Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,063)

Search Parameters:
Keywords = formation optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1378 KiB  
Article
Weld Formation and Characteristics of Hot-Wire Laser Welding in Aluminum Alloy Narrow-Gap Joints
by Jukkapun Greebmalai, Shun Sadasue, Keita Marumoto, Eakkachai Warinsiriruk and Motomichi Yamamoto
Metals 2025, 15(7), 809; https://doi.org/10.3390/met15070809 - 18 Jul 2025
Abstract
This study joins a 20 mm thick 5000-series aluminum alloy using hot-wire insertion combined with narrow-gap laser welding to evaluate the feasibility and welding characteristics of this technique. The findings indicate that weld formation is primarily influenced by the laser energy density and [...] Read more.
This study joins a 20 mm thick 5000-series aluminum alloy using hot-wire insertion combined with narrow-gap laser welding to evaluate the feasibility and welding characteristics of this technique. The findings indicate that weld formation is primarily influenced by the laser energy density and material deposition rate. A strategy for improving weld beads is introduced incorporating a reoriented laser spot during the final pass on narrow-gap joints. This approach improves penetration and produces defect-free joints. The optimal processing conditions result in complete joint formation with four welding passes. Microstructural analysis reveals that the aluminum matrix morphology evolves according to the local thermal history during welding. Measurements show that the weld region is slightly harder than the base metal, whereas slightly lower hardness is observed at the fusion line and inter-pass boundaries, which correlates with the microstructure result. Full article
(This article belongs to the Special Issue Advanced Laser Welding and Joining of Metallic Materials)
13 pages, 5908 KiB  
Article
Experimental Study on the Strength Characteristics of Modified Guilin Red Clay
by Wenwu Chen, Zhigao Xie, Jiguang Chen, Mengyao Hong, Xiaobo Wang, Haofeng Zhou and Bai Yang
Buildings 2025, 15(14), 2533; https://doi.org/10.3390/buildings15142533 - 18 Jul 2025
Abstract
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to [...] Read more.
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to evaluate the strength characteristics and microstructural changes in modified clay specimens with varying dosages. The results demonstrate distinct strengthening mechanisms: Lignin exhibits an optimal dosage (6%), significantly increasing cohesion and internal friction angle through physical reinforcement (“soil fiber” formation), but higher dosages (8%) lead to particle separation and strength reduction. In contrast, lime provides continuous and substantial strength enhancement with increasing dosage (up to 8%), primarily through chemical reactions producing cementitious compounds (e.g., C-S-H, C-A-H) that densify the structure. Consequently, lime-modified clay shows significantly higher cohesion and internal friction angle compared to lignin-modified clay at equivalent or higher dosages, with corresponding stress–strain curves shifting from enhanced (strain-hardening) to softening behavior. These findings provide practical insights into red clay improvement in geotechnical engineering applications. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

19 pages, 5697 KiB  
Article
Mathematical Model of a Semiconductor Structure Based on Vanadium Dioxide for the Mode of a Conductive Phase
by Oleksii Kachura, Valeriy Kuznetsov, Mykola Tryputen, Vitalii Kuznetsov, Sergei Kolychev, Artur Rojek and Petro Hubskyi
Electronics 2025, 14(14), 2884; https://doi.org/10.3390/electronics14142884 - 18 Jul 2025
Abstract
This study presents a comprehensive mathematical model of a semiconductor structure based on vanadium dioxide (VO2), specifically in its conductive phase. The model was developed using the finite element method (FEM), enabling detailed simulation of the formation of a conductive [...] Read more.
This study presents a comprehensive mathematical model of a semiconductor structure based on vanadium dioxide (VO2), specifically in its conductive phase. The model was developed using the finite element method (FEM), enabling detailed simulation of the formation of a conductive channel under the influence of low-frequency alternating voltage (50 Hz). The VO2 structure under investigation exhibits pronounced electric field concentration at the surface, where the field strength reaches approximately 5 × 104 V/m, while maintaining a more uniform distribution of around 2 × 104 V/m within the bulk of the material. The simulation results were validated experimentally using a test circuit. Minor deviations—no greater than 8%—were observed between the simulated and measured current values, attributed to magnetic core saturation and modeling assumptions. A distinctive feature of the model is its ability to incorporate the nonlinear dependencies of VO2’s electrical properties on frequency. Analytical expressions were derived for the magnetic permeability and resistivity of VO2, demonstrating excellent agreement with experimental data. The coefficients of determination (R2) for the frequency dependence of magnetic permeability and resistance were found to be 0.9976 and 0.9999, respectively. The current version of the model focuses exclusively on the conductive phase and does not include the thermally induced metal–insulator phase transition characteristic of VO2. The study confirms that VO2-based structures exhibit high responsiveness and nonlinear switching behavior, making them suitable for applications in electronic surge protection, current limiting, and switching elements. The developed model provides a reliable and physically grounded tool for the design and optimization components based on VO2 in power electronics and protective circuitry. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
20 pages, 3162 KiB  
Article
Study on Separation of Desulfurization Wastewater in Ship Exhaust Gas Cleaning System with Rotating Dynamic Filtration
by Shiyong Wang, Juan Wu, Yanlin Wu and Wenbo Dong
Membranes 2025, 15(7), 214; https://doi.org/10.3390/membranes15070214 - 18 Jul 2025
Abstract
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental [...] Read more.
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental testing, theoretical analysis, and pilot-scale validation. Flux increases with temperature and pressure but decreases with feed concentration, remaining unaffected by circulation flow. For a small membrane (152 mm), flux consistently increases with rotational speed across all pressures. For a large membrane (374 mm), flux increases with rotational speed at 300 kPa but firstly increases and then decreases at 100 kPa. Filtrate turbidity in all experiments complies with regulatory standards. Due to the unique hydrodynamic characteristics of RDF, back pressure reduces the effective transmembrane pressure, whereas shear force mitigates concentration polarization and cake layer formation. Separation performance is governed by the balance between these two forces. The specific energy consumption of RDF is only 10–30% that of cross-flow filtration (CFF). Under optimized pilot-scale conditions, the wastewater was concentrated 30-fold, with filtrate turbidity consistently below 2 NTU, outperforming CFF. Moreover, continuous operation proves more suitable for marine environments. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

14 pages, 845 KiB  
Article
Cross-Path Planning of UAV Cluster Low-Altitude Flight Based on Inertial Navigation Combined with GPS Localization
by Xiancheng Yang, Ming Zhang, Peihui Yan, Qu Wang, Dongpeng Xie and Yuntian Brian Bai
Electronics 2025, 14(14), 2877; https://doi.org/10.3390/electronics14142877 - 18 Jul 2025
Abstract
To address the challenges of complex low-altitude flight environments for UAVs, where numerous obstacles often lead to GPS signal obstruction and multipath effects, this study proposes an integrated inertial navigation and GPS positioning approach for coordinated cross-path planning in drone swarms. The methodology [...] Read more.
To address the challenges of complex low-altitude flight environments for UAVs, where numerous obstacles often lead to GPS signal obstruction and multipath effects, this study proposes an integrated inertial navigation and GPS positioning approach for coordinated cross-path planning in drone swarms. The methodology involves the following: (1) discretizing continuous 3D airspace into grid cells using occupancy grid mapping to construct an environmental model; (2) analyzing dynamic flight characteristics through attitude angle variations in a 3D Cartesian coordinate system; and (3) implementing collaborative state updates and global positioning through fused inertial–GPS navigation. By incorporating Cramér–Rao lower bound optimization, the system achieves effective cross-path planning for drone formations. Experimental results demonstrate a 98.35% mission success rate with inter-drone navigation time differences maintained below 0.5 s, confirming the method’s effectiveness in enabling synchronized swarm operations while maintaining safe distances during cooperative monitoring and low-altitude flight missions. This approach demonstrates significant advantages in coordinated cross-path planning for UAV clusters. Full article
Show Figures

Figure 1

16 pages, 4723 KiB  
Article
The Effect of the Fiber Diameter, Epoxy-to-Amine Ratio, and Degree of PVA Saponification on CO2 Adsorption Properties of Amine-Epoxy/PVA Nanofibers
by Chisato Okada, Zongzi Hou, Hiroaki Imoto, Kensuke Naka, Takeshi Kikutani and Midori Takasaki
Polymers 2025, 17(14), 1973; https://doi.org/10.3390/polym17141973 - 18 Jul 2025
Abstract
Achieving carbon neutrality requires not only reducing CO2 emissions but also capturing atmospheric CO2. Direct air capture (DAC) using amine-based adsorbents has emerged as a promising approach. In this study, we developed amine-epoxy/poly(vinyl alcohol) (AE/PVA) nanofibers via electrospinning and in [...] Read more.
Achieving carbon neutrality requires not only reducing CO2 emissions but also capturing atmospheric CO2. Direct air capture (DAC) using amine-based adsorbents has emerged as a promising approach. In this study, we developed amine-epoxy/poly(vinyl alcohol) (AE/PVA) nanofibers via electrospinning and in situ thermal polymerization. PVA was incorporated to enhance spinnability, and B-staging of AE enabled fiber formation without inline heating. We systematically investigated the effects of electrospinning parameters, epoxy-to-amine ratios (E/A), and the degree of PVA saponification on CO2 adsorption performance. Thinner fibers, obtained by adjusting spinning conditions, exhibited faster adsorption kinetics due to increased surface area. Varying the E/A revealed a trade-off between adsorption capacity and low-temperature desorption efficiency, with secondary amines offering a balanced performance. Additionally, highly saponified PVA improved thermal durability by minimizing side reactions with amines. These findings highlight the importance of optimizing fiber morphology, chemical composition, and polymer properties to enhance the performance and stability of AE/PVA nanofibers for DAC applications. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

32 pages, 8548 KiB  
Article
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Abstract
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and [...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure. Full article
Show Figures

Figure 1

16 pages, 10306 KiB  
Article
Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes
by Zhaochi Chen, Chengche Liu and Minh-Quang Tran
Nanomaterials 2025, 15(14), 1115; https://doi.org/10.3390/nano15141115 - 18 Jul 2025
Abstract
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS [...] Read more.
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS2) composite interdigitated electrode (IDE) structure was fabricated using pulsed laser ablation. The pH sensor, with an active area of 30 mm × 30 mm, exhibited good adhesion to the polyethylene terephthalate (PET) substrate and maintained structural integrity under repeated bending cycles. Precise ablation was achieved under optimized conditions of 4.35 J/cm2 laser fluence, a repetition rate of 300 kHz, and a scanning speed of 500 mm/s, enabling the formation of defect-free IDE arrays without substrate damage. The influence of laser processing parameters on the surface morphology, electrical conductivity, and wettability of the composite thin films was systematically characterized. The fabricated pH sensor exhibited high sensitivity (~4.7% change in current per pH unit) across the pH 2–10 range, rapid response within ~5.2 s, and excellent mechanical stability under 100 bending cycles with negligible performance degradation. Moreover, the sensor retained > 95% of its stable sensitivity after 7 days of ambient storage. Furthermore, the pH response behavior was evaluated for electrode structures with different pitches, demonstrating that structural design parameters critically impact sensing performance. These results offer valuable insights into the scalable fabrication of flexible, wearable pH sensors, with promising applications in wound monitoring and personalized healthcare systems. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

15 pages, 3240 KiB  
Article
Utilization of Chromite Spinel Powder in the Metallothermic Smelting of Low-Carbon Ferrochrome
by Yerbolat Makhambetov, Magzhan Kutzhanov, Ruslan Toleukadyr, Aibar Myrzagaliyev, Zhadiger Sadyk, Zhalgas Saulebek and Amankeldy Akhmetov
Processes 2025, 13(7), 2288; https://doi.org/10.3390/pr13072288 - 18 Jul 2025
Abstract
This study investigates the feasibility of producing low-carbon FeCr via metallothermic smelting of Cr concentrate and chromite spinel powder using a complex FeAlSiCa alloy as the reductant in an induction furnace. The proposed approach offers an alternative to conventional carbothermic and oxygen-blown technologies, [...] Read more.
This study investigates the feasibility of producing low-carbon FeCr via metallothermic smelting of Cr concentrate and chromite spinel powder using a complex FeAlSiCa alloy as the reductant in an induction furnace. The proposed approach offers an alternative to conventional carbothermic and oxygen-blown technologies, reducing both the carbon footprint and airborne emissions. Three charge compositions were tested with varying FeAlSiCa additions (12, 14, and 16 kg per 100 kg of Cr source) and partial replacement of Cr concentrate with up to 20% CSP. Thermodynamic and microstructural analyses were conducted, and the effects of the slag basicity, temperature profiles, and holding time were assessed. In optimal conditions, Cr recovery reached up to 80% with minimal Cr2O3 losses in slag, and the resulting alloys met ISO 5448-81 requirements for nitrogen-containing low-carbon FeCr. Microstructural examination revealed the formation of Fe-Cr solid solutions and CrN phases, with V incorporation from the FeAlSiCa alloy. The process proved stable and energy-efficient, producing compact, non-disintegrating slag. This study highlights the potential of induction furnace smelting and chromite spinel powder valorization as a sustainable path for FeCr production. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 4636 KiB  
Article
Chip Flow Direction Modeling and Chip Morphology Analysis of Ball-End Milling Cutters
by Shiqiang Zhou, Anshan Zhang, Xiaosong Zhang, Maiqi Han and Bowen Liu
Coatings 2025, 15(7), 842; https://doi.org/10.3390/coatings15070842 - 18 Jul 2025
Abstract
Ball-end milling cutters are normally used for complex surface machining. During the milling process, the tool posture and cutting parameters of the ball-end milling cutters have a significant impact on chip formations and morphological changes. Based on the Cutter Workpiece Engagement (CWE) model, [...] Read more.
Ball-end milling cutters are normally used for complex surface machining. During the milling process, the tool posture and cutting parameters of the ball-end milling cutters have a significant impact on chip formations and morphological changes. Based on the Cutter Workpiece Engagement (CWE) model, this study establishes a chip flow model for ball-end milling cutters with consideration of the tool posture variation. The machining experiments of Ti-6Al-4V with a 15° inclined plane and different feed directions were carried out. The influence mechanism of time-varying tool posture on chip formation was systematically investigated. The results reveal an interaction between the chip flow direction and the cutting velocity direction. The included angle between the chip flow directions at the maximum and minimum contact points in the CWE area affects the degree of chip curling, with a smaller angle leading to weaker curling. This research provides a theoretical foundation for the optimization of posture parameters of ball-end milling cutters and expounds on the influence of the chip flow angle on chip deformation. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

13 pages, 2298 KiB  
Review
Hydration Kinetics of Biochar-Enhanced Cement Composites: A Mini-Review
by Shah Room and Ali Bahadori-Jahromi
Buildings 2025, 15(14), 2520; https://doi.org/10.3390/buildings15142520 - 18 Jul 2025
Abstract
The construction sector makes a major contribution to global greenhouse gas emissions, in which cement alone produces approximately 7–8% of global CO2 emissions. To abate environmental impact and promote sustainable construction, alternative low-carbon cementitious materials are gaining attention. Biochar (BC), a carbon-rich [...] Read more.
The construction sector makes a major contribution to global greenhouse gas emissions, in which cement alone produces approximately 7–8% of global CO2 emissions. To abate environmental impact and promote sustainable construction, alternative low-carbon cementitious materials are gaining attention. Biochar (BC), a carbon-rich material obtained from biomass sources through the process of pyrolysis, has surfaced as a capable supplementary cementitious material due to its carbon capture capabilities and positive impact on the characteristics of cement composites. This review investigates the role of BC in cement composites, including its effects on hydration kinetics, microstructural development, fresh-state properties, and its optimal utilisation. The study also highlights the internal curing capabilities of BC when used in cement composites, its role in promoting hydration product formation, and its dual function in enhancing mechanical performance while facilitating carbon capture. Despite the benefits, there are some challenges such as variable BC properties, optimal dosage, and scalability. The review highlights the need for standardisation and further research to fully harness BC’s potential as a sustainable component in low-carbon construction technologies. Full article
(This article belongs to the Special Issue Advanced Research on Cementitious Composites for Construction)
Show Figures

Figure 1

15 pages, 2172 KiB  
Article
Study on the High-Temperature Reaction Kinetics of Solid Waste-Based High Belite Sulphoaluminate Cement Containing Residual Gypsum in the Clinker
by Dunlei Su, Mingxin Yang, Yani Hao, Jiahui Wang, Xin Liu, Haojian Tang, Fengyuan Dong, Dejin Xing and Weiyi Kong
Materials 2025, 18(14), 3369; https://doi.org/10.3390/ma18143369 - 17 Jul 2025
Abstract
In order to elucidate the high-temperature reaction process of solid waste-based high belite sulphoaluminate cement containing residual gypsum in clinker (NHBSAC) and obtain the formation laws of each mineral in clinker, this article studied its high-temperature reaction kinetics. Through QXRD analysis and numerical [...] Read more.
In order to elucidate the high-temperature reaction process of solid waste-based high belite sulphoaluminate cement containing residual gypsum in clinker (NHBSAC) and obtain the formation laws of each mineral in clinker, this article studied its high-temperature reaction kinetics. Through QXRD analysis and numerical fitting methods, the formation of C4A3S¯, β-C2S, and CaSO4 in clinker under different calcination systems was quantitatively characterized, the corresponding high-temperature reaction kinetics models were established, and the reaction activation energies of each mineral were obtained. The results indicate that the content of C4A3S¯ and β-C2S increases with the prolongation of holding time and the increase in calcination temperature, while CaSO4 is continuously consumed. Under the control mechanism of solid-state reaction, the formation and consumption of minerals follow the kinetic equation. C4A3S¯ and β-C2S satisfy the D4 equation under diffusion mechanism control, and CaSO4 satisfies the R3 equation under interface chemical reaction mechanism control. The activation energy required for mineral formation varies with different temperature ranges. The activation energies required to form C4A3S¯ at 1200–1225 °C, 1225–1275 °C, and 1275–1300 °C are 166.28 kJ/mol, 83.14 kJ/mol, and 36.58 kJ/mol, respectively. The activation energies required to form β-C2S at 1200–1225 °C and 1225–1300 °C are 374.13 kJ/mol and 66.51 kJ/mol, respectively. This study is beneficial for achieving flexible control of the mineral composition of NHBSAC clinker, providing a theoretical basis and practical experience for the preparation of low-carbon cement and the optimization design of its mineral composition. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

24 pages, 4619 KiB  
Article
Modeling and Optimization of Natural Gas Non-Catalytic Partial Oxidation with Hierarchical-Integrated Mechanism
by Wanqiu Yu, Haotian Ye, Wei Liu, Qiyao Wang and Hongguang Dong
Processes 2025, 13(7), 2287; https://doi.org/10.3390/pr13072287 - 17 Jul 2025
Abstract
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed [...] Read more.
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed C0-C6, C5-C15 and C16 mechanisms, and then hierarchically simplifying C5-C15 subsystems, ultimately integrating them into a final mechanism with 397 species and 5135 reactions. The HI-Mechanism accurately predicted shock tube ignition delays and major species concentrations. Microkinetic analyses, including production rates and reaction sensitivity, revealed key pathways and enabled reliable product distribution prediction. The HI-Mechanism provides theoretical guidance for optimizing POX of natural gas processes and can be extended to complex systems like heavy oil cracking, supporting clean energy technology development. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

Back to TopTop