Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (602)

Search Parameters:
Keywords = frame beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5594 KiB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 200
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
A Single-Phase Aluminum-Based Chiral Metamaterial with Simultaneous Negative Mass Density and Bulk Modulus
by Fanglei Zhao, Zhenxing Shen, Yong Cheng and Huichuan Zhao
Crystals 2025, 15(8), 679; https://doi.org/10.3390/cryst15080679 - 25 Jul 2025
Viewed by 182
Abstract
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, [...] Read more.
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, slender aluminum beams. The design avoids the manufacturing complexity of multi-phase systems by relying solely on geometric topology and chirality to induce dipolar and rotational resonances. Dispersion analysis and effective parameter retrieval confirm a double-negative frequency region from 30.9 kHz to 34 kHz. Finite element simulations further demonstrate negative refraction behavior when the metamaterial is immersed in water and subjected to 32 kHz and 32.7 kHz incident plane wave. Equifrequency curves (EFCs) analysis shows excellent agreement with simulated refraction angles, validating the material’s double-negative performance. This study provides a robust, manufacturable platform for elastic wave manipulation using a single-phase metallic metamaterial design. Full article
(This article belongs to the Special Issue Research Progress of Crystalline Metamaterials)
Show Figures

Figure 1

25 pages, 5596 KiB  
Article
Impact of Reinforcement Corrosion on Progressive Collapse Behavior of Multi-Story RC Frames
by Luchuan Ding, Xiaodi Dai, Yiping Gan and Yihua Zeng
Buildings 2025, 15(14), 2534; https://doi.org/10.3390/buildings15142534 - 18 Jul 2025
Viewed by 181
Abstract
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any [...] Read more.
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any point during a structure’s service life and at various locations within the structural system, this study examines the progressive collapse behavior of deteriorated RC frames subjected to simulated reinforcement corrosion. This paper presents an investigation into the system-level progressive collapse responses of deteriorated RC frames, which extends the current state of the art in this field. The influence of different material deteriorations, different corrosion locations, different column removal scenarios, and dynamic effects on structural response is explored. According to the results obtained in this research, a significant reduction in progressive collapse resistance can be resulted in with increasing corrosion levels. Notably, only reinforcement corrosion in the beams located directly above the removed column (i.e., within the directly affected part) for the investigated RC frame had a substantial impact on structural performance. In contrast, corrosion in other regions and concrete deterioration exhibited minimal influence in this work. An increased number of corroded floors further reduced collapse resistance. Dynamic progressive collapse resistance was found to be considerably lower than its static counterpart and decreased at a slightly faster rate as corrosion progressed. Additionally, the energy-based method was shown to provide a reasonable approximation of the maximum dynamic responses at different corrosion levels, offering a computationally efficient alternative to full dynamic analysis. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 1808 KiB  
Article
The Initial Assessment of Fire Safety of a Plane Steel Frame According to System Reliability Analysis
by Katarzyna Kubicka
Appl. Sci. 2025, 15(14), 7947; https://doi.org/10.3390/app15147947 - 17 Jul 2025
Viewed by 186
Abstract
The purpose of this research was to indicate the importance of an efficient design of steel frame structures, taking into account the fire design situation. In the case of steel frame structures, the typical mechanisms of failure (sway, beam, and mixed) are well [...] Read more.
The purpose of this research was to indicate the importance of an efficient design of steel frame structures, taking into account the fire design situation. In the case of steel frame structures, the typical mechanisms of failure (sway, beam, and mixed) are well known. Using this knowledge, combined with a reliability assessment of single nodes, may let designers reduce both the amount of material used for a structure and the total cost of the structure. In this article, one-story, single-nave frames with different loads were analyzed. Two types of loads were analyzed: symmetrical and unsymmetrical. Both cases resulted in different failure paths. The static analysis of the structure in the following minutes of the fire duration was carried out in the Robot Structural Analysis programme. The temperature load was computed according to the Eurocode recommendation with the assumption that the temperature of fire gases is described by the standard fire curve. Afterward, the system reliability analysis for the selected failure paths was conducted. Additionally, the displacement analysis was performed in the following minutes of the fire. The biggest challenge in the proposed method is that there are many potential failure paths, and checking all of them is very time-consuming, even when using advanced computers. Therefore, only selected collapse modes were analyzed. Full article
Show Figures

Figure 1

26 pages, 7471 KiB  
Article
Seismic Performance and Moment–Rotation Relationship Modeling of Novel Prefabricated Frame Joints
by Jiaqi Liu, Dafu Cao, Kun Wang, Wenhai Wang, Hua Ye, Houcun Zou and Changhong Jiang
Buildings 2025, 15(14), 2504; https://doi.org/10.3390/buildings15142504 - 16 Jul 2025
Viewed by 310
Abstract
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic [...] Read more.
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic performance tests were conducted using different end-plate thicknesses, grout strengths, stiffener configurations, and prestressing tendon configurations. The experimental results showed that all specimens experienced beam end failures, and three failure modes occurred: (1) failure of the end plate of the beam sleeve, (2) failure of the variable cross-section of the prefabricated beam, and (3) failure of prefabricated beams at the connection with the steel sleeves. The load-bearing capacity and initial stiffness of the structure are increased by 35.41% and 32.64%, respectively, by increasing the thickness of the end plate. Specimens utilizing C80 grout exhibited a 39.05% higher load capacity than those with lower-grade materials. Adding stiffening ribs improved the initial stiffness substantially. Specimen XF2 had 219.08% higher initial stiffness than XF1, confirming the efficacy of stiffeners in enhancing joint rigidity. The configuration of the prestressed tendons significantly influenced the load-bearing capacity. Specimen YL2 with symmetrical double tendon bundles demonstrated a 27.27% higher ultimate load capacity than specimen YL1 with single centrally placed tendon bundles. An analytical model to calculate the moment–rotation relationship was established following the evaluation criteria specified in Eurocode 3. The results demonstrated a good agreement, providing empirical references for practical engineering applications. Full article
(This article belongs to the Special Issue Research on Industrialization and Intelligence in Building Structures)
Show Figures

Figure 1

18 pages, 8921 KiB  
Article
Seismic Performance of Self-Centering Frame Structures with Additional Exterior Wall Panels Connected by Flexible Devices
by Caiyan Zhang, Xiao Lai and Weihang Gao
Buildings 2025, 15(14), 2478; https://doi.org/10.3390/buildings15142478 - 15 Jul 2025
Viewed by 201
Abstract
To address the issue of deformation mismatch between the exterior wall panels and the resilient frame structure under large deformations, two novel flexible devices (FDs) with different working principles are proposed in this paper. These FDs enable the exterior wall panels to achieve [...] Read more.
To address the issue of deformation mismatch between the exterior wall panels and the resilient frame structure under large deformations, two novel flexible devices (FDs) with different working principles are proposed in this paper. These FDs enable the exterior wall panels to achieve cooperative deformation with frame columns or beams under horizontal loads, thus improving the seismic performance of the frame structure with additional exterior wall panels. This study begins by explaining the specific design thought of the FDs based on examining the deformation characteristics of frame structures. Then, a series of low-cycle loading tests are conducted on frame specimens to demonstrate the effectiveness of the FDs. The experimental results indicate that the FDs can improve the interaction between the exterior wall panels and the main frame, reduce plastic damage to the wall panels, and increase the peak load-bearing capacity of the overall structure by approximately 17–21%. In addition, a refined finite element modeling method for the proposed FDs is presented using the ABAQUS software, providing a basis for further research on frame structures with additional exterior wall panels. Full article
Show Figures

Figure 1

17 pages, 7769 KiB  
Article
Design and Experimentation of a Height-Adjustable Management Platform for Pineapple Fields
by Sili Zhou, Fengguang He, Ganran Deng, Ye Dai, Xilin Wang, Bin Yan, Pinlan Chen, Zehua Liu, Bin Li and Dexuan Pan
Agriculture 2025, 15(13), 1420; https://doi.org/10.3390/agriculture15131420 - 30 Jun 2025
Viewed by 274
Abstract
To address the challenges of inadequate adaptability, insufficient power, high ground clearance, and limited functionality in existing pineapple field machinery, this study proposes a height-adjustable pineapple field management platform based on previously established cultivation patterns and agronomic requirements. The structural configuration and operational [...] Read more.
To address the challenges of inadequate adaptability, insufficient power, high ground clearance, and limited functionality in existing pineapple field machinery, this study proposes a height-adjustable pineapple field management platform based on previously established cultivation patterns and agronomic requirements. The structural configuration and operational principles of the platform’s power chassis are elucidated, with specific emphasis on the development of the traction power system and modular operational systems. Theoretical and experimental analyses of steering parameters, stability, and field performance were conducted. Finite element simulation analysis of the frame revealed that under full-load conditions, the equivalent elastic strains during descent and ascent phases were 0.000317 and 0.00125, respectively. Maximum equivalent stresses (48.27 MPa and 231.6 MPa for descent and ascent, respectively) were localized at the beam–plate junctions, while peak deformations of 1.14 mm (descent) and 4.31 mm (ascent) occurred at mid-frame and posterior–mid regions, respectively. Field validation demonstrated operational velocities of 0.16–1.77 m/s (forward) and 0.11–0.28 m/s (reverse), with a maximum gradability of 20°. The platform exhibited multifunctional capabilities including weeding, spraying, fertilization, flower induction, harvesting, and transportation, demonstrating its potential to fulfill the operational requirements for pineapple field management. Simultaneously, the overall work efficiency is increased by more than 50%, compared to manual labor. Full article
Show Figures

Figure 1

23 pages, 3551 KiB  
Article
The Influence of Soft Soil, Pile–Raft Foundation and Bamboo on the Bearing Characteristics of Reinforced Concrete (RC) Structure
by Zhibin Zhong, Xiaotong He, Shangheng Huang, Chao Ma, Baoxian Liu, Zhile Shu, Yineng Wang, Kai Cui and Lining Zheng
Buildings 2025, 15(13), 2302; https://doi.org/10.3390/buildings15132302 - 30 Jun 2025
Viewed by 332
Abstract
Pile–raft foundations are widely used in soft soil engineering due to their good integrity and high stiffness. However, traditional design methods independently design pile–raft foundations and superstructures, ignoring their interaction. This leads to significant deviations from actual conditions when the superstructure height increases, [...] Read more.
Pile–raft foundations are widely used in soft soil engineering due to their good integrity and high stiffness. However, traditional design methods independently design pile–raft foundations and superstructures, ignoring their interaction. This leads to significant deviations from actual conditions when the superstructure height increases, resulting in excessive costs and adverse effects on building stability. This study experimentally investigates the interaction characteristics of pile–raft foundations and superstructures in soft soil under different working conditions using a 1:10 geometric similarity model. The superstructure is a cast-in-place frame structure (beams, columns, and slabs) with bamboo skeletons with the same cross-sectional area as the piles and rafts, cast with concrete. The piles in the foundation use rectangular bamboo strips (side length ~0.2 cm) instead of steel bars, with M1.5 mortar replacing C30 concrete. The raft is also made of similar materials. The results show that the soil settlement significantly increases under the combined action of the pile–raft and superstructure with increasing load. The superstructure stiffness constrains foundation deformation, enhances bearing capacity, and controls differential settlement. The pile top reaction force exhibits a logarithmic relationship with the number of floors, coordinating the pile bearing performance. Designers should consider the superstructure’s constraint of the foundation deformation and strengthen the flexural capacity of inner pile tops and bottom columns for safety and economy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 5168 KiB  
Article
The Anisotropic Electrothermal Behavior and Deicing Performance of a Self-Healing Epoxy Composite Reinforced with Glass/Carbon Hybrid Fabrics
by Ting Chen and Xusheng Du
Molecules 2025, 30(13), 2794; https://doi.org/10.3390/molecules30132794 - 28 Jun 2025
Viewed by 269
Abstract
Hybrid fiber-reinforced polymer-laminated composites are often used under icy conditions (such as for reinforcing parts in aircraft frames and bridge beams), where there is an urgent demand for deicing. In this paper, besides the different mechanical properties of laminates along the longitudinal carbon [...] Read more.
Hybrid fiber-reinforced polymer-laminated composites are often used under icy conditions (such as for reinforcing parts in aircraft frames and bridge beams), where there is an urgent demand for deicing. In this paper, besides the different mechanical properties of laminates along the longitudinal carbon fiber (CF) and glass fiber (GF) directions, the anisotropic electrothermal behavior of a hybrid glass/carbon fiber-reinforced epoxy (GCF/EP) is also investigated, as well as its deicing performance and self-repairing capability. The surface equilibrium temperature of GCF/EP composites can conveniently be adjusted by tuning the current magnitude and its flow direction. Compared to the longitudinal CF direction of the GCF/EP, where 0.3 A was loaded to achieve a surface equilibrium temperature of 122.8 °C, a much weaker current (0.03 A) was needed to load along the longitudinal GF direction to reach almost the same temperature. However, besides the higher flexural strength and fast temperature response, along the longitudinal CF direction, the GCF/EP exhibited excellent deicing performance, including a shorter time and larger energy efficiency. Furthermore, the self-repairing ability of the GCF/EP and its effect on the deicing performance of the composite were characterized. Studying the Joule heating effect of GCF/EP composite laminates and their corresponding deicing performance lays the foundation for their design and practical application in icy environments. Full article
(This article belongs to the Special Issue Micro/Nano-Materials for Anti-Icing and/or De-Icing Applications)
Show Figures

Graphical abstract

13 pages, 4458 KiB  
Article
Effect of Vacancy Defect on Mechanical Properties of Single Wall Carbon Nanotube
by Nachiket S. Makh and Ajit D. Kelkar
Appl. Nano 2025, 6(3), 12; https://doi.org/10.3390/applnano6030012 - 27 Jun 2025
Viewed by 444
Abstract
Carbon nanotubes (CNTs) are cylindrical nanostructures formed by rolling a graphene sheet—a hexagonal lattice of carbon atoms—into a tube. Based on the rolling direction, CNTs are categorized as armchair, zigzag, or chiral. The chiral vector, derived from the graphene lattice, defines the CNT’s [...] Read more.
Carbon nanotubes (CNTs) are cylindrical nanostructures formed by rolling a graphene sheet—a hexagonal lattice of carbon atoms—into a tube. Based on the rolling direction, CNTs are categorized as armchair, zigzag, or chiral. The chiral vector, derived from the graphene lattice, defines the CNT’s structure, with chiral CNTs denoted by indices (n, m), where m > 0 and m ≠ n. The mechanical properties and structural stability of CNTs are highly sensitive to defects and impurities within their atomic framework. Among these, point defects such as single-atom vacancies are the most prevalent and can significantly degrade mechanical performance. These defects alter stress distribution, reduce stiffness, and impair strength, thereby limiting the functional reliability of CNTs in advanced applications such as nanocomposites, sensors, and electronic devices. This study examines the influence of vacancy defects on CNT mechanical behavior through a multiscale modeling framework. Molecular dynamics (MD) simulations are conducted using LAMMPS, with structural visualization via Visual Molecular Dynamics (VMD). Concurrently, a finite element (FE) model is developed in ANSYS, where the CNT is idealized as a space frame of elastic beam elements representing carbon–carbon bonds. The integration of atomistic and continuum approaches offers a comprehensive understanding of defect-induced mechanical degradation. The MD and FEM results are in strong agreement with findings in existing literature, validating the adopted methodology. These findings contribute valuable insights into the design and optimization of CNT-based materials for high-performance engineering applications. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

8 pages, 900 KiB  
Proceeding Paper
Repercussions on the Shear Force of an Internal Beam–Column Connection from Two Symmetrical Uniformly Distributed Loads at Different Positions on the Beam
by Albena Doicheva
Eng. Proc. 2025, 87(1), 85; https://doi.org/10.3390/engproc2025087085 - 26 Jun 2025
Viewed by 1288
Abstract
The beam–column connection is an important element in frame construction. Despite numerous studies, there is still no uniform procedure for shear force design across countries. We continue to witness serious problems and even collapse of buildings under seismic activity caused by failures in [...] Read more.
The beam–column connection is an important element in frame construction. Despite numerous studies, there is still no uniform procedure for shear force design across countries. We continue to witness serious problems and even collapse of buildings under seismic activity caused by failures in the beam–column connection of the frame. During the last 60 decades, a large number of experimental studies have been carried out on frame assemblies, where various parameters and their compatibility under cyclic activities have been investigated. What remains misunderstood is the magnitude and distribution of the forces passing through the joint and their involvement in the magnitude of the shear force. Here, the creation of a new mathematical model for the beam and column contributes significantly to our understanding of the flow of forces in the frame connection. For this purpose, the full dimensions of the beam and its material properties are taken into account. All investigations were carried out before crack initiation and after crack propagation along the face of the column, where it separates from the beam. In the present work, the beam is subjected to two symmetrical, transverse, uniformly distributed loads. Expressions are derived to determine the magnitudes of the support reactions from the beam, as a function of the height of its lateral edge. The load positions corresponding to the extreme values of the support reactions are determined. Numerical results are presented for the effect over the magnitudes of the support reactions from different strengths of concrete and steel on the beam. The results are compared with those given in the Eurocode for shear force calculation. It is found that the shear force determined by the proposed new model exceeds the force calculated by Eurocode by 4–62.5%, depending on the crack development stage and the beam materials. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

18 pages, 1910 KiB  
Article
Structural Damage Identification Using PID-Based Search Algorithm: A Control-Theory Inspired Application
by Kuang Shi and Tingting Sun
Buildings 2025, 15(13), 2216; https://doi.org/10.3390/buildings15132216 - 24 Jun 2025
Viewed by 225
Abstract
This study employs a PID (Proportion, Integral, Differential)-based search algorithm (PSA) to achieve structural damage identification (SDI), localization, and quantification. We developed finite element programs for a 10-element simply supported beam, a 21-element truss, and a 7-story steel frame, assigning damage factors to [...] Read more.
This study employs a PID (Proportion, Integral, Differential)-based search algorithm (PSA) to achieve structural damage identification (SDI), localization, and quantification. We developed finite element programs for a 10-element simply supported beam, a 21-element truss, and a 7-story steel frame, assigning damage factors to each element as design variables. The Relative Frequency Change Rate (RFCR) and Modal Assurance Criterion (MAC) were calculated as objective functions for PSA iteration; comparative studies were then conducted against Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Simulated Annealing (SA) in terms of damage identification accuracy, computational efficiency, and noise robustness. Results demonstrate that PSA achieves exceptional damage localization accuracy within 1% error in severity under noise-free conditions. With 1–3% noise, PSA maintains precise damage localization despite minor severity estimation errors, while other algorithms exhibit false positives in intact elements. Within the fixed number of iterations, PSA outperforms GA and PSO in computational efficiency. Although SA shows faster computation, it significantly compromises identification accuracy and fails in damage detection. The regularization term enables PSA to maintain noise-resistant damage identification even in a 70-element frame structure, demonstrating its potential for robust damage assessment across diverse structural types, scales, and noisy environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 2846 KiB  
Article
Research on Dynamic Calculation Methods for Deflection Tools in Deepwater Shallow Soft Formation Directional Wells
by Yufa He, Yu Chen, Xining Hao, Song Deng and Chaowei Li
Processes 2025, 13(6), 1947; https://doi.org/10.3390/pr13061947 - 19 Jun 2025
Viewed by 339
Abstract
The shallow, soft subsea formations, characterized by low strength and poor stability, lead to complex interactions between the screw motor drilling tool and the wellbore wall during directional drilling, complicating the accurate evaluation of the tool’s deflection capability. To address this issue, this [...] Read more.
The shallow, soft subsea formations, characterized by low strength and poor stability, lead to complex interactions between the screw motor drilling tool and the wellbore wall during directional drilling, complicating the accurate evaluation of the tool’s deflection capability. To address this issue, this paper proposes an integrated mechanical analysis method combining three-dimensional finite element analysis and transient dynamic analysis. By establishing a finite element model using 12-DOF (degree-of-freedom) spatial rigid-frame Euler–Bernoulli beam elements, coupled with well trajectory coordinate transformation and Rayleigh damping matrix, a precise description of drill string dynamic behavior is achieved. Furthermore, the introduction of pipe–soil dynamics and the p-y curve method improves the calculation of contact reaction forces between drilling tools and formation. Case studies demonstrate that increasing the tool face rotation angle intensifies lateral forces at the bit and stabilizer, with the predicted maximum dogleg severity within the first 10 m ahead of the bit progressively increasing. When the tool face rotation angle exceeds 2.5°, the maximum dogleg severity reaches 17.938°/30 m. With a gradual increase in the drilling pressure, the maximum bending stress on the drilling tool, maximum lateral cutting force, and stabilizer lateral forces progressively decrease, while vertical cutting forces and bit lateral forces gradually increase. However, the predicted maximum dogleg severity increases within the first 10 m ahead of the bit remain relatively moderate, suggesting the necessity for the multi-objective optimization of drilling pressure and related parameters prior to actual operations. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Drilling Techniques)
Show Figures

Figure 1

24 pages, 10811 KiB  
Article
Research on the Shear Performance of Carbonaceous Mudstone Under Natural and Saturated Conditions and Numerical Simulation of Slope Stability
by Jian Zhao, Hongying Chen and Rusong Nie
Appl. Sci. 2025, 15(12), 6935; https://doi.org/10.3390/app15126935 - 19 Jun 2025
Viewed by 246
Abstract
Rainfall can easily cause local sliding and collapse of carbonaceous mudstone deep road cut slopes. In order to study the strength characteristics of carbonaceous mudstone under different water environments, large-scale horizontal push shear tests were conducted on carbonaceous mudstone rock masses in their [...] Read more.
Rainfall can easily cause local sliding and collapse of carbonaceous mudstone deep road cut slopes. In order to study the strength characteristics of carbonaceous mudstone under different water environments, large-scale horizontal push shear tests were conducted on carbonaceous mudstone rock masses in their natural state and after immersion in saturated water. The push shear force–displacement relationship curve and fracture surface shape characteristics of carbonaceous mudstone samples were analyzed, and the shear strength index of carbonaceous mudstone was obtained, and numerical simulations on the stability and support effect of carbonaceous mudstone slopes were conducted. The research results indicate that carbonaceous mudstone can exhibit good structural properties and typical strain softening characteristics under natural conditions. The fracture surface, shear strength, and shear deformation process of carbonaceous mudstone samples will undergo significant changes after being soaked in saturated water. The average cohesion decreases by 33% compared to the natural state, and the internal friction angle decreases by 15%. The numerical simulation results also fully verify the attenuation of mechanical properties of carbonaceous mudstone after immersion, as well as the effectiveness of prestressed anchor cables and frame beams in supporting carbonaceous mudstone slopes. The research results provide an effective method for understanding the shear performance of carbonaceous mudstone and practical guidance for evaluating the stability and reinforcement design of carbonaceous mudstone slopes. Full article
Show Figures

Figure 1

19 pages, 2577 KiB  
Article
Damage Detection of Seismically Excited Buildings Using Neural Network Arrays with Branch Pruning Optimization
by Jau-Yu Chou, Chia-Ming Chang and Chieh-Yu Liu
Buildings 2025, 15(12), 2052; https://doi.org/10.3390/buildings15122052 - 14 Jun 2025
Viewed by 444
Abstract
In structural health monitoring, visual inspection remains vital for detecting damage, especially in concealed elements such as columns and beams. To improve damage localization, many studies have investigated and implemented deep learning into damage detection frameworks. However, the practicality of such models is [...] Read more.
In structural health monitoring, visual inspection remains vital for detecting damage, especially in concealed elements such as columns and beams. To improve damage localization, many studies have investigated and implemented deep learning into damage detection frameworks. However, the practicality of such models is often limited by their computational demands, and the relative accuracy may suffer if input features lack sensitivity to localized damage. This study introduces an efficient method for estimating damage locations and severity in buildings using a neural network array. A synthetic dataset is first generated from a simplified building model that includes floor flexural behavior and reflects the target dynamics of the structures. A dense, single-layer neural network array is initially trained with full floor accelerations, then pruned iteratively via the Lottery Ticket Hypothesis to retain only the most effective sub-networks. Subsequently, critical event measurements are input into the pruned array to estimate story-wise stiffness reductions. The approach is validated through numerical simulation of a six-story model and further verified via shake table tests on a scaled twin-tower steel-frame building. Results show that the pruned neural network array based on the Lottery Ticket Hypothesis achieves high accuracy in identifying stiffness reductions while significantly reducing computational load and outperforming full-input models in both efficiency and precision. Full article
(This article belongs to the Special Issue Structural Health Monitoring Through Advanced Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop