Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets
Abstract
1. Introduction
2. Materials and Methods
3. Results & Discussions
3.1. Composition
3.2. Structure
3.3. Mechanical Properties
3.4. Tribological Properties
3.5. Diffusion Barrier Properties and Oxidation Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semih, M.A.; Yaşar, S.; Tevfik, K. Investigation of structural hardness, adhesion, and tribological properties of CrN and AlCrN coatings deposited on cylinder liner. Mater. Des. 2025, 253, 113972. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Liu, X.; Zheng, J.; Zhang, S. Tribocorrosion of CrN coatings on different steel substrates. Surf. Coat. Technol. 2024, 484, 130829. [Google Scholar] [CrossRef]
- Hidalgo-Badillo, J.A.; Hernández-Casco, I.; Herrera Hernández, H.; Soriano-Vargas, O.; Contla-Pacheco, A.D.; González, M.C.O.; Hernández, J.M.; Flores Cuautle, J.d.J.A. A Tribological Study of CrN and TiBN Hard Coatings Deposited on Cobalt Alloys Employed in the Food Industry. Coatings 2024, 14, 1278. [Google Scholar] [CrossRef]
- Yang, S.; Cooke, K.E.; Li, X.; McIntosh, F.; Teer, D.G. CrN-based wear resistant hard coatings for machining and forming tools. J. Phys. D Appl. Phys. 2009, 42, 104001. [Google Scholar] [CrossRef]
- Luo, Y.; Ning, C.; Dong, Y.; Xiao, C.; Wang, X.; Peng, H.; Cai, Z. Impact Abrasive Wear Resistance of CrN and CrAlN Coatings. Coatings 2022, 12, 427. [Google Scholar] [CrossRef]
- Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Film. 2009, 517, 4845–4849. [Google Scholar] [CrossRef]
- Zhang, X.D.; Chen, L.; Du, J.W.; Hu, C.; Wang, S.Q. Impact of Si content on the thermal stability and oxidation resistance of cubic structured CrAlSiN coatings. Mater. Charact. 2025, 222, 114848. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Chang, C.-P.; Wang, D.-Y.; Yang, S.-M.; Wu, W. High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. J. Alloys Compd. 2008, 461, 336–341. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chan, Y.-C.; Lee, J.-W.; Duh, J.-G. Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings. Surf. Coat. Technol. 2010, 205, 1189–1194. [Google Scholar] [CrossRef]
- Lee, D.B.; Nguyen, T.D.; Kim, S.K. Air-oxidation of nano-multilayered CrAlSiN thin films between 800 and 1000 °C. Surf. Coat. Technol. 2009, 203, 1199–1204. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chan, Y.-C.; Lee, J.-W.; Duh, J.-G. Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment. Surf. Coat. Technol. 2011, 206, 1571–1576. [Google Scholar] [CrossRef]
- Tien, S.-K.; Lin, C.-H.; Tsai, Y.-Z.; Duh, J.G. Effect of nitrogen flow on the properties of quaternary CrAlSiN coatings at elevated temperatures. Surf. Coat. Technol. 2007, 202, 735–739. [Google Scholar] [CrossRef]
- Kim, S.K.; Le, V.V.; Vinh, P.V.; Lee, J.W. Effect of cathode arc current and bias voltage on the mechanical properties of CrAlSiN thin films. Surf. Coat. Technol. 2008, 202, 5400–5404. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Wang, Q.; Li, M. A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating: I. Microstructure and mechanical properties. Surf. Coat. Technol. 2013, 214, 160–167. [Google Scholar] [CrossRef]
- Martan, J.; Beneš, P. Thermal properties of cutting tool coatings at high temperatures. Thermochim. Acta 2012, 539, 51–55. [Google Scholar] [CrossRef]
- Nose, M.; Kawabata, T.; Watanuki, T.; Ueda, S.; Fujii, K.; Matsuda, K.; Ikeno, S. Mechanical properties and oxidation resistance of CrAlN/BN nanocomposite coatings prepared by reactive dc and rf co-sputtering. Surf. Coat. Technol. 2011, 205, S33–S37. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Kim, S.K.; Lee, D.B. Oxidation of nano-multilayered CrAlBN thin films between 600 and 1000 °C in air. Surf. Coat. Technol. 2010, 205, S373–S378. [Google Scholar] [CrossRef]
- Kudryashov, A.E.; Potanin, A.Y.; Lebedev, D.N.; Sukhorukova, I.V.; Shtansky, D.V.; Levashov, E.A. Structure and properties of Cr–Al–Si–B coatings produced by pulsed electrospark deposition on a nickel alloy. Surf. Coat. Technol. 2016, 285, 278–288. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Pierson, J.F.; Bauer, J.P.; Levashov, E.A.; Shtansky, D.V. Hard Cr–Al–Si–B–(N) Coatings with Oxidation Resistance up to 1200 °C. Glass Phys. Chem. 2011, 37, 411–417. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Pierson, J.F.; Kuptsov, K.A.; Shtansky, D.V. Hard Cr–Al–Si–B–(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target. Appl. Surf. Sci. 2014, 314, 104–111. [Google Scholar] [CrossRef]
- Li, K.Q.; Chen, L.; Hu, C.; Zhang, J.; Du, J.W. Structure, mechanical and thermal properties of CrAlBSiN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 2023, 452, 129094. [Google Scholar] [CrossRef]
- Du, J.W.; Li, K.Q.; Hu, C.; Chen, L.; Wang, J.C. Study on the structure, mechanical properties and oxidation resistance of CrAlSiN/CrAlBN multilayer. Surf. Coat. Technol. 2024, 492, 131232. [Google Scholar] [CrossRef]
- Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017, 62, 203–239. [Google Scholar] [CrossRef]
- Pogozhev, Y.S.; Potanin, A.Y.; Levashov, E.A.; Kovalev, D.Y. The features of combustion and structure formation of ceramic materials in the Cr–Al–Si–B system. Ceram. Int. 2014, 40, 16299–16308. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Sviridova, T.A.; Sidorenko, D.A.; Andreev, N.V.; Klechkovskaya, V.V.; Polčak, J.; Levashov, E.A. Effects of doping with Zr and Hf on the structure and properties of Mo-Si-B coatings obtained by magnetron sputtering of composite targets. Surf. Coat. Technol. 2022, 442, 128141. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V. Possibilities of glow discharge optical emission spectroscopy in the investigation of coatings. Russ. J. Non-Ferr. Met. 2014, 55, 494–504. [Google Scholar] [CrossRef]
- Levashov, E.A.; Shtansky, D.V.; Kiryukhantsev-Korneev, P.V.; Petrzhik, M.I.; Tyurina, M.Y.; Sheveiko, A.N. Multifunctional nanostructured coatings: Formation, structure, and the uniformity of measuring their mechanical and tribological properties. Russ. Metall. 2010, 2010, 917–935. [Google Scholar] [CrossRef]
- Mirzaei, S.; Alishahi, M.; Souček, P.; Buršíková, V.; Zábranský, L.; Gröner, L.; Burmeister, F.; Blug, B.; Daum, P.; Mikšová, R.; et al. Effect of substrate bias voltage on the composition, microstructure and mechanical properties of W-B-C coatings. Appl. Surf. Sci. 2020, 528, 146966. [Google Scholar] [CrossRef]
- Lv, Y.; Ji, L.; Liu, X.; Li, H.; Zhou, H.; Chen, J. Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering. Appl. Surf. Sci. 2012, 258, 3864–3870. [Google Scholar] [CrossRef]
- Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 2012, 207, 50–65. [Google Scholar] [CrossRef]
- Sytchenko, A.D.; Kozlova, N.S.; Zabelina, E.V.; Loginov, P.A.; Levashov, E.A.; Kiryukhantsev-Korneev, P.V. The effect of the Ar/N2 gas ratio on the structure and properties of Ta-Si-N coatings produced by magnetron sputtering of TaSi2 target. Surf. Interfaces 2023, 37, 102654. [Google Scholar] [CrossRef]
- Ramesh, D.J.; Hans, M.; Salman, S.A.; Lellig, S.; Primetzhofer, D.; Michler, J.; Schneider, J.M. Comparative oxidation behavior of columnar and equiaxed Cr2AlC coatings. Corros. Sci. 2025, 253, 112992. [Google Scholar] [CrossRef]
- Che, F.; Xue, Y.; Du, Q.; Cheng, S.; Wei, D.; Wang, Y. Deformation behavior of hard ceramic layer coated Ti composite: In situ characterization and molecular dynamics simulation. Microstructures 2025, 5, 2025030. [Google Scholar] [CrossRef]
- Sander, T.; Tremmel, S.; Wartzack, S. A modified scratch test for the mechanical characterization of scratch resistance and adhesion of thin hard coatings on soft substrates. Surf. Coat. Technol. 2011, 206, 1873–1878. [Google Scholar] [CrossRef]
- Li, J.; Beres, W. Scratch Test for Coating/Substrate Systems—A Literature Review. Can. Metall. Q. 2007, 46, 155–173. [Google Scholar] [CrossRef]
- Hernández-Torres, J.; García-González, L.; Zamora-Peredo, L.; Hernández-Quiroz, T.; Sauceda-Carvajal, A.; García-Ramírez, P.J.; Flores-Ramírez, N. Analysis of hardness of nanocrystalline coatings of aluminum-rich Ti1−xAlxN. Bull. Mater. Sci. 2012, 35, 733–738. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, J.; Wang, X. Phase Composition, Hardness, and Thermal Shock Properties of AlCrTiN Hard Films with High Aluminum Content. Coatings 2023, 13, 547. [Google Scholar] [CrossRef]
- Beake, B.D. The influence of the H/E ratio on wear resistance of coating systems—Insights from small-scale testing. Surf. Coat. Technol. 2022, 442, 128272. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Meghwal, A.; Schulz, C.; Hall, C.; Vogli, E.; Berndt, C.C.; Siao Ming Ang, A. Microstructural, mechanical and high-temperature tribological performance of Fe-based fully amorphous and amorphous/crystalline coatings. Surf. Coat. Technol. 2023, 475, 130114. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, S.; Lin, J.; Cao, F.; Liu, Y.; Xue, R.; Wang, T. Microstructure, mechanical and tribological properties of gradient CrAlSiN coatings deposited by magnetron sputtering and arc ion plating technology. Thin Solid Film. 2022, 760, 139490. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, G.; Yan, J.; Cheng, X.; Liu, H.; Yang, X. Effect of TiAlSiN coating residual stress on its sliding wear and cutting wear performance. Int. J. Adv. Manuf. Technol. 2022, 123, 3885–3900. [Google Scholar] [CrossRef]
- Gonzalo, O.; Gonzalo, O.; García Navas, V.; Coto, B.; Bengoetxea, I.; Ruiz de Gopegi, U.; Etxaniz, M. Influence of the Coating Residual Stresses on the Tool Wear. Procedia Eng. 2011, 19, 106–111. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Kozlova, N.S.; Zabelina, E.V.; Sidorenko, D.A.; Levashov, E.A.; Feng, P. Effect of nitrogen on the structure and properties of Zr-Si-B-N coatings deposited by magnetron sputtering. Surf. Coat. Technol. 2023, 474, 130042. [Google Scholar] [CrossRef]
- Aissani, L.; Fellah, M.; Chadli, A.H.; Samad, M.A.; Cheriet, A.; Salhi, F.; Nouveau, C.; Weiß, S.; Obrosov, A.; Alhussein, A. Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R.F. magnetron sputtering. J. Mater. Sci. 2021, 56, 17319–17336. [Google Scholar] [CrossRef]
- Wang, Y.; Bayarjargal, L.; Bykov, M.; Bykova, E.; Spahr, D.; Glazyrin, K.; Milman, V.; Winkler, B. Cr3+-Containing Carbonates and Cr2O3-Pbcn at Extreme Conditions. Inorg. Chem. 2025, 64, 4996–5003. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.P.; Jiang, Z.-T.; Hong Melvin, G.J.; Nayan, N.; Chee, F.P.; Soon, C.F.; Hassan, N.; Hsien Liew, W.Y. A systematic investigation of the tribological behaviour of oxides formed on AlSiTiN, CrAlTiN, and CrAlSiTiN coatings. Wear 2023, 512–513, 204552. [Google Scholar] [CrossRef]
- Kim, G.S.; Kim, B.S.; Lee, S.Y.; Hahn, J.H. Effect of Si content on the properties of TiAl–Si–N films deposited by closed field unbalanced magnetron sputtering with vertical magnetron sources. Thin Solid Film. 2006, 506–507, 128–132. [Google Scholar] [CrossRef]
- Hübner, R.; Hecker, M.; Mattern, N.; Voss, A.; Acker, J.; Hoffmann, V.; Wetzig, K.; Engelmann, H.-J.; Zschech, E.; Heuer, H.; et al. Influence of nitrogen content on the crystallization behavior of thin Ta–Si–N diffusion barriers. Thin Solid Film. 2004, 468, 183–192. [Google Scholar] [CrossRef]
- Djebaili, K.; Mekhalif, Z.; Boumaza, A.; Djelloul, A. XPS, FTIR, EDX, and XRD Analysis of Al2O3 Scales Grown on PM2000 Alloy. J. Spectrosc. 2015, 2015, 868109. [Google Scholar] [CrossRef]
- Kamari, H.M.; Al-Hada, N.M.; Baqer, A.A.; Shaari, A.H.; Saion, E. Comprehensive study on morphological, structural and optical properties of Cr2O3 nanoparticle and its antibacterial activities. J. Mater. Sci. Mater. Electron. 2019, 30, 8035–8046. [Google Scholar] [CrossRef]
- Abadi, S.M.H.; Delbari, A.; Fakoor, Z.; Baedi, J. Effects of Annealing Temperature on Infrared Spectra of SiO2 Extracted from Rice Husk. J. Ceram. Sci. Technol. 2015, 6, 41–45. [Google Scholar] [CrossRef]
- Tanykova, N.; Petrova, Y.; Kostina, J.; Kozlova, E.; Leushina, E.; Spasennykh, M. Study of Organic Matter of Unconventional Reservoirs by IR Spectroscopy and IR Microscopy. Geosciences 2021, 11, 277. [Google Scholar] [CrossRef]















| Coating | Target | Target Composition, at. % | N2, % | Coating Composition, at. % | h, µm | Deposition Rate, nm/min | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cr | Al | Si | B | Cr | Al | Si | B | N | |||||
| 1 | 1 | 44 | 10 | 14 | 32 | 0 | 64 | 4 | 11 | 21 | - | 1.6 | 108 |
| 2 | 25 | 42 | 6 | 12 | 15 | 25 | 2.5 | 167 | |||||
| 3 | 2 | 45 | 29 | 16 | 10 | 0 | 62 | 11 | 21 | 6 | - | 1.4 | 93 |
| 4 | 25 | 40 | 18 | 11 | 5 | 26 | 2.3 | 153 | |||||
| Phase | hkl (2Θ, °) | d, nm | |||
|---|---|---|---|---|---|
| Coating 1 | Coating 2 | Coating 3 | Coating 4 | ||
| t-Cr5Si3 | 411 (45.2) | 7 | - | 3 | - |
| h-CrSi2 | 111 (43.2) | - | - | - | 4 |
| t-Cr5B3 | 211 (37.7) | 11 | - | - | - |
| o-CrB | 021 (38.2) | - | - | 15 | 4 |
| t-Cr2Al | 103 (43.5) | 3 | - | 6 | 5 |
| c-Cr(Al)N | 200 | - | - | - | 3 |
| Coating | H, GPa | E, GPa | W,% | H/E | H3/E2, GPa | f | Vw, mm3N−1m−1 |
|---|---|---|---|---|---|---|---|
| 1 | 29 ± 1.0 | 365 ± 8 | 42 | 0.081 | 0.191 | 0.48 ± 0.02 | 6.3·10−6 |
| 2 | 25 ± 0.7 | 247 ± 5 | 49 | 0.100 | 0.247 | 0.47 ± 0.04 | 5.7·10−6 |
| 3 | 20 ± 0.6 | 205 ± 4 | 54 | 0.098 | 0.193 | 0.65 ± 0.07 | 2.9·10−4 |
| 4 | 15 ± 0.8 | 172 ± 4 | 44 | 0.088 | 0.116 | 0.51 ± 0.04 | 7.5·10−6 |
| Coating | H, GPa | f | Vw, mm3/(N·m) | T, °C | Ref. |
|---|---|---|---|---|---|
| Cr-Al-Si-N | 30 | 0.51 | 4.5·10−6 | - | [41] |
| Cr-Al-Si-N | 25 | 1000 | [12] | ||
| Cr–Al–Si–N | 33 | - | - | 1100 | [22] |
| Cr–Al–B–N | 36 | - | - | 1100 | [22] |
| Cr–Al–B–N | 46 | 900 | [16] | ||
| Cr–Al–Si–B–N | 18 | 0.40 | 2·10−6 | 1100 | [19,20] |
| Cr–Al–Si–B–N | 32 | - | - | 1100 | [21] |
| Cr–Al–Si–B | 29 | 0.48 | 6.3·10−6 | 1200 | [present study] |
| Cr–Al–Si–B–N | 15 | 0.51 | 7.5·10−6 | 1300 | [present study] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiryukhantsev-Korneev, P.; Chertova, A.; Pogozhev, Y.; Levashov, E. Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets. Coatings 2025, 15, 1243. https://doi.org/10.3390/coatings15111243
Kiryukhantsev-Korneev P, Chertova A, Pogozhev Y, Levashov E. Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets. Coatings. 2025; 15(11):1243. https://doi.org/10.3390/coatings15111243
Chicago/Turabian StyleKiryukhantsev-Korneev, Philipp, Alina Chertova, Yury Pogozhev, and Evgeny Levashov. 2025. "Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets" Coatings 15, no. 11: 1243. https://doi.org/10.3390/coatings15111243
APA StyleKiryukhantsev-Korneev, P., Chertova, A., Pogozhev, Y., & Levashov, E. (2025). Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets. Coatings, 15(11), 1243. https://doi.org/10.3390/coatings15111243

