Development of a Path Tracker Based on a 4WS Vehicle for Low-Speed Automated Driving Systems
Abstract
:1. Introduction
2. 4WS Vehicle Model
4WS-Based Kinematic Vehicle Model
3. Path-Tracker Design
3.1. Stanley Method
3.2. Proposed Path Tracker for 4WS Vehicle
3.2.1. Front Wheel Controller Based on the Curvature of the Reference Path Tracker
3.2.2. Rear Wheel Controller Based on Curvature of Vehicle Turning Radius
4. Evaluation
4.1. Simulation
4.1.1. Simulation Environment
4.1.2. Simulation Results
4.2. Real-Car Experiment
4.2.1. Real-Car Experiment Environment
4.2.2. Real-Car Experiment Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Hu, C.; Yan, F.; Chadli, M. Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2063–2074. [Google Scholar] [CrossRef]
- Ni, J.; Hu, J.; Xiang, C. Envelope control for four-wheel independently actuated autonomous ground vehicle through AFS/DYC integrated control. IEEE Trans. Veh. Technol. 2017, 66, 9712–9726. [Google Scholar] [CrossRef]
- ISO 22737:2021; Intelligent Transport Systems—Low-Speed Automated Driving (LSAD) Systems for Predefined Routes. International Organization for Standardization: Geneva, Switzerland, 2021.
- Kim, M.O.; Lee, J.H.; Yoo, W.S. A Study on Optimum Velocity of a Four-Wheel Steering Autonomous Robot. Trans. Korean Soc. Automot. Eng. 2009, 17, 86–92. [Google Scholar]
- Kwon, S.H.; Kang, S.M.; Ahn, H.S. Strategy of Calculating the Steering Angles of Four-wheel-steering Vehicle Model Using Model Predictive Control. ICROS 2016. pp. 151–152. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06649506 (accessed on 13 January 2025).
- Hang, P.; Chen, X. Towards Autonomous Driving: Review and Perspectives on Configuration and Control of Four-Wheel Independent Drive/Steering Electric Vehicles. Actuators 2021, 10, 184. [Google Scholar] [CrossRef]
- Lin, C.; Li, B.; Siampis, E.; Longo, S.; Velenis, E. Predictive Path-Tracking Control of an Autonomous Electric Vehicle with Various Multi-Actuation Topologies. Sensors 2024, 24, 1566. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ning, H.; Wang, H.; Wang, C.; Zheng, J. Trajectory Tracking Control Design for 4WS Vehicle Based on Particle Swarm Optimization and Phase Plane Analysis. Appl. Sci. 2024, 14, 3664. [Google Scholar] [CrossRef]
- Moon, C.W.; Kim, J.K. Future of Chassis Technology: E-Corner Module. J. Korea Soc. Mech. Eng. 2022, 62, 32–36. [Google Scholar]
- Tan, X.; Liu, D.; Xiong, H. Optimal Control Method of Path Tracking for Four-Wheel Steering Vehicles. Actuators 2022, 11, 61. [Google Scholar] [CrossRef]
- Snider, J.M. Automatic Steering Methods for Autonomous Automobile Path Tracking; Robotics Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Chindamo, D.; Lenzo, B.; Gadola, M. On the Vehicle Sideslip Angle Estimation: A Literature Review of Methods, Models, and Innovations. Appl. Sci. 2018, 8, 355. [Google Scholar] [CrossRef]
- Min, H.; Wu, X.; Cheng, C.; Zhao, X. Kinematic and Dynamic Vehicle Model-Assisted Global Positioning Method for Autonomous Vehicles with Low-Cost GPS/Camera/In-Vehicle Sensors. Sensors 2019, 19, 5430. [Google Scholar] [CrossRef] [PubMed]
- Falcone, P.; Borrelli, F.; Asgari, J.; Tseng, H.E.; Hrovat, D. Predictive active steering control for autonomous vehicle systems. IEEE Trans. Control. Syst. Technol. 2007, 15, 566–580. [Google Scholar] [CrossRef]
- Ackermann, J.; Guldner, J.; Sienel, W.; Steinhauser, R.; Utkin, V.I. Linear and nonlinear controller design for robust automatic steering. IEEE Trans. Control. Syst. Technol. 1995, 3, 132–143. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, F.; Li, L. Robust sliding mode control of 4WS vehicles for automatic path tracking. In Proceedings of the IEEE Intelligent Vehicles Symposium, Las Vegas, Nevada, USA, 6–8 June 2005; pp. 819–826. [Google Scholar] [CrossRef]
- Tourajizadeh, H.; Sarvari, M.; Ordoo, S. Modeling and Optimal Control of 4 Wheel Steering Vehicle Using LQR and its Comparison with 2 Wheel Steering Vehicle. In Proceedings of the 6th RSI International Conference on Robotics and Mechatronics (IcRoM), Tehran, Iran, 23–25 October 2018; pp. 106–113. [Google Scholar] [CrossRef]
- Spentzas, K.N.; Alkhazali, I.; Demic, M. Kinematics of four-wheel-steering vehicles. Forsch. Im Ingenieurwesen 2021, 66, 211–216. [Google Scholar] [CrossRef]
- Rajamani, R. Vehicle Dynamics and Control; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Yoo, S.B.; Baek, H.Y.; Choi, K.S. Improvement of Steering Stability by RWS (Rear Wheel Steering) System. In Proceedings of the KSAE Annual Conference, Jeju, Republic of Korea, 18–20 May 2017; pp. 485–490. [Google Scholar]
- Zhang, C.; Gao, G.; Zhao, C.; Li, L.; Li, C.; Chen, X. Research on 4WS agricultural machine path tracking algorithm based on fuzzy control pure tracking model. Machines 2022, 10, 597. [Google Scholar] [CrossRef]
- Dominguez, S.; Ali, A.; Garcia, G.; Martinet, P. Comparison of lateral controllers for autonomous vehicle: Experimental results. In Proceedings of the IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1418–1423. [Google Scholar] [CrossRef]
- Lombard, A.; Buisson, J.; Abbas-Turki, A.; Galland, S.; Koukam, A. Curvature-based geometric approach for the lateral control of autonomous cars. J. Frankl. Inst. 2021, 357, 9378–9398. [Google Scholar] [CrossRef]
- Campbell, S.F. Steering Control of an Autonomous Ground Vehicle with Application to the DARPA Urban Challenge. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2007. [Google Scholar]
- Sun, C.; Zhang, X.; Xi, L.; Tian, Y. Design of a Path-Tracking Steering Controller for Autonomous Vehicles. Energies 2018, 11, 1451. [Google Scholar] [CrossRef]
- Gámez Serna, C.; Ruichek, Y. Dynamic Speed Adaptation for Path Tracking Based on Curvature Information and Speed Limits. Sensors 2017, 17, 1383. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Peng, H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 21, 48–58. [Google Scholar] [CrossRef]
- Lee, S.J. Methodology of an Adaptive Look-Ahead Distance to Improve Autonomous Driving Path-Tracking Performance. Master’s Thesis, Kookmin University, Seoul, Republic of Korea, 2023. [Google Scholar] [CrossRef]
- Samuel, M.; Hussein, M.; Mohamad, M.B. A review of some pure-pursuit based path tracking techniques for control of autonomous vehicle. Int. J. Comput. Appl. 2016, 135, 35–38. [Google Scholar] [CrossRef]
- Mercedes-Benz USA. Available online: https://media.mbusa.com/releases/release-7122b266eca9fbce132ea26634041549-2022-mercedes-benz-s-class-sedan-quick-reference-guide (accessed on 5 August 2021).
- Kim, S.Y. Point Cloud Map Generation and Localization Algorithm Based on Deep Learning and NDT for Autonomous Vehicles. Master’s Thesis, Kookmin University, Seoul, Republic of Korea, 2021. [Google Scholar]
- Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching. Proc. IEEE 2013, 3, 27–31. [Google Scholar]
Gain Parameter | Description |
---|---|
| |
| |
| |
| |
|
Simulation Results | Unit | Type of Path Tracker | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Conventional 2WS | Conventional 4WS | Proposed 4WS | ||||||||
RMS | MAX | SD | RMS | MAX | SD | RMS | MAX | SD | ||
Lateral distance error | [m] | 0.00158 | 0.00660 | 0.00002 | 0.00132 | 0.00619 | 0.00001 | 0.00090 | 0.00510 | 0.00001 |
Heading angle error | [deg] | 2.33378 | 4.57429 | 0.02335 | 1.26000 | 2.65473 | 0.01261 | 0.30013 | 0.64969 | 0.00300 |
Side-slip angle | [deg] | 2.33282 | 0.07629 | 0.00041 | 1.25862 | 0.04232 | 0.00022 | 0.29665 | 0.01115 | 0.00005 |
Yaw rate | [deg/s] | 13.9915 | 26.2022 | 0.13999 | 14.0075 | 26.9349 | 0.14015 | 13.9944 | 25.6563 | 0.14002 |
Specifications | Unit | Value |
---|---|---|
Length | [mm] | 2510 |
Width | [mm] | 1700 |
Height | [mm] | 630 |
Wheelbase | [mm] | 1900 |
Track width | [mm] | 1465 |
Mass | [kg] | 450 |
Max. speed | [KPH] | 40 |
Min. turning radius | [m] | 3 |
Vehicle Velocity | Experiment Results | Unit | Type of Path Tracker | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Conventional 2WS | Conventional 4WS | Proposed 4WS | |||||||||
RMS | MAX | SD | RMS | MAX | SD | RMS | MAX | SD | |||
5 KPH | Lateral distance error | [m] | 0.4093 | 1.3476 | 0.3192 | 0.3440 | 1.1891 | 0.2594 | 0.1050 | 0.2878 | 0.0566 |
Heading angle error | [deg] | 12.4488 | 51.2762 | 10.5967 | 10.1589 | 46.8677 | 8.7586 | 8.7315 | 39.7325 | 7.4448 | |
Side-slip angle | [deg] | 8.5703 | 26.4922 | 7.3898 | 5.7929 | 22.1768 | 5.0865 | 6.0200 | 21.3592 | 5.0284 | |
Yaw rate | [deg/s] | 5.6723 | 19.4300 | 4.8079 | 5.9487 | 23.5000 | 5.1517 | 6.4143 | 22.0000 | 5.2994 | |
10 KPH | Lateral distance error | [m] | 0.4441 | 1.5323 | 0.3572 | 0.3098 | 1.2309 | 0.2489 | 0.1249 | 0.4674 | 0.0703 |
Heading angle error | [deg] | 11.5677 | 44.6764 | 9.9426 | 9.5920 | 41.7982 | 8.3557 | 7.4912 | 36.1716 | 6.6480 | |
Side-slip angle | [deg] | 8.7664 | 26.4009 | 7.7564 | 6.3050 | 22.5335 | 5.6465 | 5.6851 | 20.9156 | 4.9700 | |
Yaw rate | [deg/s] | 11.6768 | 37.8100 | 10.0806 | 13.1048 | 47.0400 | 11.3667 | 11.7908 | 44.8900 | 10.1832 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-S.; Kim, M.-S. Development of a Path Tracker Based on a 4WS Vehicle for Low-Speed Automated Driving Systems. Appl. Sci. 2025, 15, 3043. https://doi.org/10.3390/app15063043
Park H-S, Kim M-S. Development of a Path Tracker Based on a 4WS Vehicle for Low-Speed Automated Driving Systems. Applied Sciences. 2025; 15(6):3043. https://doi.org/10.3390/app15063043
Chicago/Turabian StylePark, Heung-Sik, and Moon-Sik Kim. 2025. "Development of a Path Tracker Based on a 4WS Vehicle for Low-Speed Automated Driving Systems" Applied Sciences 15, no. 6: 3043. https://doi.org/10.3390/app15063043
APA StylePark, H.-S., & Kim, M.-S. (2025). Development of a Path Tracker Based on a 4WS Vehicle for Low-Speed Automated Driving Systems. Applied Sciences, 15(6), 3043. https://doi.org/10.3390/app15063043