Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (590)

Search Parameters:
Keywords = friction reduction mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11079 KB  
Article
Friction-Reduction Mechanism and Performance Optimization of Biomimetic Non-Smooth Surfaces Inspired by Dung Beetle Microstructures
by Honglei Zhang, Liquan Tian, Zhong Tang, Meng Fang and Biao Zhang
Lubricants 2025, 13(11), 490; https://doi.org/10.3390/lubricants13110490 (registering DOI) - 9 Nov 2025
Abstract
Agricultural machinery components suffer from severe soft abrasive wear when interacting with flexible materials like rice stalks. To address this, we investigate the friction-reduction mechanism, parameter optimization, and experimental validation of a biomimetic non-smooth surface inspired by the dung beetle’s microstructure. The bionic [...] Read more.
Agricultural machinery components suffer from severe soft abrasive wear when interacting with flexible materials like rice stalks. To address this, we investigate the friction-reduction mechanism, parameter optimization, and experimental validation of a biomimetic non-smooth surface inspired by the dung beetle’s microstructure. The bionic design was first established by characterizing the beetle’s unique micro-bump array. To ensure simulation accuracy, the critical bonding parameters of a flexible rice stalk DEM model were precisely calibrated via three-point bending tests combined with Response Surface Methodology (RSM). Subsequent DEM simulations revealed that the bionic surface disrupts continuous sliding by reducing the contact area and inducing high-frequency micro-vibrations in the stalk. Using RSM, the bump geometry was systematically optimized, yielding an optimal combination of a 2.975 mm diameter and a 1.0 mm spacing, which theoretically reduces the average normal contact force by 69.3%. Finally, reciprocating wear tests confirmed that the optimized bio-inspired surface exhibited significantly lower mass loss and effectively suppressed the formation of plowing grooves compared to a smooth surface, showing high agreement with simulation predictions. This study provides both a fundamental understanding of the friction-reduction mechanism and precise quantitative guidance for engineering wear-resistant agricultural components. Full article
Show Figures

Figure 1

23 pages, 6706 KB  
Article
Mechanical and Microstructural Evaluation of Compacted Mixtures of Tropical Soils with Expanded Polystyrene (EPS) Waste for Sustainable Construction Applications
by Gian Fonseca dos Santos, Heraldo Nunes Pitanga, Klaus Henrique de Paula Rodrigues, Gustavo Henrique Nalon and Taciano Oliveira da Silva
Buildings 2025, 15(22), 4037; https://doi.org/10.3390/buildings15224037 (registering DOI) - 9 Nov 2025
Abstract
Expanded polystyrene (EPS), a lightweight thermoplastic polymer widely used in packaging and insulation, has become a growing environmental concern due to its non-biodegradable nature and escalating global consumption. Although EPS waste shows potential in construction applications, previous studies have primarily incorporated it into [...] Read more.
Expanded polystyrene (EPS), a lightweight thermoplastic polymer widely used in packaging and insulation, has become a growing environmental concern due to its non-biodegradable nature and escalating global consumption. Although EPS waste shows potential in construction applications, previous studies have primarily incorporated it into mortars, concrete, or soil–cement mixtures, often relying on the addition of cement to improve its mechanical performance. This approach compromises sustainability and has generally overlooked the role of microstructural interactions in the behavior of soil–EPS waste mixes without cement. This study differs from prior works by exploring the mechanical and microstructural properties of soil–EPS waste mixtures without cementitious binders under different compaction energies. Experimental tests were carried out for the technical characterization of soils, ground EPS waste, and mixtures of soil and different contents of EPS waste (0%, 20%, 30%, and 40% of the total apparent volume of the composite), using different compaction energies (Intermediate and Modified Proctor). The mixtures were subjected to Unconfined Compressive Strength (UCS), California Bearing Ratio (CBR), and direct shear strength tests, in addition to physical and microstructural characterization. The results indicated that both soil type and compaction energy influenced the engineering behavior of the mixtures. The clayey soil exhibited superior mechanical performance, while the sandy soil showed reductions in all mechanical properties. The UCS values of the clayey soil with the addition of EPS did not change significantly (297 kPa to 286 kPa at intermediate energy and 514 kPa to 505 kPa at modified energy), while for the sandy soil, there was a decrease in values (from 167 kPa to 46 kPa at intermediate energy and from 291 kPa to 104 kPa at modified energy). In the CBR tests, only the 20% and 30% addition of EPS to the clayey soil, using the Modified Proctor energy, showed an increase (from 18% to 20% for both percentages). This behavior was primarily attributed to adhesion mechanisms at the soil–EPS waste interface, with friction playing a secondary role, thereby suggesting that clayey soils may offer better mechanical response. The lower dry density of these mixtures compared to compacted natural soils presents a technical benefit for use as backfill in areas with low bearing capacity, where minimizing the load from the fill material is critical. Full article
Show Figures

Figure 1

25 pages, 6510 KB  
Article
Enhancing Dry-Sliding Wear Performance of a Powder-Metallurgy-Processed “Metal Matrix–Carbide” Composite via Laser Surface Modification
by Yuliia Chabak, Vasily Efremenko, Yevhen Barma, Ivan Petrišinec, Bohdan Efremenko, František Kromka, Ivan Sili and Taras Kovbasiuk
Eng 2025, 6(11), 313; https://doi.org/10.3390/eng6110313 - 5 Nov 2025
Viewed by 130
Abstract
The increasing demand for enhanced wear resistance and mechanical integrity in tooling applications has driven the development of advanced surface engineering strategies for high-alloy steels. Böhler K390 MICROCLEAN, a powder-metallurgical V–Cr–Mo–W cold work tool steel with high vanadium content, features a composite metal [...] Read more.
The increasing demand for enhanced wear resistance and mechanical integrity in tooling applications has driven the development of advanced surface engineering strategies for high-alloy steels. Böhler K390 MICROCLEAN, a powder-metallurgical V–Cr–Mo–W cold work tool steel with high vanadium content, features a composite metal matrix–carbide microstructure, consisting of uniformly distributed coarse vanadium carbides and finer carbides (M7C3, M6C/MC) embedded in a ferritic matrix. This study investigated the effects of non-melting laser surface treatment (LST) applied to both as-received and bulk heat-treated K390 specimens. Microstructural characterization using SEM, EBSD, XRD, and EDX revealed the formation of a hardened surface layer comprising a structureless mixture of ultrafine-grained martensite and retained austenite, localized around vanadium carbides. Lattice parameter analysis and Williamson–Hall evaluation demonstrated increased carbon content, lattice distortion, and crystallite size reduction, contributing to high dislocation density (6.4 × 1014 to 2.6 × 1015 m−2) and enhanced hardness. Microhardness was increased by up to 160% compared to the initial state (reaching 835–887 HV20), and dry-sliding testing showed up to 3.94 times reduced volume loss and decreased friction coefficients. Wear occurred via the formation and delamination of thin oxide tribo-layers, which enhanced the wear behavior. The combined approach of bulk heat treatment followed by LST produced a graded microstructure with superior mechanical stability, offering clear advantages for extending tool life under severe contact loads in stamping and forming operations. Full article
(This article belongs to the Special Issue Advances in Precision Machining and Surface Engineering of Materials)
Show Figures

Figure 1

21 pages, 4394 KB  
Article
Experimental Investigation of Nanodiamond Reinforcement in PU for Enhancing Mechanical, Scratch, Rheological, Thermal, and Shape-Memory Properties
by Markapudi Bhanu Prasad, Nashmi H. Alrasheedi, P. S. Rama Sreekanth, Borhen Louhichi, Santosh Kumar Sahu and Nitesh Dhar Badgayan
Polymers 2025, 17(21), 2947; https://doi.org/10.3390/polym17212947 - 4 Nov 2025
Viewed by 390
Abstract
Shape-memory polymers (SMPs) are a unique class of smart materials capable of recovering their original shape upon external stimuli, with thermoresponsive polyurethane (PU) being one of the most widely studied systems. However, the relatively low mechanical strength, thermal stability, and durability of PU [...] Read more.
Shape-memory polymers (SMPs) are a unique class of smart materials capable of recovering their original shape upon external stimuli, with thermoresponsive polyurethane (PU) being one of the most widely studied systems. However, the relatively low mechanical strength, thermal stability, and durability of PU limit its broader functional applications. PU/ND composites containing 0.1–0.5 wt.% ND were fabricated via melt blending and injection molding method. The objective was to evaluate the effect of ND reinforcement on the mechanical, scratch, thermal, rheological, and shape-memory properties. Results show that tensile strength increased up to 114% and Young’s modulus by 11% at 0.5 wt.% ND, while elongation at break decreased due to restricted chain mobility. Hardness improved by 21%, and scratch resistance was significantly enhanced, with the coefficient of friction reduced by 56% at low loads. Thermal stability was improved, with the maximum degradation temperature shifting from 350 °C (pure PU) to 362 °C (0.5 wt.% PU/ND) and char yield increasing by 34%. DSC revealed an increase in glass transition temperature from 65 °C to 68.6 °C. Rheological analysis showed an 89% reduction in damping factor (tan δ), indicating enhanced elasticity. Shape-memory tests confirmed notable improvements in both shape fixity and recovery ratios across successive cycles compared to neat PU, with the highest enhancements observed for the 0.5 wt.% PU/ND nanocomposite—showing up to 7.6% higher fixity and 32% higher recovery than pure PU. These results demonstrate that ND reinforcement effectively strengthens PU while preserving and improving its shape-memory behavior, making the composites promising candidates for high-performance smart materials in sensors, actuators, and aerospace applications. Full article
(This article belongs to the Special Issue Polyurethane Composites: Properties and Applications)
Show Figures

Figure 1

18 pages, 4299 KB  
Article
The Effect of Shallow Water-Bearing Sand on the Surface Subsidence Characteristics Under Thick Loose Formations
by Qiang Fu, Qiukai Gai, Hongxu Song, Yubing Gao, Xiaoding Xu, Qing Ma, Hainan Gao and Zhun Li
Water 2025, 17(21), 3156; https://doi.org/10.3390/w17213156 - 4 Nov 2025
Viewed by 280
Abstract
This study investigates the influence of shallow water-bearing sand layers on surface subsidence characteristics in coal mining areas with thick loose strata, with the ultimate goal of contributing to sustainable environmental protection. Firstly, a numerical simulation test was designed to analyze and study [...] Read more.
This study investigates the influence of shallow water-bearing sand layers on surface subsidence characteristics in coal mining areas with thick loose strata, with the ultimate goal of contributing to sustainable environmental protection. Firstly, a numerical simulation test was designed to analyze and study the influence of the loose layer thickness, mining height, bedrock slope, and sand inclusion on the surface movement and deformation characteristics. Secondly, the mechanical model of seepage flow in the sand layer was established to study the influence mechanism of the internal stress distribution of the sand layer and the seepage of the water body after mining on the surface subsidence. Finally, by studying the law of surface subsidence corresponding to the mining of 3205 working face in a mine, it was found that mining caused the partial overlying soil layer to move integrally and generate a large displacement difference with the adjacent layer, which verifies the conclusions of numerical simulation and mechanical analysis. The results of the study show that the thickness of the loose layer is the main control factor that causes the surface subsidence range and the building damage to increase; the shallow water-bearing sand-bearing layer has two types of movements: displacement and flow. The critical hydraulic slope has not reached the sand. The layer has a linearly increasing horizontal displacement value in the thickness direction; when the critical hydraulic slope is reached, the sand layer cannot transmit the frictional force, causing the overlying soil layer to slide as a whole. Both forms are prone to tensile damage on the surface. The research results provide a theoretical basis and practical case for surface subsidence reduction and green mining under similar geological conditions. Full article
Show Figures

Figure 1

17 pages, 2110 KB  
Article
Supercritical CO2 Sizing and Desizing of Cotton Yarns
by Ito Tsukasa, Satoko Okubayashi, Masuda Yoshiharu and Heba Mehany Ghanayem
Eng 2025, 6(11), 300; https://doi.org/10.3390/eng6110300 - 1 Nov 2025
Viewed by 145
Abstract
In this study, supercritical carbon dioxide (scCO2) was investigated as a sustainable medium for cotton yarn sizing and desizing, eliminating the need for water and conventional organic solvents. Cellulose acetate was employed as the sizing agent with acetone as a co-solvent, [...] Read more.
In this study, supercritical carbon dioxide (scCO2) was investigated as a sustainable medium for cotton yarn sizing and desizing, eliminating the need for water and conventional organic solvents. Cellulose acetate was employed as the sizing agent with acetone as a co-solvent, achieving a 10% add-on comparable to conventional starch-sized yarns. Since starch sizing is typically reported in the range of 3–10% add-on, a 3% starch level was selected as the industrially relevant benchmark for 20/1 cotton yarn. Trials conducted at 15–20 MPa and 40–60 °C demonstrated uniform size deposition and efficient removal during desizing, as confirmed by weight gain distribution and friction testing. Mechanical characterization further revealed that scCO2-sized yarns exhibited tensile strength and break elongation within the range of industry benchmarks. Overall, these findings establish scCO2-based sizing as a viable and eco-friendly alternative, with encouraging preliminary performance that suggests potential alignment with textile industry standards. The process also shows promise for solvent recovery and effluent reduction; however, full quantification of recovery yields, energy requirements, and wastewater impacts remains an important direction for future investigation. Full article
Show Figures

Figure 1

19 pages, 6117 KB  
Article
Impact of Crown-Type Cage Eccentricity in New Energy Vehicle Motor Ball Bearings on Their Dynamic Performance
by Haisheng Yang, Jiahang Zhang, Run Zhang, Zhanwang Shi and Haiyang Dong
Machines 2025, 13(11), 991; https://doi.org/10.3390/machines13110991 - 29 Oct 2025
Viewed by 236
Abstract
In response to the increasing demands for cage strength and operational stability of ball bearings in new energy vehicle motors operating under high-speed and light-load conditions, this paper focuses on the 6207 deep groove ball bearing as the research subject. It systematically analyzes [...] Read more.
In response to the increasing demands for cage strength and operational stability of ball bearings in new energy vehicle motors operating under high-speed and light-load conditions, this paper focuses on the 6207 deep groove ball bearing as the research subject. It systematically analyzes the influence of various structural parameters of the crown-type cage, including profile radius, side beam thickness, claw length, and claw radius, on its eccentricity. Furthermore, the paper explores the mechanism by which eccentricity affects the dynamic performance of the cage. By establishing a rigid–flexible coupled dynamics model and conducting simulation analyses, the results indicate that the claw ends of the crown-type cage pockets are the regions of maximum deformation, while the pocket bottom experiences the highest equivalent stress, identifying it as a critical location for fracture failure. The research demonstrates that the impact of eccentricity on performance is non-monotonic: a reduction in eccentricity can significantly diminish the collision force between the balls and the cage, decrease vibration amplitude, and lower equivalent stress; concurrently, the maximum cage deformation and vibration acceleration level increase correspondingly. Additionally, the centrifugal force acting on the cage itself significantly elevates the equivalent stress. Therefore, the optimal design of the crown-type cage necessitates a comprehensive trade-off among multiple objectives, including strength and stability. It is essential to avoid inappropriate eccentricity design that may arise from the pursuit of a single performance indicator (such as friction reduction or weight reduction), thereby providing a theoretical foundation for the refined design of high-performance bearing cages. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

22 pages, 7889 KB  
Article
Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets
by Philipp Kiryukhantsev-Korneev, Alina Chertova, Yury Pogozhev and Evgeny Levashov
Coatings 2025, 15(11), 1243; https://doi.org/10.3390/coatings15111243 - 25 Oct 2025
Viewed by 423
Abstract
Hard Cr-Al-Si-B-(N) coatings were deposited in Ar and Ar–15%N2 medium by d.c. magnetron sputtering of composite targets manufactured using self-propagating high-temperature synthesis. The structure of the coatings was studied by X-ray diffraction, scanning and transmission electron microscopy, energy dispersion spectroscopy, and glow [...] Read more.
Hard Cr-Al-Si-B-(N) coatings were deposited in Ar and Ar–15%N2 medium by d.c. magnetron sputtering of composite targets manufactured using self-propagating high-temperature synthesis. The structure of the coatings was studied by X-ray diffraction, scanning and transmission electron microscopy, energy dispersion spectroscopy, and glow discharge optical emission spectroscopy. The coating properties were determined by nanoindentation, scratch testing, and tribological pin-on-disc testing at room and elevated temperatures. The oxidation resistance and diffusion barrier properties of the coatings were also evaluated. The results obtained showed that non-reactive coatings had a coarse crystalline structure and contained Cr5Si3, CrBx, and Cr2Al phases. The introduction of nitrogen into the coating composition promoted crystallite refinement and structural amorphization. Non-reactive CrAl4Si11B21 coatings had a maximum hardness up to 29 GPa and an elastic modulus up to 365 GPa. The introduction of nitrogen into the coating composition resulted in a 16–32% reduction in mechanical properties. The CrAl6Si12B5N25 coating, which exhibited maximal plasticity index H/E = 0.100 and resistance to plastic deformation H3/E2 = 0.247 GPa, was characterized by a minimum wear rate Vw = 5.7 × 10−6 mm3N−1m−1 and a friction coefficient of 0.47. While the CrAl18Si11B5N26 coating demonstrated a record level of oxidation resistance and successfully resisted oxidation up to a temperature of 1300 °C. Full article
Show Figures

Figure 1

15 pages, 3438 KB  
Article
Changes in the Tribological and Mechanical Properties of Nimonic 90 Superalloy After Irradiation with Swift Xenon Ions
by Piotr Budzyński, Mariusz Kamiński, Zbigniew Surowiec and Marek Wiertel
Materials 2025, 18(21), 4876; https://doi.org/10.3390/ma18214876 - 24 Oct 2025
Viewed by 320
Abstract
The article presents the results of research on the effect of 160 MeV xenon ions irradiation on the mechanical and tribological properties of the Nimonic 90 superalloy. The alloy samples were irradiated with xenon ion fluences ranging from 1 × 1014 to [...] Read more.
The article presents the results of research on the effect of 160 MeV xenon ions irradiation on the mechanical and tribological properties of the Nimonic 90 superalloy. The alloy samples were irradiated with xenon ion fluences ranging from 1 × 1014 to 5 × 1014 Xe24+/cm2 at a temperature of 60 °C. The investigations revealed significant changes in the crystal structure of the material, including the formation of new phases and partial amorphisation of the surface layer, particularly pronounced at the highest irradiation fluence. Measurements of microhardness, coefficient of friction, and wear revealed a deterioration in the mechanical and tribological properties of the samples irradiated with fluences of 1.0 and 2.5 × 1014 Xe24+ ions/cm2, attributed to the formation of radiation-induced defects. Increased friction and wear were observed at depths greater than the predicted range of xenon ions, indicating the occurrence of a long-range effect. After irradiation with a 5.0 × 1014 Xe24+ ions/cm2 fluence, a radiation annealing effect was observed, leading to a partial reduction in the earlier damage and resulting in improved microhardness and reduced wear. To our knowledge, this is the first observation of a radiation annealing effect under these specific irradiation and test conditions. The findings suggest limitations in the application of the Nimonic 90 superalloy in environments exposed to intense ionizing radiation, such as nuclear reactors. Full article
Show Figures

Figure 1

22 pages, 7154 KB  
Article
Effects of Particle Segregation and Grain Pressure on Ventilation Airflow and Temperature–Humidity Distribution in Maize Pilot Silo
by Chaosai Liu, Boyi Zhao, Hao Zhang, Tong Shen and Jun Wang
Agriculture 2025, 15(21), 2205; https://doi.org/10.3390/agriculture15212205 - 23 Oct 2025
Viewed by 280
Abstract
The distribution of grain particles within a silo influences heat and moisture transfer during stored grain ventilation, leading to grain quality losses. A study on porosity distribution analysis and ventilation tests was conducted in a pilot silo with a height of 3 m, [...] Read more.
The distribution of grain particles within a silo influences heat and moisture transfer during stored grain ventilation, leading to grain quality losses. A study on porosity distribution analysis and ventilation tests was conducted in a pilot silo with a height of 3 m, a diameter of 1.5 m, and a conical dome height of 0.85 m. The E-B constitutive model was incorporated into the secondary development of FLAC3D 5.0 to analyze the vertical pressure distribution in the grain bulk. An anisotropic porosity distribution model for the maize bulk was developed, accounting for both vertical pressure and segregation mechanisms. The differences in airflow and heat transfer during ventilation between isotropic and anisotropic porosity distributions were quantified. A nonlinear model was innovatively proposed to predict the temperature front curve (TFC) during ventilation as affected by porosity variation. The results indicate that friction between the maize kernel and the silo wall led to vertical pressure at the center of the bottom that was 10.7% higher than that near the wall. The average surface porosity of the maize bulk was 2.8% higher than at the bottom. This led to a minimum porosity of 0.409 at the center of the silo bottom, due to the combined effect of impact during the loading process and vertical pressure. The numerical simulation demonstrated excellent consistency with the experimental data. At a supply vent air velocity of 0.126 m/s, an increase in the maize bulk height from 0.725 m to 2.9 m resulted in reductions in airflow rate and average relative humidity of 20.3% and 9.67%. The airflow velocity near the wall was 13.4% higher than that in the center, leading to a faster cooling rate in the peripheral region compared to the center of the maize bulk. The airflow velocity based on the isotropic porosity model was higher at the center than that predicted by the anisotropic model, whereas the opposite trend was observed near the wall. The temperature front during ventilation based on the anisotropic porosity model exhibited a concave curve. A nonlinear model was developed to predict this temperature front, showing strong agreement with computational data. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

28 pages, 6312 KB  
Article
Tribological Performance of SAE 10W-40 Engine Oil Enhanced with Thermally Treated TiO2 Nanoparticles
by Corina Birleanu, Mircea Cioaza, Ramona-Crina Suciu, Andreia Molea, Marius Pustan, Glad Contiu and Florin Popa
Lubricants 2025, 13(11), 466; https://doi.org/10.3390/lubricants13110466 - 23 Oct 2025
Viewed by 392
Abstract
The development of stable and efficient nanolubricants remains one of the main challenges in tribology due to particle agglomeration, poor long-term stability, and inconsistent frictional behavior under boundary lubrication. This study investigates the tribological performance of SAE 10W-40 engine oil enhanced with titanium [...] Read more.
The development of stable and efficient nanolubricants remains one of the main challenges in tribology due to particle agglomeration, poor long-term stability, and inconsistent frictional behavior under boundary lubrication. This study investigates the tribological performance of SAE 10W-40 engine oil enhanced with titanium dioxide (TiO2) nanoparticles subjected to thermal treatments. TiO2 powders (Degussa P25, ~30 nm) were calcined at 450 °C, 550 °C, 650 °C, and 750 °C, and incorporated into the base oil at a constant concentration of 0.05 wt%. Tribological tests were conducted using a four-ball tribometer under ASTM D4172 conditions (396 N, 1200 rpm, 30 min) at both ambient (23 °C) and elevated (75 °C) temperatures. The coefficient of friction (COF) and wear scar area (WSA) were measured, while the surface morphology was analyzed via 3D optical profilometry, SEM, and EDS. The results indicate that TiO2 nanoparticles thermally treated at 550 °C offered the best tribological behavior, exhibiting the lowest COF and smallest WSA at both test temperatures. The improved performance is attributed to optimized crystalline structure and enhanced dispersion stability after calcination. Although no Ti-based tribofilm was detected, smoother wear scars suggest physical surface protection mechanisms, such as rolling and asperity smoothing. These findings highlight the critical influence of thermal treatment on nanoparticle effectiveness and demonstrate the potential of optimized nanoadditized lubricants for advanced friction and wear reduction under boundary lubrication conditions, providing practical guidance for developing next generation nanolubricants with improved durability and efficiency under boundary lubrication conditions. Full article
Show Figures

Figure 1

21 pages, 10400 KB  
Article
Structural Response Research for a Submarine Power Cable with Corrosion-Damaged Tensile Armor Layers Under Pure Tension
by Weidong Ruan, Chengcheng Zhou, Erjian Qiu, Xu Zheng, Zhaohui Shang, Pan Fang and Yong Bai
J. Mar. Sci. Eng. 2025, 13(11), 2026; https://doi.org/10.3390/jmse13112026 - 22 Oct 2025
Viewed by 329
Abstract
Submarine power cables (SPCs), as critical infrastructure for offshore wind farms, are the primary conduits for transmitting electricity from turbines to the grid. Actions such as seabed friction can cause damage to the submarine power cable’s outer sheath, accelerating the penetration of seawater [...] Read more.
Submarine power cables (SPCs), as critical infrastructure for offshore wind farms, are the primary conduits for transmitting electricity from turbines to the grid. Actions such as seabed friction can cause damage to the submarine power cable’s outer sheath, accelerating the penetration of seawater corrosion media. This subsequently leads to corrosion fatigue or excessive loading in the tensile armor layer, which seriously threatens the long-term operational reliability of SPCs and the security of energy transmission. Based on homogenization theory and periodic boundary conditions, a repetitive unit cell (RUC) ABAQUS finite element model for a single-core submarine power cable (SPC) was established in this paper. And the mechanical response of the single-core SPC with the corroded tensile armor layers under tensile loading condition were systematically investigated. By comparing with a full-scale model, the feasibility and accuracy of the cable RUC damaged model proposed in this paper were effectively verified. It was found that the RUC damaged model exhibits significant stress concentration phenomena due to localized corrosion damage in the tensile armor layers, with its maximum von Mises stress being considerably higher than that of the RUC intact model; the elastic tensile stiffness of the SPC continuously decreases with increasing corrosion damage depth, but the magnitude of this reduction is small. This is because the corroded region is relatively small compared to the entire cable model dimension. This research reveals the potential impact of localized corrosion on the mechanical performance of the tensile armor layer, which can hold significant engineering importance for assessing the remaining load-bearing capacity of in-service SPCs and ensuring the reliability of subsea energy transmission corridors. Full article
(This article belongs to the Special Issue Marine Cable Technology: Cutting-Edge Research and Development Trends)
Show Figures

Figure 1

19 pages, 11176 KB  
Article
Multiscale Investigation of the Anti-Friction Mechanism in Graphene Coatings on Copper Substrates: Substrate Reinforcement via Microstructural Evolution
by Di Ran, Zewei Yuan, Po Du, Ning Wang, Na Wang, Li Zhao, Song Feng, Weiwei Jia and Chaoqun Wu
Lubricants 2025, 13(10), 457; https://doi.org/10.3390/lubricants13100457 - 20 Oct 2025
Viewed by 363
Abstract
Graphene exhibits great potential as an anti-friction coating material in MEMS. However, its underlying microscopic friction-reduction mechanism remains unclear. In this paper, the microstructural evolution and nanomechanical behavior of graphene coatings on copper substrates were systematically investigated by AFM friction experiments and MD [...] Read more.
Graphene exhibits great potential as an anti-friction coating material in MEMS. However, its underlying microscopic friction-reduction mechanism remains unclear. In this paper, the microstructural evolution and nanomechanical behavior of graphene coatings on copper substrates were systematically investigated by AFM friction experiments and MD simulations. MD simulations reveal that the anti-friction properties of graphene coatings primarily stem from microstructural regulation and load-bearing reinforcement of the substrate. The graphene coatings increase indentation diameter by forming transition radii at the indentation edges, and suppress the plowing effect of the substrate by restricting atomic upward movement, both of which enhance the dislocation density and load-bearing capacity of the substrate. Additionally, graphene coatings also reduce the scratch edge angle, weakening the interlocking effect between the substrate and tip, further lowering the friction force. Experimental results indicate that the tribological behavior of graphene coatings exhibits staged characteristics: graphene coatings show excellent ultrafriction properties under intact structural conditions, while showing a higher friction force in wear and tear states. This research provides a theoretical basis and technical guidance for the development of anti-friction and wear-resistant coatings for micro-nano devices. Full article
Show Figures

Graphical abstract

10 pages, 4746 KB  
Article
Deep Eutectic Solvents as Green and Novel Lubricant Additives for Castor Oil with High Tribological Performance
by José M. Liñeira del Río, A. Aourdou, G. García-Marquínez, J. M. Amado and M. J. Tobar
Lubricants 2025, 13(10), 456; https://doi.org/10.3390/lubricants13100456 - 18 Oct 2025
Viewed by 411
Abstract
This research reveals the anti-friction and anti-wear performance of lubricants using a castor oil base and a deep eutectic solvent (DES1) as an additive. To this end, DES1 was synthesized in a successful manner using DL-menthol and dodecanoic acid as components. Mass concentrations [...] Read more.
This research reveals the anti-friction and anti-wear performance of lubricants using a castor oil base and a deep eutectic solvent (DES1) as an additive. To this end, DES1 was synthesized in a successful manner using DL-menthol and dodecanoic acid as components. Mass concentrations from 0.1 wt% up to 5 wt% of DES1 additives were chosen to formulate the lubricants. Friction experiments were conducted, yielding friction enhancements up to 4% compared to the castor oil base. Notably the greatest reduction was achieved for the lubricant with 0.1 wt% of DES1. In terms of the wear generated, the best anti-wear performance was achieved for the 0.5 wt% DES1 lubricant (with a wear reduction of 17%). Furthermore, by means of the profilometry of worn surfaces, it can be observed that the tribofilm formation of DES1 on steel surfaces is a potential lubrication mechanism. Full article
Show Figures

Figure 1

30 pages, 5337 KB  
Review
Tribology of MXene Materials: Advances, Challenges, and Future Directions
by Jonathan Luke Stoll, Mason Paul, Lucas Pritchett, Ashleigh Snover, Levi Woods, Subin Antony Jose and Pradeep L. Menezes
Materials 2025, 18(20), 4767; https://doi.org/10.3390/ma18204767 - 17 Oct 2025
Viewed by 843
Abstract
MXenes, an emerging class of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides, have demonstrated exceptional potential in tribology: the study of friction, wear, and lubrication. Their remarkable mechanical strength, thermal stability, and tunable surface chemistry make them ideal candidates for solid lubricants, [...] Read more.
MXenes, an emerging class of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides, have demonstrated exceptional potential in tribology: the study of friction, wear, and lubrication. Their remarkable mechanical strength, thermal stability, and tunable surface chemistry make them ideal candidates for solid lubricants, lubricant additives, and protective coatings in mechanical systems. This review comprehensively examines the tribological performance of MXenes under diverse environmental conditions, including high temperatures, vacuum, humid atmospheres, and liquid lubricants. A particular emphasis is placed on the influence of surface terminations (-OH, -O, -F) on friction reduction and wear resistance. Additionally, we discuss strategies for enhancing MXene performance through hybridization with polymers, nanoparticles, and ionic liquids, enabling superior durability in applications ranging from micro/nano-electromechanical systems (MEMS/NEMS) to aerospace and biomedical devices. We also highlight recent advances in experimental characterization techniques and computational modeling, which provide deeper insights into MXene tribomechanics. Despite their promise, key challenges such as oxidation susceptibility, high synthesis costs, and performance variability hinder large-scale commercialization. Emerging solutions, including eco-friendly synthesis methods and optimized composite designs, are explored as pathways to overcome these limitations. Overall, MXenes represent a transformative avenue for developing next-generation tribological materials that combine high efficiency, sustainability, and multifunctionality. Continued research and innovation in this field could unlock groundbreaking advancements across industrial and engineering applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop