Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (873)

Search Parameters:
Keywords = forest monitoring sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 9833 KB  
Article
Decision-Level Fusion of PS-InSAR and Optical Data for Landslide Susceptibility Mapping Using Wavelet Transform and MAMBA
by Hongyi Guo, Antonio M. Martínez-Graña, Leticia Merchán, Agustina Fernández and Manuel Casado
Land 2026, 15(2), 211; https://doi.org/10.3390/land15020211 - 26 Jan 2026
Abstract
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy [...] Read more.
Landslides remain a critical geohazard in mountainous regions, where intensified extreme rainfall and rapid land-use changes exacerbate slope instability, challenging the reliability of traditional single-sensor susceptibility assessments. To overcome the limitations of data heterogeneity and noise, this study presents a decision-level fusion strategy integrating Permanent Scatterer InSAR (PS-InSAR) deformation dynamics with multi-source optical remote sensing indicators via a Wavelet Transform (WT) enhanced Multi-source Additive Model Based on Bayesian Analysis (MAMBA). San Martín del Castañar (Spain), a region characterized by rugged terrain and active deformation, served as the study area. We utilized Sentinel-1A C-band datasets (January 2020–February 2025) as the primary source for continuous monitoring, complemented by L-band ALOS-2 observations to ensure coherence in vegetated zones, yielding 24,102 high-quality persistent scatterers. The WT-based multi-scale enhancement improved the signal-to-noise ratio by 23.5% and increased deformation anomaly detection by 18.7% across 24,102 validated persistent scatterers. Bayesian fusion within MAMBA produced high-resolution susceptibility maps, indicating that very-high and high susceptibility zones occupy 24.0% of the study area while capturing 84.5% of the inventoried landslides. Quantitative validation against 1247 landslide events (2020–2025) achieved an AUC of 0.912, an overall accuracy of 87.3%, and a recall of 84.5%, outperforming Random Forest, Logistic Regression, and Frequency Ratio models by 6.8%, 10.8%, and 14.3%, respectively (p < 0.001). Statistical analysis further demonstrates a strong geo-ecological coupling, with landslide susceptibility significantly correlated with ecological vulnerability (r = 0.72, p < 0.01), while SHapley Additive exPlanations identify land-use type, rainfall, and slope as the dominant controlling factors. Full article
(This article belongs to the Special Issue Ground Deformation Monitoring via Remote Sensing Time Series Data)
Show Figures

Figure 1

44 pages, 1721 KB  
Systematic Review
Vibration-Based Predictive Maintenance for Wind Turbines: A PRISMA-Guided Systematic Review on Methods, Applications, and Remaining Useful Life Prediction
by Carlos D. Constantino-Robles, Francisco Alberto Castillo Leonardo, Jessica Hernández Galván, Yoisdel Castillo Alvarez, Luis Angel Iturralde Carrera and Juvenal Rodríguez-Reséndiz
Appl. Mech. 2026, 7(1), 11; https://doi.org/10.3390/applmech7010011 - 26 Jan 2026
Abstract
This paper presents a systematic review conducted under the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, analyzing 286 scientific articles focused on vibration-based predictive maintenance strategies for wind turbines within the context of advanced Prognostics and Health Management (PHM). The [...] Read more.
This paper presents a systematic review conducted under the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, analyzing 286 scientific articles focused on vibration-based predictive maintenance strategies for wind turbines within the context of advanced Prognostics and Health Management (PHM). The review combines international standards (ISO 10816, ISO 13373, and IEC 61400) with recent developments in sensing technologies, including piezoelectric accelerometers, microelectromechanical systems (MEMS), and fiber Bragg grating (FBG) sensors. Classical signal processing techniques, such as the Fast Fourier Transform (FFT) and wavelet-based methods, are identified as key preprocessing tools for feature extraction prior to the application of machine-learning-based diagnostic algorithms. Special emphasis is placed on machine learning and deep learning techniques, including Support Vector Machines (SVM), Random Forest (RF), Convolutional Neural Networks (CNN), Long Short-Term Memory networks (LSTM), and autoencoders, as well as on hybrid digital twin architectures that enable accurate Remaining Useful Life (RUL) estimation and support autonomous decision-making processes. The bibliometric and case study analysis covering the period 2020–2025 reveals a strong shift toward multisource data fusion—integrating vibration, acoustic, temperature, and Supervisory Control and Data Acquisition (SCADA) data—and the adoption of cloud-based platforms for real-time monitoring, particularly in offshore wind farms where physical accessibility is constrained. The results indicate that vibration-based predictive maintenance strategies can reduce operation and maintenance costs by more than 20%, extend component service life by up to threefold, and achieve turbine availability levels between 95% and 98%. These outcomes confirm that vibration-driven PHM frameworks represent a fundamental pillar for the development of smart, sustainable, and resilient next-generation wind energy systems. Full article
Show Figures

Graphical abstract

35 pages, 24985 KB  
Article
From Blade Loads to Rotor Health: An Inverse Modelling Approach for Wind Turbine Monitoring
by Attia Bibi, Chiheng Huang, Wenxian Yang, Oussama Graja, Fang Duan and Liuyang Zhang
Energies 2026, 19(3), 619; https://doi.org/10.3390/en19030619 - 25 Jan 2026
Abstract
Operational expenditure in wind farms is heavily influenced by unplanned maintenance, much of which stems from undetected rotor system faults. Although many fault-detection methods have been proposed, most remain confined to laboratory test. Blade-root bending-moment measurements are among the few techniques applied in [...] Read more.
Operational expenditure in wind farms is heavily influenced by unplanned maintenance, much of which stems from undetected rotor system faults. Although many fault-detection methods have been proposed, most remain confined to laboratory test. Blade-root bending-moment measurements are among the few techniques applied in the field, yet their reliability is limited by strong sensitivity to varying operational and environmental conditions. This study presents a data-driven rotor health-monitoring framework that enhances the diagnostic value of blade bending-moments. Assuming that the wind speed profile remains approximately stationary over short intervals (e.g., 20 s), a machine-learning model is trained on bending-moment data from healthy blades to predict the incident wind-speed profile under a wide range of conditions. During operation, real-time bending-moment signals from each blade are independently processed by the trained model. A healthy rotor yields consistent wind-speed profile predictions across all three blades, whereas deviations for an individual blade indicate rotor asymmetry. In this study, the methodology is verified using high-fidelity OpenFAST simulations with controlled blade pitch misalignment as a representative fault case, providing simulation-based verification of the proposed framework. Results demonstrate that the proposed inverse-modeling and cross-blade consistency framework enables sensitive and robust detection and localization of pitch-related rotor faults. While only pitch misalignment is explicitly investigated here, the approach is inherently applicable to other rotor asymmetry mechanisms such as mass imbalance or aerodynamic degradation, supporting reliable condition monitoring and earlier maintenance interventions. Using OpenFAST simulations, the proposed framework reconstructs height-resolved wind profiles with RMSE below 0.15 m/s (R² > 0.997) under healthy conditions, and achieves up to 100% detection accuracy for moderate-to-severe pitch misalignment faults. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
24 pages, 3904 KB  
Article
Calibration of Low-Cost Sensors for PM10 and PM2.5 Based on Artificial Intelligence for Smart Cities
by Ricardo Gómez, José Rodríguez and Roberto Ferro
Sensors 2026, 26(3), 796; https://doi.org/10.3390/s26030796 - 25 Jan 2026
Abstract
Exposure to Particulate Matter (PM) is linked to respiratory and cardiovascular diseases, certain types of cancer, and accounts for approximately seven million premature deaths globally. While governments and organizations have implemented various strategies for Air Quality (AQ) such as the deployment of Air [...] Read more.
Exposure to Particulate Matter (PM) is linked to respiratory and cardiovascular diseases, certain types of cancer, and accounts for approximately seven million premature deaths globally. While governments and organizations have implemented various strategies for Air Quality (AQ) such as the deployment of Air Quality Monitoring Networks (AQMN), these networks often suffer from limited spatial coverage and involve high installation and maintenance costs. Consequently, the implementation of networks based on Low-Cost Sensors (LCS) has emerged as a viable alternative. Nevertheless, LCS systems have certain drawbacks, such as lower reading precision, which can be mitigated through specific calibration models and methods. This paper presents the results and conclusions derived from simultaneous PM10 and PM2.5 monitoring comparisons between LCS nodes and a T640X reference sensor. Additionally, Relative Humidity (RH), temperature, and absorption flow measurements were collected via an Automet meteorological station. The monitoring equipment was installed at the Faculty of Environment of the Universidad Distrital in Bogotá. The LCS calibration process began with data preprocessing, which involved filtering, segmentation, and the application of FastDTW. Subsequently, calibration was performed using a variety of models, including two statistical approaches, three Machine Learning algorithms, and one Deep Learning model. The findings highlight the critical importance of applying FastDTW during preprocessing and the necessity of incorporating RH, temperature, and absorption flow factors to enhance accuracy. Furthermore, the study concludes that Random Forest and XGBoost offered the highest performance among the methods evaluated. While satellites map city-wide patterns and MAX-DOAS enables hourly source attribution, our calibrated LCS network supplies continuous, street-scale data at low CAPEX/OPEX—forming a practical backbone for sustained micro-scale monitoring in Bogotá. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

23 pages, 1546 KB  
Article
Remote Sensing-Based Mapping of Forest Above-Ground Biomass and Its Relationship with Bioclimatic Factors in the Atacora Mountain Chain (Togo) Using Google Earth Engine
by Demirel Maza-esso Bawa, Fousséni Folega, Kueshi Semanou Dahan, Cristian Constantin Stoleriu, Bilouktime Badjaré, Jasmina Šinžar-Sekulić, Huaguo Huang, Wala Kperkouma and Batawila Komlan
Geomatics 2026, 6(1), 8; https://doi.org/10.3390/geomatics6010008 - 22 Jan 2026
Viewed by 65
Abstract
Accurate estimation of above-ground biomass (AGB) is vital for carbon accounting, biodiversity conservation, and sustainable forest management, especially in tropical regions under strong anthropogenic pressure. This study estimated and mapped AGB in the Atacora Mountain Chain, Togo, using a multi-source remote sensing approach [...] Read more.
Accurate estimation of above-ground biomass (AGB) is vital for carbon accounting, biodiversity conservation, and sustainable forest management, especially in tropical regions under strong anthropogenic pressure. This study estimated and mapped AGB in the Atacora Mountain Chain, Togo, using a multi-source remote sensing approach within Google Earth Engine (GEE). Field data from 421 plots of the 2021 National Forest Inventory were combined with Sentinel-1 Synthetic Aperture Radar, Sentinel-2 multispectral imagery, bioclimatic variables from WorldClim, and topographic data. A Random Forest regression model evaluated the predictive capacity of different variable combinations. The best model, integrating SAR, optical, and climatic variables (S1S2allBio), achieved R2 = 0.90, MAE = 13.42 Mg/ha, and RMSE = 22.54 Mg/ha, outperforming models without climate data. Dense forests stored the highest biomass (124.2 Mg/ha), while tree/shrub savannas had the lowest (25.38 Mg/ha). Spatially, ~60% of the area had biomass ≤ 50 Mg/ha. Precipitation correlated positively with AGB (r = 0.55), whereas temperature showed negative correlations. This work demonstrates the effectiveness of integrating multi-sensor satellite data with climatic predictors for accurate biomass mapping in complex tropical landscapes. The approach supports national forest monitoring, REDD+ programs, and ecosystem restoration, contributing to SDGs 13, 15, and 12 and offering a scalable method for other tropical regions. Full article
Show Figures

Graphical abstract

27 pages, 5777 KB  
Review
A Review of Remote Sensing Monitoring of Plant Diversity in Tropical Forests
by Xi-Qing Sun, Hao-Biao Wu, Dao-Sheng Chen, Xiao-Dong Yang, Xing-Rong Ma, Huan-Cai Feng, Xiao-Yan Cheng, Shuang Yang, Hai-Tao Zhou and Run-Ze Wu
Forests 2026, 17(1), 142; https://doi.org/10.3390/f17010142 - 22 Jan 2026
Viewed by 33
Abstract
Tropical forests are the most plant-diverse ecosystems on Earth, characterized by extremely high species richness and playing essential roles in ecosystem stability, carbon sequestration, and hydrological regulation. Although remote sensing has been widely applied to monitoring tropical forest plant diversity in recent decades, [...] Read more.
Tropical forests are the most plant-diverse ecosystems on Earth, characterized by extremely high species richness and playing essential roles in ecosystem stability, carbon sequestration, and hydrological regulation. Although remote sensing has been widely applied to monitoring tropical forest plant diversity in recent decades, a systematic understanding of its actual monitoring capacity remains limited. Based on a bibliometric analysis of 15,878 publications from 1960 to 2025, this study draws several key conclusions: (1) Global research is highly unevenly distributed, with most studies concentrated in China’s tropical monsoon forests, Brazil’s Amazon rainforest, Costa Rica’s tropical rainforests, and Mexico’s tropical dry forests, while many other regions remain understudied; (2) The Sentinel-2 and Landsat series are the most widely used satellite sensors, and indirect indicators are applied more frequently than direct spectral metrics in monitoring models. Hyperspectral data, Light Detection and Ranging (LiDAR), and nonlinear models generally achieve higher accuracy than multispectral data, Synthetic Aperture Radar (SAR), and linear models; (3) Sampling scales range from 64 m2 to 1600 ha, with the highest accuracy achieved when plot size is within 400 m2 < Area ≤ 2500 m2, and spatial resolutions below 10 m perform best. Based on these findings, we propose four priority directions for future research: (1) Quantifying spectral indicators and models; (2) Assessing the influence of canopy structure on biodiversity remote sensing accuracy; (3) Strengthening the application of high-resolution data and reducing intraspecific spectral variability; and (4) Enhancing functional diversity monitoring and advancing research on the relationship between biodiversity and ecosystem functioning. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

22 pages, 3491 KB  
Article
Synergistic Effects and Differential Roles of Dual-Frequency and Multi-Dimensional SAR Features in Forest Aboveground Biomass and Component Estimation
by Yifan Hu, Yonghui Nie, Haoyuan Du and Wenyi Fan
Remote Sens. 2026, 18(2), 366; https://doi.org/10.3390/rs18020366 - 21 Jan 2026
Viewed by 62
Abstract
Accurate quantification of forest aboveground biomass (AGB) is essential for monitoring terrestrial carbon stocks. While total AGB estimation is widely practiced, resolving component biomass such as canopy, branches, leaves, and trunks enhances the precision of carbon sink assessments and provides critical structural parameters [...] Read more.
Accurate quantification of forest aboveground biomass (AGB) is essential for monitoring terrestrial carbon stocks. While total AGB estimation is widely practiced, resolving component biomass such as canopy, branches, leaves, and trunks enhances the precision of carbon sink assessments and provides critical structural parameters for ecosystem modeling. Most studies rely on a single SAR sensor or a limited range of SAR features, which restricts their ability to represent vegetation structural complexity and reduces biomass estimation accuracy. Here, we propose a phased fusion strategy that integrates backscatter intensity, interferometric coherence, texture measures, and polarimetric decomposition parameters derived from dual-frequency ALOS-2, GF-3, and Sentinel-1A SAR data. These complementary multi-dimensional SAR features are incorporated into a Random Forest model optimized using an Adaptive Genetic Algorithm (RF-AGA) to estimate forest total and component estimation. The results show that the progressive incorporation of coherence and texture features markedly improved model performance, increasing the accuracy of total AGB to R2 = 0.88 and canopy biomass to R2 = 0.78 under leave-one-out cross-validation. Feature contribution analysis indicates strong complementarity among SAR parameters. Polarimetric decomposition yielded the largest overall contribution, while L-band volume scattering was the primary driver of trunk and canopy estimation. Coherence-enhanced trunk prediction increased R2 by 13 percent, and texture improved canopy representation by capturing structural heterogeneity and reducing saturation effects. This study confirms that integrating coherence and texture information within the RF-AGA framework enhances AGB estimation, and that the differential contributions of multi-dimensional SAR parameters across total and component biomass estimation originate from their distinct structural characteristics. The proposed framework provides a robust foundation for regional carbon monitoring and highlights the value of integrating complementary SAR features with ensemble learning to achieve high-precision forest carbon assessment. Full article
(This article belongs to the Special Issue Advances in Multi-Sensor Remote Sensing for Vegetation Monitoring)
Show Figures

Figure 1

32 pages, 8079 KB  
Article
Daytime Sea Fog Detection in the South China Sea Based on Machine Learning and Physical Mechanism Using Fengyun-4B Meteorological Satellite
by Jie Zheng, Gang Wang, Wenping He, Qiang Yu, Zijing Liu, Huijiao Lin, Shuwen Li and Bin Wen
Remote Sens. 2026, 18(2), 336; https://doi.org/10.3390/rs18020336 - 19 Jan 2026
Viewed by 137
Abstract
Sea fog is a major meteorological hazard that severely disrupts maritime transportation and economic activities in the South China Sea. As China’s next-generation geostationary meteorological satellite, Fengyun-4B (FY-4B) supplies continuous observations that are well suited for sea fog monitoring, yet a satellite-specific recognition [...] Read more.
Sea fog is a major meteorological hazard that severely disrupts maritime transportation and economic activities in the South China Sea. As China’s next-generation geostationary meteorological satellite, Fengyun-4B (FY-4B) supplies continuous observations that are well suited for sea fog monitoring, yet a satellite-specific recognition method has been lacking. A key obstacle is the radiometric inconsistency between the Advanced Geostationary Radiation Imager (AGRI) sensors on FY-4A and FY-4B, compounded by the cessation of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) observations, which prevents direct transfer of fog labels. To address these challenges and fill this research gap, we propose a machine learning framework that integrates cross-satellite radiometric recalibration and physical mechanism constraints for robust daytime sea fog detection. First, we innovatively apply a radiation recalibration transfer technique based on the radiative transfer model to normalize FY-4A/B radiances and, together with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/fog classification products and ERA5 reanalysis, construct a highly consistent joint training set of FY-4A/B for the winter-spring seasons since 2019. Secondly, to enhance the model’s physical performance, we incorporate key physical parameters related to the sea fog formation process (such as temperature inversion, near-surface humidity, and wind field characteristics) as physical constraints, and combine them with multispectral channel sensitivity and the brightness temperature (BT) standard deviation that characterizes texture smoothness, resulting in an optimized 13-dimensional feature matrix. Using this, we optimize the sea fog recognition model parameters of decision tree (DT), random forest (RF), and support vector machine (SVM) with grid search and particle swarm optimization (PSO) algorithms. The validation results show that the RF model outperforms others with the highest overall classification accuracy (0.91) and probability of detection (POD, 0.81) that surpasses prior FY-4A-based work for the South China Sea (POD 0.71–0.76). More importantly, this study demonstrates that the proposed FY-4B framework provides reliable technical support for operational, continuous sea fog monitoring over the South China Sea. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

35 pages, 3598 KB  
Article
PlanetScope Imagery and Hybrid AI Framework for Freshwater Lake Phosphorus Monitoring and Water Quality Management
by Ying Deng, Daiwei Pan, Simon X. Yang and Bahram Gharabaghi
Water 2026, 18(2), 261; https://doi.org/10.3390/w18020261 - 19 Jan 2026
Viewed by 184
Abstract
Accurate estimation of Total Phosphorus, referred to as “Phosphorus, Total” (PPUT; µg/L) in the sourced monitoring data, is essential for understanding eutrophication dynamics and guiding water-quality management in inland lakes. However, lake-wide PPUT mapping at high resolution is challenging to achieve using conventional [...] Read more.
Accurate estimation of Total Phosphorus, referred to as “Phosphorus, Total” (PPUT; µg/L) in the sourced monitoring data, is essential for understanding eutrophication dynamics and guiding water-quality management in inland lakes. However, lake-wide PPUT mapping at high resolution is challenging to achieve using conventional in-situ sampling, and nearshore gradients are often poorly resolved by medium- or low-resolution satellite sensors. This study exploits multi-generation PlanetScope imagery (Dove Classic, Dove-R, and SuperDove; 3–5 m, near-daily revisit) to develop a hybrid AI framework for PPUT retrieval in Lake Simcoe, Ontario, Canada. PlanetScope surface reflectance, short-term meteorological descriptors (3 to 7-day aggregates of air temperature, wind speed, precipitation, and sea-level pressure), and in-situ Secchi depth (SSD) were used to train five ensemble-learning models (HistGradientBoosting, CatBoost, RandomForest, ExtraTrees, and GradientBoosting) across eight feature-group regimes that progressively extend from bands-only, to combinations with spectral indices and day-of-year (DOY), and finally to SSD-inclusive full-feature configurations. The inclusion of SSD led to a strong and systematic performance gain, with mean R2 increasing from about 0.67 (SSD-free) to 0.94 (SSD-aware), confirming that vertically integrated optical clarity is the dominant constraint on PPUT retrieval and cannot be reconstructed from surface reflectance alone. To enable scalable SSD-free monitoring, a knowledge-distillation strategy was implemented in which an SSD-aware teacher transfers its learned representation to a student using only satellite and meteorological inputs. The optimal student model, based on a compact subset of 40 predictors, achieved R2 = 0.83, RMSE = 9.82 µg/L, and MAE = 5.41 µg/L, retaining approximately 88% of the teacher’s explanatory power. Application of the student model to PlanetScope scenes from 2020 to 2025 produces meter-scale PPUT maps; a 26 July 2024 case study shows that >97% of the lake surface remains below 10 µg/L, while rare (<1%) but coherent hotspots above 20 µg/L align with tributary mouths and narrow channels. The results demonstrate that combining commercial high-resolution imagery with physics-informed feature engineering and knowledge transfer enables scalable and operationally relevant monitoring of lake phosphorus dynamics. These high-resolution PPUT maps enable lake managers to identify nearshore nutrient hotspots, tributary plume structures. In doing so, the proposed framework supports targeted field sampling, early warning for eutrophication events, and more robust, lake-wide nutrient budgeting. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 399 KB  
Article
Enhancing Cybersecurity Monitoring in Battery Energy Storage Systems with Graph Neural Networks
by Danilo Greco and Giovanni Battista Gaggero
Energies 2026, 19(2), 479; https://doi.org/10.3390/en19020479 - 18 Jan 2026
Viewed by 139
Abstract
Battery energy storage systems (BESSs) play a vital role in contemporary smart grids, but their increasing digitalisation exposes them to sophisticated cyberattacks. Existing anomaly detection approaches typically treat sensor measurements as flat feature vectors, overlooking the intrinsic relational structure of cyber–physical systems. This [...] Read more.
Battery energy storage systems (BESSs) play a vital role in contemporary smart grids, but their increasing digitalisation exposes them to sophisticated cyberattacks. Existing anomaly detection approaches typically treat sensor measurements as flat feature vectors, overlooking the intrinsic relational structure of cyber–physical systems. This work introduces an enhanced Graph Neural Network (GNN) autoencoder for unsupervised BESS anomaly detection that integrates multiscale graph construction, multi-head graph attention, manifold regularisation via latent compactness and graph smoothness, contrastive embedding shaping, and an ensemble anomaly scoring mechanism. A comprehensive evaluation across seven BESS and firmware cyberattack datasets demonstrates that the proposed method achieves near-perfect Receiver Operating Characteristic (ROC) and Precision–Recall Area Under the Curve (PR AUC) (up to 1.00 on several datasets), outperforming classical one-class models such as Isolation Forest, One-Class Support Vector Machine (One-Class SVM), and Local Outlier Factor on the most challenging scenarios. These results illustrate the strong potential of graph-informed representation learning for cybersecurity monitoring in distributed energy resource infrastructures. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

18 pages, 4298 KB  
Article
Development of Low-Power Forest Fire Water Bucket Liquid Level and Fire Situation Monitoring Device
by Xiongwei Lou, Shihong Chen, Linhao Sun, Xinyu Zheng, Siqi Huang, Chen Dong, Dashen Wu, Hao Liang and Guangyu Jiang
Forests 2026, 17(1), 126; https://doi.org/10.3390/f17010126 - 16 Jan 2026
Viewed by 93
Abstract
A portable and integrated monitoring device was developed to digitally assess both water levels and surrounding fire-related conditions in forest firefighting water buckets using multi-sensor fusion. The system integrates a hydrostatic liquid-level sensor with temperature–humidity and smoke sensors. Validation was performed through field-oriented [...] Read more.
A portable and integrated monitoring device was developed to digitally assess both water levels and surrounding fire-related conditions in forest firefighting water buckets using multi-sensor fusion. The system integrates a hydrostatic liquid-level sensor with temperature–humidity and smoke sensors. Validation was performed through field-oriented experiments conducted under semi-controlled conditions. Water-level measurements were collected over a three-month period under simulated forest conditions and benchmarked against conventional steel-ruler readings. Early-stage fire monitoring experiments were carried out using dry wood and leaf litter under varying wind speeds, wind directions, and representative extreme weather conditions. The device achieved a mean water-level bias of −0.60%, a root-mean-square error of 0.64%, and an overall accuracy of 99.36%. Fire monitoring reached a maximum detection distance of 7.30 m under calm conditions and extended to 16.50 m under strong downwind conditions, with performance decreasing toward crosswind directions. Stable operation was observed during periods of strong winds associated with typhoon events, as well as prolonged high-temperature exposure. The primary novelty of this work lies in the conceptualization of a Collaborative Forest Resource–Hazard Monitoring Architecture. Unlike traditional isolated sensors, our proposed framework utilizes a dual-domain decision-making model that simultaneously assesses water-bucket storage stability and micro-scale fire threats. By implementing a robust ‘sensing–logic–alert’ framework tailored for rugged environments, this study offers a new methodological reference for the intelligent management of forest firefighting resources. Full article
Show Figures

Figure 1

27 pages, 11839 KB  
Article
Impact of Tropical Climate Anomalies on Land Cover Changes in Sumatra’s Peatlands, Indonesia
by Agus Dwi Saputra, Muhammad Irfan, Mokhamad Yusup Nur Khakim and Iskhaq Iskandar
Sustainability 2026, 18(2), 919; https://doi.org/10.3390/su18020919 - 16 Jan 2026
Viewed by 196
Abstract
Peatlands play a critical role in global and regional climate regulation by functioning as long-term carbon sinks, regulating hydrology, and modulating land–atmosphere energy exchange. Intact peat ecosystems store large amounts of organic carbon and stabilize local climate through high water retention and evapotranspiration, [...] Read more.
Peatlands play a critical role in global and regional climate regulation by functioning as long-term carbon sinks, regulating hydrology, and modulating land–atmosphere energy exchange. Intact peat ecosystems store large amounts of organic carbon and stabilize local climate through high water retention and evapotranspiration, whereas peatland degradation disrupts these functions and can transform peatlands into significant sources of greenhouse gas emissions and climate extremes such as drought and fire. Indonesia contains approximately 13.6–40.5 Gt of carbon, around 40% of which is stored on the island of Sumatra. However, tropical peatlands in this region are highly vulnerable to climate anomalies and land-use change. This study investigates the impacts of major climate anomalies—specifically El Niño and positive Indian Ocean Dipole (pIOD) events in 1997/1998, 2015/2016, and 2019—on peatland cover change across South Sumatra, Jambi, Riau, and the Riau Islands. Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager/Thermal Infrared Sensor imagery were analyzed using a Random Forest machine learning classification approach. Climate anomaly periods were identified using El Niño-Southern Oscillation (ENSO) and IOD indices from the National Oceanic and Atmospheric Administration. To enhance classification accuracy and detect vegetation and hydrological stress, spectral indices including the Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI) were integrated. The results show classification accuracies of 89–92%, with kappa values of 0.85–0.90. The 2015/2016 El Niño caused the most severe peatland degradation (>51%), followed by the 1997/1998 El Niño (23–38%), while impacts from the 2019 pIOD were comparatively limited. These findings emphasize the importance of peatlands in climate regulation and highlight the need for climate-informed monitoring and management strategies to mitigate peatland degradation and associated climate risks. Full article
(This article belongs to the Special Issue Sustainable Development and Land Use Change in Tropical Ecosystems)
Show Figures

Figure 1

16 pages, 819 KB  
Article
Streamlining Wetland Vegetation Mapping with AlphaEarth Embeddings: Comparable Accuracy to Traditional Methods with Cleaner Maps and Minimal Preprocessing
by Shawn Ryan, Megan Powell, Joanne Ling and Li Wen
Remote Sens. 2026, 18(2), 293; https://doi.org/10.3390/rs18020293 - 15 Jan 2026
Viewed by 131
Abstract
Accurate mapping of wetland vegetation is essential for ecosystem monitoring and conservation planning. Traditional workflows combining Sentinel-1 SAR, Sentinel-2 optical imagery, and topographic data have advanced vegetation classification but require extensive preprocessing and often yield fragmented boundaries and “salt-and-pepper” noise. In this study, [...] Read more.
Accurate mapping of wetland vegetation is essential for ecosystem monitoring and conservation planning. Traditional workflows combining Sentinel-1 SAR, Sentinel-2 optical imagery, and topographic data have advanced vegetation classification but require extensive preprocessing and often yield fragmented boundaries and “salt-and-pepper” noise. In this study, we compare a conventional multi-sensor classification framework with a novel embedding-based approach derived from the AlphaEarth foundation model, using a cluster-guided Random Forest classifier applied to the dynamic wetland system of Narran Lake, New South Wales. Both approaches achieved high accuracy ac with test performance typically in the ranges: OA = 0.985–0.991, Cohen’s κ = 0.977–0.990, weighted F1 = 0.986–0.991, and MCC = 0.977–0.990. Embedding based maps showed markedly improved spatial coherence (lower edge density, local entropy, and patch fragmentation), producing smoother, ecologically consistent boundaries while requiring minimal preprocessing. Differences in class delineation were most evident in fire-affected and agricultural areas, where embeddings demonstrated greater resilience to spectral disturbance and post-fire variability. Although overall accuracies exceeded 0.98, these high values reflect the use of spectrally pure, homogeneous training samples rather than overfitting. The results highlight that embedding-driven methods can deliver cleaner, more interpretable vegetation maps with far less data preparation, underscoring their potential to streamline large-scale ecological monitoring and enhance the spatial realism of wetland mapping. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 9525 KB  
Article
Evaluating UAV and Handheld LiDAR Point Clouds for Radiative Transfer Modeling Using a Voxel-Based Point Density Proxy
by Takumi Fujiwara, Naoko Miura, Hiroki Naito and Fumiki Hosoi
Sensors 2026, 26(2), 590; https://doi.org/10.3390/s26020590 - 15 Jan 2026
Viewed by 237
Abstract
The potential of UAV-based LiDAR (UAV-LiDAR) and handheld LiDAR scanners (HLSs) for forest radiative transfer models (RTMs) was evaluated using a Voxel-Based Point Density Proxy (VPDP) as a diagnostic tool in a Larix kaempferi forest. Structural analysis-computed coverage gap ratio (CGR) revealed distinct [...] Read more.
The potential of UAV-based LiDAR (UAV-LiDAR) and handheld LiDAR scanners (HLSs) for forest radiative transfer models (RTMs) was evaluated using a Voxel-Based Point Density Proxy (VPDP) as a diagnostic tool in a Larix kaempferi forest. Structural analysis-computed coverage gap ratio (CGR) revealed distinct behaviors. UAV-LiDARs effectively captured canopy structures (10–45% CGR), whereas HLS provided superior understory coverage, but exhibited a high upper-canopy CGR (>40%). Integrating datasets reduced the CGR to below 10%, demonstrating strong complementarity. Radiative transfer simulations correlated well with Sentinel-2 NIR reflectance, with the UAV-LiDAR (r = 0.73–0.75) outperforming the HLS (r = 0.64–0.69). These results highlight the critical importance of upper-canopy modeling for nadir-viewing sensors. Although integrating HLS data did not improve correlation due to the dominance of upper-canopy signals, structural analysis confirmed that fusion is essential for achieving volumetric completeness. A voxel size range of 50–100 cm was identified as effective for balancing structural detail and radiative stability. These findings provide practical guidelines for selecting and integrating LiDAR platforms in forest monitoring, emphasizing that while aerial sensors suffice for top-of-canopy reflectance, multi-platform fusion is requisite for full 3D structural characterization. Full article
(This article belongs to the Special Issue Progress in LiDAR Technologies and Applications)
Show Figures

Figure 1

21 pages, 10154 KB  
Article
Sea Ice Concentration Retrieval in the Arctic and Antarctic Using FY-3E GNSS-R Data
by Tingyu Xie, Cong Yin, Weihua Bai, Dongmei Song, Feixiong Huang, Junming Xia, Xiaochun Zhai, Yueqiang Sun, Qifei Du and Bin Wang
Remote Sens. 2026, 18(2), 285; https://doi.org/10.3390/rs18020285 - 15 Jan 2026
Viewed by 207
Abstract
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite [...] Read more.
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite Systems (GNSS) are utilized to extract characteristic parameters from Delay Doppler Maps (DDMs). By integrating regional partitioning and dynamic thresholding for sea ice detection, a Random Forest Regression (RFR) model incorporating a rolling-window training strategy is developed to estimate SIC. The retrieved SIC products are generated at the native GNSS-R observation resolution of approximately 1 × 6 km, with each SIC estimate corresponding to an individual GNSS-R observation time. Owing to the limited daily spatial coverage of GNSS-R measurements, the retrieved SIC results are further aggregated into monthly composites for spatial distribution analysis. The model is trained and validated across both polar regions, including targeted ice–water boundary zones. Retrieved SIC estimates are compared with reference data from the OSI SAF Special Sensor Microwave Imager Sounder (SSMIS), demonstrating strong agreement. Based on an extensive dataset, the average correlation coefficient (R) reaches 0.9450 in the Arctic and 0.9602 in the Antarctic for the testing set, with corresponding Root Mean Squared Error (RMSE) of 0.1262 and 0.0818, respectively. Even in the more challenging ice–water transition zones, RMSE values remain within acceptable ranges, reaching 0.1486 in the Arctic and 0.1404 in the Antarctic. This study demonstrates the feasibility and accuracy of GNSS-R-based SIC retrieval, offering a robust and effective approach for cryospheric monitoring at high latitudes in both polar regions. Full article
Show Figures

Figure 1

Back to TopTop