamic modeling and poses challenges in designing a path tracker, especially if factors such as the vehicle’s turning radius and road curvature are not properly considered. To address these challenges, this paper proposes a path tracker for a low-speed autonomous driving system based on a 4WS system, optimized for the characteristics of urban roads to minimize the vehicle’s turning radius and enhance driving performance. The proposed path tracker independently controls the front and rear wheels and incorporates road curvature and vehicle turning radius as feedforward terms to improve the response performance of the path tracker. The performance of the proposed path tracker was evaluated through simulations and real-car experiments. Full article
(This article belongs to the Special Issue Advances in Autonomous Driving and Smart Transportation)
Show Figures

Figure 1

13 pages, 10799 KiB  
Article
Development of a Bicycle-like Magnetic-Wheeled Climbing Robot with Adaptive Plane-Transition Capabilities
by Yongjian Bu, Lide Dun, Yongtao Deng, Bingdong Jiang, Aihua Jiang and Haifei Zhu
Machines 2025, 13(2), 167; https://doi.org/10.3390/machines13020167 - 19 Feb 2025
Cited by 1 | Viewed by 619
Abstract
Although robots are increasingly expected to perform inspection tasks in three-dimensional ferromagnetic structural environments, magnetic-wheeled climbing robots face significant challenges in overcoming obstacles and transiting between planes. In this paper, we propose a novel bicycle-like magnetic-wheeled climbing robot, named BiMagBot, featuring two magnetic [...] Read more.
Although robots are increasingly expected to perform inspection tasks in three-dimensional ferromagnetic structural environments, magnetic-wheeled climbing robots face significant challenges in overcoming obstacles and transiting between planes. In this paper, we propose a novel bicycle-like magnetic-wheeled climbing robot, named BiMagBot, featuring two magnetic wheels that allow the adaptive adjustment of magnetic adhesion without the need for active control. The front wheel incorporates an arc tentacle mechanism that rotates a ring magnet to adjust the magnetic adhesion, while the rear wheel uses an eccentric shaft-hole design to facilitate a smooth transition of magnetic adhesion between surfaces. The magnetic forces acting on both wheels during transitions through concave corners were analyzed and discussed via simulations to elucidate the underlying principles. A prototype of the robot was developed and tested experimentally. The results show that the front and rear wheels can adjust the magnetic adhesion during the transition of corners with angles ranging from 90° to 315°. The robot only weighs 1.6 kg, but it can carry a weight of 2 kg with a speed of 0.9 m/s to transit across concave corners, demonstrating comprehensive capabilities in plane transition, ease of control, and load capacity. Full article
(This article belongs to the Special Issue Climbing Robots: Scaling Walls with Precision and Efficiency)
Show Figures

Figure 1

15 pages, 11075 KiB  
Article
The Development and Characteristics of an In-Wheel Assembly Using a Variable Speed-Reducing Device
by Kyeongho Shin, Kyoungjin Ko and Junha Hwang
World Electr. Veh. J. 2025, 16(2), 92; https://doi.org/10.3390/wevj16020092 - 11 Feb 2025
Cited by 1 | Viewed by 831
Abstract
This study proposes an in-wheel assembly with a variable speed-reduction device designed to maximize torque and vehicle speed, enabling high-performance vehicle-level driving characteristics in front-engine, rear-wheel drive (FR), internal combustion engine (ICE) vehicles, where conventional EV motors cannot facilitate e-4WD. The proposed system [...] Read more.
This study proposes an in-wheel assembly with a variable speed-reduction device designed to maximize torque and vehicle speed, enabling high-performance vehicle-level driving characteristics in front-engine, rear-wheel drive (FR), internal combustion engine (ICE) vehicles, where conventional EV motors cannot facilitate e-4WD. The proposed system integrates a motor and speed reducer within the wheel while avoiding interference from braking, steering, and suspension components. Through various innovative approaches, concepts for an integrated wheel-bearing planetary reducer and a variable speed planetary reducer were derived. The developed system achieved twice the maximum torque and a 35% increase in top speed compared to previously developed in-wheel systems, all without altering the front hard points. Multi-body dynamic analysis and component testing revealed wheel lock-up issues during reverse driving, and instability in the one-way clutch at high speeds. To address these issues, the power transmission structure was improved, and the type of one-way clutch was modified. Additionally, deficiencies in lubrication supply to the friction surface of the one-way clutch were identified through flow analysis and visualization tests, leading to design improvements. The findings of this study demonstrate that even in in-wheel systems where the application of large and complex transmission devices is challenging, it is possible to simultaneously enhance both maximum torque and top vehicle speed to achieve high-performance vehicle-level driving dynamics. Consequently, implementing an in-wheel e-4WD system in ICE FR vehicles is expected to improve fuel efficiency, achieve high-performance vehicle capabilities, and enhance market competitiveness. Full article
Show Figures

Figure 1

32 pages, 13777 KiB  
Article
Optimal Dimensional Synthesis of Ackermann Steering Mechanisms for Three-Axle, Six-Wheeled Vehicles
by Yaw-Hong Kang, Da-Chen Pang and Yi-Ching Zeng
Appl. Sci. 2025, 15(2), 800; https://doi.org/10.3390/app15020800 - 15 Jan 2025
Cited by 4 | Viewed by 1564
Abstract
This study employs four metaheuristic optimization methods to optimize the dimensional synthesis of Ackermann steering mechanisms for three-axle, six-wheeled vehicles with front-axle steering mode and reverse-phase steering mode. The employed optimization methods include Particle Swarm Optimization (PSO), Hybrid Particle Swarm Optimization (HPSO), Differential [...] Read more.
This study employs four metaheuristic optimization methods to optimize the dimensional synthesis of Ackermann steering mechanisms for three-axle, six-wheeled vehicles with front-axle steering mode and reverse-phase steering mode. The employed optimization methods include Particle Swarm Optimization (PSO), Hybrid Particle Swarm Optimization (HPSO), Differential Evolution with golden ratio (DE-gr), and Linearly Ensemble of Parameters and Mutation Strategies in Differential Evolution (L-EPSDE). With a front-wheel steering angle range of 70 degrees, two hundred optimization experiments were conducted for each method, and statistical analyses revealed that DE-gr and L-EPSDE methods outperformed PSO and HPSO methods in terms of standard deviation, mean value, and minimum error. These two methods exhibited superior convergence stability, faster convergence, and higher accuracy compared to PSO and HPSO. Reverse-phase (K = 1) steering mode outperformed front-axle steering mode, delivering reduced steering errors and turning radii. Considering the transmission ratio of front to rear axle (K) as a design variable in reverse-phase steering mode increased design flexibility and significantly lowered steering errors for the front and rear axle steering mechanisms. However, this comes with a slight increase in the turning radius of the vehicle’s front part compared to when K = 1. The optimized mechanism, designed using the DE-gr method, was validated through kinematic simulations and steering analyses using MSC-ADAMS v2015 software, further confirming the effectiveness and reliability of the proposed design. Full article
(This article belongs to the Special Issue Simulations and Experiments in Design of Transport Vehicles)
Show Figures

Figure 1

24 pages, 6729 KiB  
Article
A State Estimation of Dynamic Parameters of Electric Drive Articulated Vehicles Based on the Forgetting Factor of Unscented Kalman Filter with Singular Value Decomposition
by Tianlong Lei, Mingming Hou, Liaoyuan Li and Haohua Cao
Actuators 2025, 14(1), 31; https://doi.org/10.3390/act14010031 - 15 Jan 2025
Cited by 2 | Viewed by 966
Abstract
In this paper, a state estimation method of distributed electric drive articulated vehicle dynamics parameters based on the forgetting factor unscented Kalman filter with singular value decomposition (SVD-UKF) is proposed. The 7DOF nonlinear dynamics model of a distributed electric drive articulated vehicle is [...] Read more.
In this paper, a state estimation method of distributed electric drive articulated vehicle dynamics parameters based on the forgetting factor unscented Kalman filter with singular value decomposition (SVD-UKF) is proposed. The 7DOF nonlinear dynamics model of a distributed electric drive articulated vehicle is established. The unscented Kalman filter algorithm is the foundation, with singular value decomposition replacing the Cholesky decomposition. A forgetting factor is introduced to dynamically adapt the observation noise covariance matrix in real time, resulting in a centralized parameter state estimator for the articulated vehicle. The proposed parameter state estimation method based on the forgetting factor SVD-UKF is simulated and compared with the unscented Kalman filter (UKF) estimation method. Key dynamic parameters are estimated, such as the lateral and longitudinal velocities and accelerations, angular velocity, articulated angle, wheel speeds, and longitudinal and lateral tire forces of both the front and rear vehicle bodies. The results show that the proposed forgetting factor SVD-UKF method outperforms the traditional UKF method. Furthermore, a prototype vehicle test is conducted to compare the estimated values of various dynamic parameters with the actual values, demonstrating minimal errors. This verifies the effectiveness of the proposed dynamic parameter estimation method for articulated vehicles. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

Back to TopTop