Hydration Kinetics of Biochar-Enhanced Cement Composites: A Mini-Review
Abstract
1. Introduction
2. Biochar Production
3. Role of BC in Cement Composites
4. Hydration Kinetics of BC-Modified Cement Systems
4.1. Water Retention and Release
4.2. Hydration Kinetics
4.3. Effect of Carbonation on Cement Hydrates
4.4. Effect of BC on the Fresh State Properties of Cement Composites
5. Challenges and Opportunities
6. Conclusions
- BC is suitable for use as a partial cement replacement in cement composites. Particularly, finer BC particles contribute more effectively due to their higher specific surface area, which enhances the filler effect and promotes hydration reactions. Their porous structure also allows water retention, supporting the hydration process and improving the microstructure of the composite.
- BC addition significantly reduces the initial and final setting times of cement composites. The presence of functional groups on BC surfaces and their catalytic activity accelerate hydration, resulting in a faster setting time. The reported reductions in setting times range from 11% to 26%.
- The porous nature BC enables it to act as an internal curing agent, enhancing hydration kinetics by improving moisture availability and reducing autogenous shrinkage. This dual mechanism not only boosts early-age strength by up to 12–18% at 2–3 wt% replacement levels but also reduces early-age shrinkage by up to 30%. These effects contribute to improved dimensional stability and durability, particularly in high-performance or low water-to-cement ratio mixes.
- Incorporation of BC contributes to carbon sequestration through in situ carbonation within its pore structure. The formation of calcium carbonate (CaCO3) inside BC pores during the hydration process facilitates long-term CO2 capture, positioning BC-modified cement composites as a potential pathway toward carbon-negative construction materials.
- Workability of fresh cement composites decreases with increasing BC content, particularly above 3 wt%. Due to its water demand and high surface area, BC absorbs a portion of the mix water, resulting in slump reductions of 10–30% unless compensated by superplasticizers. This effect necessitates careful mix design to maintain workability while achieving desired mechanical properties.
- High dosages of BC above 5 wt% may negatively affect the cement composite. Excess BC can lead to increased porosity, insufficient cementitious binder content, and reduced compressive strength, thus offsetting the benefits seen at lower replacement levels. Therefore, optimal BC content must be carefully calibrated depending on the application.
- The variability in BC properties poses challenges for standardization and large-scale application. Properties such as particle size, surface chemistry, and porosity vary significantly depending on the type of biomass and pyrolysis conditions. This inconsistency complicates performance prediction and underscores the need for standardized BC production and characterization protocols.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental Impact of Cement Production and Solutions: A Review. Mater. Today Proc. 2021, 48, 741–746. [Google Scholar] [CrossRef]
- Yin, M.; Li, J.; Zheng, H.; Chen, L.; Li, H.; Wang, H.; Ma, Z.; Xu, X.; Gao, C. A genome recoding method enables scalable multiplex base editing. Nat. Commun. 2025, 16, 6201. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, X.; Zhang, Z.; Wei, C.; Xu, C. Synergistic utilization of blast furnace slag with other industrial solid wastes in cement and concrete industry: Synergistic mechanisms, applications, and challenges. Green. Energy Resour. 2023, 1, 100012. [Google Scholar] [CrossRef]
- Noor Azline, M.N.; Nabilah, A.B.; Nor Azizi, S.; Ernaleza, M.; Farah Nora Aznieta, A.A. Enhanced Autogeneous Self-Healing of MgO Blended Composites Incorporating with Silica Fume. Clean. Eng. Technol. 2023, 16, 100670. [Google Scholar] [CrossRef]
- Li, X.; Mehdizadeh, H.; Ling, T.C. Environmental, Economic and Engineering Performances of Aqueous Carbonated Steel Slag Powders as Alternative Material in Cement Pastes: Influence of Particle Size. Sci. Total Environ. 2023, 903, 166210. [Google Scholar] [CrossRef] [PubMed]
- da Silva Magalhães, M.; Cezar, B.F.; Lustosa, P.R. Influence of Brazilian Fly Ash Fineness on the Cementing Efficiency Factor, Compressive Strength and Young’s Modulus of Concrete. Dev. Built Environ. 2023, 14, 100147. [Google Scholar] [CrossRef]
- Alyousef, R.; Abbass, W.; Aslam, F.; Shah, M.I. Potential of Waste Woven Polypropylene Fiber and Textile Mesh for Production of Gypsum-Based Composite. Case Stud. Constr. Mater. 2023, 18, e02099. [Google Scholar] [CrossRef]
- Iqbal, S.; Zaheer, M.; Room, S. Mechanical & Microstructural Properties of Self-Compacting Concrete by Partial Replacement of Cement with Marble Powder and Sand with Rice Husk Ash. Sciencetech 2023, 4, 82–99. [Google Scholar]
- Nassar, R.U.D.; Saeed, D.; Ghebrab, T.; Room, S.; Deifalla, A.; Al Amara, K. Heat of Hydration, Water Sorption and Microstructural Characteristics of Paste and Mortar Mixtures Produced with Powder Waste Glass. Cogent Eng. 2024, 11, 2297466. [Google Scholar] [CrossRef]
- Kusuma, R.T.; Hiremath, R.B.; Rajesh, P.; Kumar, B.; Renukappa, S. Sustainable Transition towards Biomass-Based Cement Industry: A Review. Renew. Sustain. Energy Rev. 2022, 163, 112503. [Google Scholar] [CrossRef]
- Dai, T.; Fang, C.; Liu, T.; Zheng, S.; Lei, G.; Jiang, G. Waste Glass Powder as a High Temperature Stabilizer in Blended Oil Well Cement Pastes: Hydration, Microstructure and Mechanical Properties. Constr. Build. Mater. 2024, 439, 137359. [Google Scholar] [CrossRef]
- Wei, M.; Chen, L.; Lei, N.; Li, H.; Huang, L. Mechanical Properties and Microstructures of Thermally Activated Ultrafine Recycled Fine Powder Cementitious Materials. Constr. Build. Mater. 2025, 475, 141195. [Google Scholar] [CrossRef]
- Room, S.; Bahadori-Jahromi, A. Biochar-Enhanced Carbon-Negative and Sustainable Cement Composites: A Scientometric Review. Sustainability 2024, 16, 10162. [Google Scholar] [CrossRef]
- Kant Bhatia, S.; Palai, A.K.; Kumar, A.; Kant Bhatia, R.; Kumar Patel, A.; Kumar Thakur, V.; Yang, Y.H. Trends in Renewable Energy Production Employing Biomass-Based Biochar. Bioresour. Technol. 2021, 340, 158. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kua, H.W. Effect of Water Entrainment by Pre-Soaked Biochar Particles on Strength and Permeability of Cement Mortar. Constr. Build. Mater. 2018, 159, 107–125. [Google Scholar] [CrossRef]
- Hu, J.; Guo, H.; Wang, X.; Gao, M.T.; Yao, G.; Tsang, Y.F.; Li, J.; Yan, J.; Zhang, S. Utilization of the Saccharification Residue of Rice Straw in the Preparation of Biochar Is a Novel Strategy for Reducing CO2 Emissions. Sci. Total Environ. 2019, 650, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Barbhuiya, S.; Bhusan Das, B.; Kanavaris, F. Biochar-Concrete: A Comprehensive Review of Properties, Production and Sustainability. Case Stud. Constr. Mater. 2024, 20, e02859. [Google Scholar] [CrossRef]
- Zaid, O.; Alsharari, F.; Ahmed, M. Utilization of Engineered Biochar as a Binder in Carbon Negative Cement-Based Composites: A Review. Constr. Build. Mater. 2024, 417, 135246. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Sun, Y.; Tsang, D.C.W.; Cheng, K.; Ok, Y.S. Assembling Biochar with Various Layered Double Hydroxides for Enhancement of Phosphorus Recovery. J. Hazard Mater 2019, 365, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Gao, Y.; Bolan, N.; Shaheen, S.M.; Xu, S.; Wu, X.; Xu, X.; Hu, H.; Lin, J.; Zhang, F.; et al. Conversion of Biological Solid Waste to Graphene-Containing Biochar for Water Remediation: A Critical Review. Chem. Eng. J. 2020, 390, 124611. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Vijay, V.K.; Chandra, R.; Kumar, H. Production and Characterization of Biochar Produced from Slow Pyrolysis of Pigeon Pea Stalk and Bamboo. Clean. Eng. Technol. 2021, 3, 100101. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A Review of Biochar in Anaerobic Digestion to Improve Biogas Production: Performances, Mechanisms and Economic Assessments. Bioresour. Technol. 2021, 341, 125797. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, P.D.; You, S.; Igalavithana, A.D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H.W.; Kim, S.; Kwon, J.H.; Tsang, D.C.W.; et al. Biochar-Based Adsorbents for Carbon Dioxide Capture: A Critical Review. Renew. Sustain. Energy Rev. 2020, 119, 109582. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as Green Additives in Cement-Based Composites with Carbon Dioxide Curing. J. Clean. Prod. 2020, 258, 120678. [Google Scholar] [CrossRef]
- Asadi Zeidabadi, Z.; Bakhtiari, S.; Abbaslou, H.; Ghanizadeh, A.R. Synthesis, Characterization and Evaluation of Biochar from Agricultural Waste Biomass for Use in Building Materials. Constr. Build. Mater. 2018, 181, 301–308. [Google Scholar] [CrossRef]
- Osman, A.I.; Farghali, M.; Dong, Y.; Kong, J.; Yousry, M.; Rashwan, A.K.; Chen, Z.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.S. Reducing the Carbon Footprint of Buildings Using Biochar-Based Bricks and Insulating Materials: A Review. Environ. Chem. Lett. 2024, 22, 71–104. [Google Scholar] [CrossRef]
- Yang, C.; Yao, Q.; Li, L.; Xiao, X.; Lu, L.; Liu, C.; Zhu, C.; Zhan, S.; Yuan, H. The Isolated Ca-Nx Sites in Biochar Boosting Fe Catalyzed Fenton-like Oxidation of Tris(2-Chloroethyl) Phosphate: Properties, Mechanisms, and Applications. Appl. Catal. B Environ. Energy 2025, 366, 125056. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, F.; Yu, Y.; Gu, Y.; Wang, X.; Wang, Y. Effects of Water-Cement Ratio and Particle Diameter on the Mechanical Properties of Cement Paste Particles. Opt. Lasers Eng. 2025, 187, 108874. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Wang, J.; Liu, H.; Jin, H.; Zhang, J.; Li, G.; Tang, Y.; Ye, C. High-Value Utilization of Agricultural Waste: A Study on the Catalytic Performance and Deactivation Characteristics of Iron-Nickel Supported Biochar-Based Catalysts in the Catalytic Cracking of Toluene. Energy 2025, 323, 135806. [Google Scholar] [CrossRef]
- Zhao, M.; Zou, G.; Li, Y.; Pan, B.; Wang, X.; Zhang, J.; Xu, L.; Li, C.; Chen, Y. Biodegradable Microplastics Coupled with Biochar Enhance Cd Chelation and Reduce Cd Accumulation in Chinese Cabbage. Biochar 2025, 7, 31. [Google Scholar] [CrossRef]
- Ahmed, A.S.F.; Vanga, S.; Raghavan, V. Global Bibliometric Analysis of the Research in Biochar. J. Agric. Food Inf. 2018, 19, 228–236. [Google Scholar] [CrossRef]
- Ghorbani, M.; Neugschwandtner, R.W.; Soja, G.; Konvalina, P.; Kopecký, M. Carbon Fixation and Soil Aggregation Affected by Biochar Oxidized with Hydrogen Peroxide: Considering the Efficiency of Pyrolysis Temperature. Sustainability 2023, 15, 7158. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Zhang, W.; Li, Z.; Xing, F.; Tang, L. Application Potential Analysis of Biochar as a Carbon Capture Material in Cementitious Composites: A Review. Constr. Build. Mater. 2022, 350, 128715. [Google Scholar] [CrossRef]
- Yek, P.N.Y.; Cheng, Y.W.; Liew, R.K.; Wan Mahari, W.A.; Ong, H.C.; Chen, W.H.; Peng, W.; Park, Y.K.; Sonne, C.; Kong, S.H.; et al. Progress in the Torrefaction Technology for Upgrading Oil Palm Wastes to Energy-Dense Biochar: A Review. Renew. Sustain. Energy Rev. 2021, 151, 111645. [Google Scholar] [CrossRef]
- Winters, D.; Boakye, K.; Simske, S. Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review. Sustainability 2022, 14, 4633. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; McGrouther, K.; Huang, H.; Lu, K.; Guo, X.; He, L.; Lin, X.; Che, L.; Ye, Z.; et al. Effect of Biochar on the Extractability of Heavy Metals (Cd, Cu, Pb, and Zn) and Enzyme Activity in Soil. Environ. Sci. Pollut. Res. 2016, 23, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Alkhasha, A.; Al-Omran, A.; Louki, I. Impact of Deficit Irrigation and Addition of Biochar and Polymer on Soil Salinity and Tomato Productivity. Can. J. Soil Sci. 2019, 99, 380–394. [Google Scholar] [CrossRef]
- Qin, Y.; Pang, X.; Tan, K.; Bao, T. Evaluation of Pervious Concrete Performance with Pulverized Biochar as Cement Replacement. Cem. Concr. Compos. 2021, 119, 104022. [Google Scholar] [CrossRef]
- Gupta, S.; Muthukrishnan, S.; Kua, H.W. Comparing Influence of Inert Biochar and Silica Rich Biochar on Cement Mortar–Hydration Kinetics and Durability under Chloride and Sulfate Environment. Constr. Build. Mater. 2021, 268, 121142. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, L.; Gao, X.; Li, L.; Qin, L. Modification of Carbonation-Cured Cement Mortar Using Biochar and Its Environmental Evaluation. Cem. Concr. Compos. 2022, 134, 104764. [Google Scholar] [CrossRef]
- Khan, M.I.; Abdy Sayyed, M.A.; Ali, M.M.A. Examination of Cement Concrete Containing Micro Silica and Sugarcane Bagasse Ash Subjected to Sulphate and Chloride Attack. Mater. Today Proc. 2021, 39, 558–562. [Google Scholar] [CrossRef]
- Murali, G.; Wong, L.S. A Comprehensive Review of Biochar-Modified Concrete: Mechanical Performance and Microstructural Insights. Constr. Build. Mater. 2024, 425, 135986. [Google Scholar] [CrossRef]
- Nguyen, M.N. Potential Use of Silica-Rich Biochar for the Formulation of Adaptively Controlled Release Fertilizers: A Mini Review. J. Clean. Prod. 2021, 307, 127188. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Maierdan, Y.; Guo, T.; Chen, B.; Fang, S.; Zhao, L. Biochar as Carbon Sequestration Material Combines with Sewage Sludge Incineration Ash to Prepare Lightweight Concrete. Constr. Build. Mater. 2022, 343, 128116. [Google Scholar] [CrossRef]
- Lv, C.; Shen, Z.; Cheng, Q.; Tang, C.S.; Wang, Y.; Gu, K. Effects of Biochar and Polypropylene Fibre on Mechanical Behaviour of Cement-Solidified Sludge. Soil Use Manag. 2022, 38, 1667–1678. [Google Scholar] [CrossRef]
- Suarez-Riera, D.; Falliano, D.; Carvajal, J.F.; Celi, A.C.B.; Ferro, G.A.; Tulliani, J.M.; Lavagna, L.; Restuccia, L. The Effect of Different Biochar on the Mechanical Properties of Cement-Pastes and Mortars. Buildings 2023, 13, 2900. [Google Scholar] [CrossRef]
- Ling, Y.; Wu, X.; Tan, K.; Zou, Z. Effect of Biochar Dosage and Fineness on the Mechanical Properties and Durability of Concrete. Materials 2023, 16, 2809. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, Y.; Labianca, C.; Wang, L.; Ruan, S.; Poon, C.S.; Ok, Y.S.; Tsang, D.C.W. Carbon-Negative Cement-Bonded Biochar Particleboards. Biochar 2022, 4, 58. [Google Scholar] [CrossRef]
- Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Razavi, S.M.J.; Ulfberg, A.; Blanksvärd, T.; Sayahi, F.; Simonsson, P.; Reinke, B.; Försth, M.; et al. Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties. Sustainability 2021, 13, 9336. [Google Scholar] [CrossRef]
- Ruscica, G.; Peinetti, F.; Natali Sora, I.; Savi, P. Analysis of Electromagnetic Shielding Properties of Cement-Based Composites with Biochar and PVC as Fillers. C-J. Carbon Res. 2024, 10, 21. [Google Scholar] [CrossRef]
- Nahuat-Sansores, J.R.; Cruz-Argüello, J.C.; Gurrola, M.P.; Trejo-Arroyo, D.L. Suitability of Biochar as Supplementary Cementitious Material (SCM) or Filler: Waste Revalorization, a Critical Review. Rev. Ing. Civ. 2022, 6, 12. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Poon, C.S.; Wang, C.H.; Ok, Y.S.; Mechtcherine, V.; Tsang, D.C.W. Roles of Biochar and CO2 Curing in Sustainable Magnesia Cement-Based Composites. ACS Sustain. Chem. Eng. 2021, 9, 8603–8610. [Google Scholar] [CrossRef]
- Mrad, R.; Chehab, G. Mechanical and Microstructure Properties of Biochar-Based Mortar: An Internal Curing Agent for PCC. Sustainability 2019, 11, 2491. [Google Scholar] [CrossRef]
- Aman, A.M.N.; Selvarajoo, A.; Lau, T.L.; Chen, W.H. Biochar as Cement Replacement to Enhance Concrete Composite Properties: A Review. Energies 2022, 15, 7662. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A.; Mahmood, A.H.; Han, T. Carbon Sequestration in Cementitious Composites Using Biochar and Fly Ash –Effect on Mechanical and Durability Properties. Constr. Build. Mater. 2021, 291, 123363. [Google Scholar] [CrossRef]
- Sinha, S.; Pandey, A.; B, S.N.; Prasad, B. Preliminary Study of Agricultural Waste as Biochar Incorporated into Cementitious Materials. J. Archit. Environ. Struct. Eng. Res. 2023, 6, 5695. [Google Scholar] [CrossRef]
- Vafaei, B.; Ghahremaninezhad, A. Effects of Biochar as a Green Additive on the Self-Healing and Properties of Sustainable Cementitious Materials. ACS Sustain. Chem. Eng. 2024, 12, 8261–8275. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.Y. Strength and Durability Improvements of Biochar-Blended Mortar or Paste Using Accelerated Carbonation Curing. J. CO2 Util. 2021, 54, 101766. [Google Scholar] [CrossRef]
- Bilal, H.; Chen, T.; Ren, M.; Gao, X.; Su, A. Influence of Silica Fume, Metakaolin & SBR Latex on Strength and Durability Performance of Pervious Concrete. Constr. Build. Mater. 2021, 275, 122124. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Xue, Q.; Huang, X.; Liu, L.; Poon, C.S. Sludge Biochar as a Green Additive in Cement-Based Composites: Mechanical Properties and Hydration Kinetics. Constr. Build. Mater. 2020, 262, 120723. [Google Scholar] [CrossRef]
- Berti, D.; Biscontin, G.; Lau, J. Effect of Biochar Filler on the Hydration Products and Microstructure in Portland Cement–Stabilized Peat. J. Mater. Civ. Eng. 2021, 33, 04021263. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Carbonaceous Micro-Filler for Cement: Effect of Particle Size and Dosage of Biochar on Fresh and Hardened Properties of Cement Mortar. Sci. Total Environ. 2019, 662, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Tulliani, J.M.; Kua, H.W. Carbonaceous Admixtures in Cementitious Building Materials: Effect of Particle Size Blending on Rheology, Packing, Early Age Properties and Processing Energy Demand. Sci. Total Environ. 2022, 807, 150884. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kua, H.W.; Koh, H.J. Application of Biochar from Food and Wood Waste as Green Admixture for Cement Mortar. Sci. Total Environ. 2018, 619, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kua, H.W.; Pang, S.D. Biochar-Mortar Composite: Manufacturing, Evaluation of Physical Properties and Economic Viability. Constr. Build. Mater. 2018, 167, 874–889. [Google Scholar] [CrossRef]
- Kumar, A.; Pippal, A.; Agarwal, R.; Kumar, R.; Bhanavath, S.N.; Athar, H.; Kushwah, S. Thermo-Physical Study of Biochar Mixture into The Cement Based Material for Thermal Comfort. J. Build. Des. Environ. 2023, 2, 21478. [Google Scholar] [CrossRef]
- Zhang, D.; Han, T.; Wang, J.; Sun, C.; Jiang, X.Y.; Ni, Z.; Guo, J. An Insight into the Effect of Rice Straw Biochar on Compressive Strength and Thermal Conductivity of Cement. Proc. J. Phys. Conf. Ser. 2022, 2168, 012012. [Google Scholar] [CrossRef]
- Zhang, Y.; He, M.; Wang, L.; Yan, J.; Ma, B.; Zhu, X.; Ok, Y.S.; Mechtcherine, V.; Tsang, D.C.W. Biochar as Construction Materials for Achieving Carbon Neutrality. Biochar 2022, 4, 59. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Wang, Q. Accelerated Carbonation of Regenerated Cementitious Materials from Waste Concrete for CO2 Sequestration. J. Build. Eng. 2022, 55, 104701. [Google Scholar] [CrossRef]
- Tan, K.; Pang, X.; Qin, Y.; Wang, J. Properties of Cement Mortar Containing Pulverized Biochar Pyrolyzed at Different Temperatures. Constr. Build. Mater. 2020, 263, 120616. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.Y. Hydration-Strength-Durability-Workability of Biochar-Cement Binary Blends. J. Build. Eng. 2021, 42, 103064. [Google Scholar] [CrossRef]
- Choi, W.C.; Yun, H.D.; Lee, J.Y. Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis. J. Korea Inst. Struct. Maint. Insp. 2012, 16, 67–74. [Google Scholar] [CrossRef]
- Sirico, A.; Belletti, B.; Bernardi, P.; Malcevschi, A.; Pagliari, F.; Fornoni, P.; Moretti, E. Effects of Biochar Addition on Long-Term Behavior of Concrete. Theor. Appl. Fract. Mech. 2022, 122, 103626. [Google Scholar] [CrossRef]
- Tan, K.-H.; Wang, T.-Y.; Zhou, Z.-H.; Qin, Y.-H. Biochar as a Partial Cement Replacement Material for Developing Sustainable Concrete: An Overview. J. Mater. Civ. Eng. 2021, 33, 03121001. [Google Scholar] [CrossRef]
- Chi, L.; Du, T.; Lu, S.; Li, W.; Wang, M. Electrochemical Impedance Spectroscopy Monitoring of Hydration Behaviors of Cement with Na2CO3 Accelerator. Constr. Build. Mater. 2022, 357, 129374. [Google Scholar] [CrossRef]
- Gupta, S.; Krishnan, P.; Kashani, A.; Kua, H.W. Application of Biochar from Coconut and Wood Waste to Reduce Shrinkage and Improve Physical Properties of Silica Fume-Cement Mortar. Constr. Build. Mater. 2020, 262, 120688. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Adesina, A. Recent Advancements in the Use of Biochar for Cementitious Applications: A Review. J. Build. Eng. 2020, 32, 101705. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Kua, H.W.; Yang, J.; Ok, Y.S.; Ding, S.; Hou, D.; Poon, C.S. The Roles of Biochar as Green Admixture for Sediment-Based Construction Products. Cem. Concr. Compos. 2019, 104, 103348. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A. Utilization of Biochar from Unwashed Peanut Shell in Cementitious Building Materials–Effect on Early Age Properties and Environmental Benefits. Fuel Process. Technol. 2021, 218, 106841. [Google Scholar] [CrossRef]
- Haris Javed, M.; Ali Sikandar, M.; Ahmad, W.; Tariq Bashir, M.; Alrowais, R.; Bilal Wadud, M. Effect of Various Biochars on Physical, Mechanical, and Microstructural Characteristics of Cement Pastes and Mortars. J. Build. Eng. 2022, 57, 104850. [Google Scholar] [CrossRef]
Sr. No. | (a) Properties of Cement Composites | (b) Properties of BC |
---|---|---|
1 | Rheology: Yield stress and viscosity | Surface area and particle size |
2 | Workability | Surface area, morphology, particle size, and water retention capacity |
3 | Density and air content | Density |
5 | Hydration | Inorganic elements, surface area, pH, particle size, and water retention capacity |
6 | Shrinkage | Pore size and water retention capacity |
7 | Thermal conductivity | Porosity and thermal conductivity |
8 | Mechanical properties | Carbon content, inorganic elements, morphology, particle size, pore size, and density |
9 | Internal RH | Surface area and water retention capacity |
10 | Water absorption | Functional groups, porosity, and water retention capacity |
11 | Fire resistance | Flammability |
12 | Durability | O:C and H:C ratio |
13 | GHS emission and leachability | Heavy metals and environmental consideration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Room, S.; Bahadori-Jahromi, A. Hydration Kinetics of Biochar-Enhanced Cement Composites: A Mini-Review. Buildings 2025, 15, 2520. https://doi.org/10.3390/buildings15142520
Room S, Bahadori-Jahromi A. Hydration Kinetics of Biochar-Enhanced Cement Composites: A Mini-Review. Buildings. 2025; 15(14):2520. https://doi.org/10.3390/buildings15142520
Chicago/Turabian StyleRoom, Shah, and Ali Bahadori-Jahromi. 2025. "Hydration Kinetics of Biochar-Enhanced Cement Composites: A Mini-Review" Buildings 15, no. 14: 2520. https://doi.org/10.3390/buildings15142520
APA StyleRoom, S., & Bahadori-Jahromi, A. (2025). Hydration Kinetics of Biochar-Enhanced Cement Composites: A Mini-Review. Buildings, 15(14), 2520. https://doi.org/10.3390/buildings15142520