A Review of Remote Sensing Monitoring of Plant Diversity in Tropical Forests
Abstract
1. Introduction
2. Theoretical Basis for Spatial Monitoring of Tropical Forest Plant Diversity
3. Remote Sensing Monitoring of Tropical Forest Plant Diversity
3.1. Research Methods
3.2. Global Distribution of Existing Research
3.3. Remote Sensing Platforms Used for Monitoring Tropical Forest Diversity
3.4. Comparison of Monitoring Indicators and Accuracy for Tropical Forest Plant Diversity
3.5. Spatial Scale of Tropical Forest Plant Diversity Monitoring
4. Status and Prospects of Tropical Forest Plant Diversity Detection
4.1. The Effects of Various Spectral Indicators and Estimation Models in Tropical Forest Plant Diversity Monitoring Need to Be Further Quantified
4.2. Urgent Need to Strengthen Research on the Impact of Forest Vertical Structure on Plant Diversity
4.3. Urgent Enhancement of Research on the Impact of ISV on Remote Sensing Monitoring of Forest Plant Diversity
4.4. Urgent Need to Strengthen Remote Sensing Monitoring of Plant Functional Diversity and BEF Relationships
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LiDAR | Light Detection and Ranging |
| SAR | Synthetic Aperture Radar |
| RF | Random Forest |
| GLM | Generalized Linear Model |
| MLR | Multiple Linear Regression |
| OLS | Ordinary Least Squares |
| XG Boost | Extreme Gradient Boosting |
| CNN | Convolutional Neural Networks |
| k-NN | k-Nearest Neighbors |
| MDC | Mean Distance to Centroid |
| SAM | Spectral Angle Mapper |
| ISV | Intraspecific spectral variability |
| BEF | Biodiversity-Ecosystem Functioning |
| PAI | Plant Area Index |
| PAVD | Plant Area Volume Density |
| DBH | Diameter at Breast Height |
| PLS | Partial Least Squares Regression |
| GLS | Generalized Least Squares Regression |
| NDVI | Normalized Difference Vegetation Index |
| EVI | Enhanced Vegetation Index |
| SAVI | Soil Adjusted Vegetation Index |
| LAI | Leaf Area Index |
| CH | Canopy Height |
| SDCH | Standard Deviation of Canopy Height |
| CHV | Convex Hull Volume |
References
- Murphy, B.P.; Bowman, D.M.J.S. What Controls the Distribution of Tropical Forest and Savanna? Ecol. Lett. 2012, 15, 748–758. [Google Scholar] [CrossRef]
- McMichael, C.N.H.; Bush, M.B.; ter Steege, H.; Piperno, D.R.; Gosling, W.D.; Nascimento, M.N.; Lombardo, U.; de Souza Coelho, L.; Leão do Amaral, I.; de Almeida Matos, F.D.; et al. Centuries of Compounding Human Influence on Amazonian Forests. Proc. Natl. Acad. Sci. USA 2025, 122, e2514040122. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Gutiérrez, J.; Rifai, S.W.; Deng, X.; ter Steege, H.; Thomson, E.; Corral-Rivas, J.J.; Guimaraes, A.F.; Muller, S.; Klipel, J.; Fauset, S.; et al. Canopy Functional Trait Variation across Earth’s Tropical Forests. Nature 2025, 641, 129–136. [Google Scholar] [CrossRef]
- Silva de Miranda, P.L.; Dexter, K.G.; Swaine, M.D.; de Oliveira-Filho, A.T.; Hardy, O.J.; Fayolle, A. Dissecting the Difference in Tree Species Richness between Africa and South America. Proc. Natl. Acad. Sci. USA 2022, 119, e2112336119. [Google Scholar] [CrossRef] [PubMed]
- Hagen, O.; Skeels, A.; Onstein, R.E.; Jetz, W.; Pellissier, L. Earth History Events Shaped the Evolution of Uneven Biodiversity across Tropical Moist Forests. Proc. Natl. Acad. Sci. USA 2021, 118, e2026347118. [Google Scholar] [CrossRef]
- Borma, L.S.; Costa, M.H.; da Rocha, H.R.; Arieira, J.; Nascimento, N.C.C.; Jaramillo-Giraldo, C.; Ambrosio, G.; Carneiro, R.G.; Venzon, M.; Neto, A.F.; et al. Beyond Carbon: The Contributions of South American Tropical Humid and Subhumid Forests to Ecosystem Services. Rev. Geophys. 2022, 60, e2021RG000766. [Google Scholar] [CrossRef]
- Li, J.; Gu, S.; Cao, M.; Tan, X.; Xuan, K.; Juan, Z.; Cao, W.; Lin, Y.; Wang, Y.; Xia, J.; et al. Plant Modulation on Daytime Ground Surface Temperature: An Overlooked Mechanism in Climate Warming Regulation. Innov. Geosci. 2025, 3, 100159. [Google Scholar] [CrossRef]
- Strand, J.; Soares-Filho, B.; Costa, M.H.; Oliveira, U.; Ribeiro, S.C.; Pires, G.F.; Oliveira, A.; Rajão, R.; May, P.; van der Hoff, R.; et al. Spatially Explicit Valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat. Sustain. 2018, 1, 657–664. [Google Scholar] [CrossRef]
- Héger, M.; Noiset, P.; Nkoba, K.; Vereecken, N.J. Traditional Ecological Knowledge and Non-Food Uses of Stingless Bee Honey in Kenya’s Last Pocket of Tropical Rainforest. J. Ethnobiol. Ethnomed. 2023, 19, 42. [Google Scholar] [CrossRef]
- Bourgoin, C.; Ceccherini, G.; Girardello, M.; Vancutsem, C.; Avitabile, V.; Beck, P.S.A.; Beuchle, R.; Blanc, L.; Duveiller, G.; Migliavacca, M.; et al. Human Degradation of Tropical Moist Forests Is Greater than Previously Estimated. Nature 2024, 631, 570–576. [Google Scholar] [CrossRef]
- Lu, M. Charted: Tropical Forest Loss in 2024. Visual Capitalist, 8 June 2025. Available online: https://www.visualcapitalist.com/charted-tropical-forest-loss-in-2024/ (accessed on 10 November 2025).
- Sun, W.; Chen, D.; Li, Z.; Li, S.; Cheng, S.; Niu, X.; Cai, Y.; Shi, Z.; Wu, C.; Yang, G.; et al. Monitoring Wetland Plant Diversity from Space: Progress and Perspective. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103943. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Xie, X.; Ou, J.; Zhang, Y.; Tao, J.; Lin, J.; Tian, Y.; et al. Mangrove Biodiversity Assessment Using UAV Lidar and Hyperspectral Data in China’s Pinglu Canal Estuary. Remote Sens. 2023, 15, 2622. [Google Scholar] [CrossRef]
- Xin, J.; Li, J.; Zeng, Q.; Peng, Y.; Wang, Y.; Teng, X.; Bao, Q.; Yang, L.; Tang, H.; Liu, Y.; et al. High-Precision Estimation of Plant Alpha Diversity in Different Ecosystems Based on Sentinel-2 Data. Ecol. Indic. 2024, 166, 112527. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J.; Yuan, J.; Wang, C.; Bao, Q.; Li, G.; Zeng, W. Climate Change Increases Biotic Homogeneity and Species Alpha Diversity in Global Forests. Eur. J. For. Res. 2025, 144, 741–754. [Google Scholar] [CrossRef]
- Foody, G.M.; Cutler, M.E.J. Tree Biodiversity in Protected and Logged Bornean Tropical Rain Forests and Its Measurement by Satellite Remote Sensing. J. Biogeogr. 2003, 30, 1053–1066. [Google Scholar] [CrossRef]
- Marselis, S.M.; Abernethy, K.; Alonso, A.; Armston, J.; Baker, T.R.; Bastin, J.-F.; Bogaert, J.; Boyd, D.S.; Boeckx, P.; Burslem, D.F.R.P.; et al. Evaluating the Potential of Full-Waveform Lidar for Mapping Pan-Tropical Tree Species Richness. Glob. Ecol. Biogeogr. 2020, 29, 1799–1816. [Google Scholar] [CrossRef]
- Ehbrecht, M.; Seidel, D.; Annighoefer, P.; Kreft, H.; Koehler, M.; Zemp, D.C.; Puettmann, K.; Nilus, R.; Babweteera, F.; Willim, K.; et al. Global Patterns and Climatic Controls of Forest Structural Complexity. Nat. Commun. 2021, 12, 519. [Google Scholar] [CrossRef]
- Kou, W.; Liang, C.; Wei, L.; Hernandez, A.J.; Yang, X. Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery. Forests 2017, 8, 34. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Canopy Phylogenetic, Chemical and Spectral Assembly in a Lowland Amazonian Forest. New Phytol. 2011, 189, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Wang, C.; Cheng, F.; Wu, J.; Wang, J.; Li, W.; Zhang, J. A Tree-Shrub Layer Separation Method for MLS LiDAR Point Clouds of Typical Tropical Seasonal Rainforests. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4408612. [Google Scholar] [CrossRef]
- Carlson, K.M.; Asner, G.P.; Hughes, R.F.; Ostertag, R.; Martin, R.E. Hyperspectral Remote Sensing of Canopy Biodiversity in Hawaiian Lowland Rainforests. Ecosystems 2007, 10, 536–549. [Google Scholar] [CrossRef]
- Pinon, T.B.M.; de Mendonça, A.R.; da Silva, G.F.; Effgen, E.M.; Rodrigues, N.M.M.; Fernandes, M.M.; Sansevero, J.B.B.; Almeida, C.T.d.; Dias, H.M.; Gonçalves, F.G.; et al. Biodiversity from the Sky: Testing the Spectral Variation Hypothesis in the Brazilian Atlantic Forest. Remote Sens. 2024, 16, 4363. [Google Scholar] [CrossRef]
- Saatchi, S.; Buermann, W.; ter Steege, H.; Mori, S.; Smith, T.B. Modeling Distribution of Amazonian Tree Species and Diversity Using Remote Sensing Measurements. Remote Sens. Environ. 2008, 112, 2000–2017. [Google Scholar] [CrossRef]
- Parmentier, I.; Harrigan, R.J.; Buermann, W.; Mitchard, E.T.A.; Saatchi, S.; Malhi, Y.; Bongers, F.; Hawthorne, W.D.; Leal, M.E.; Lewis, S.L.; et al. Predicting Alpha Diversity of African Rain Forests: Models Based on Climate and Satellite-Derived Data Do Not Perform Better than a Purely Spatial Model. J. Biogeogr. 2011, 38, 1164–1176. [Google Scholar] [CrossRef]
- Nagendra, H.; Rocchini, D.; Ghate, R.; Sharma, B.; Pareeth, S. Assessing Plant Diversity in a Dry Tropical Forest: Comparing the Utility of Landsat and Ikonos Satellite Images. Remote Sens. 2010, 2, 478–496. [Google Scholar] [CrossRef]
- George-Chacon, S.P.; Dupuy, J.M.; Peduzzi, A.; Hernandez-Stefanoni, J.L. Combining High Resolution Satellite Imagery and Lidar Data to Model Woody Species Diversity of Tropical Dry Forests. Ecol. Indic. 2019, 101, 975–984. [Google Scholar] [CrossRef]
- Yip, K.H.A.; Liu, R.; Wu, J.; Hau, B.C.H.; Lin, Y.; Zhang, H. Community-Based Plant Diversity Monitoring of a Dense-Canopy and Species-Rich Tropical Forest Using Airborne LiDAR Data. Ecol. Indic. 2024, 158, 111346. [Google Scholar] [CrossRef]
- Foody, G.M.; Cutler, M.E.J. Mapping the Species Richness and Composition of Tropical Forests from Remotely Sensed Data with Neural Networks. Ecol. Modell. 2006, 195, 37–42. [Google Scholar] [CrossRef]
- Chen, Z.; Pan, X.; Wu, T.; Shi, T.; Lei, J.; Li, Y.; Chen, X.; Huang, J.; Wang, Z.; Chen, Y. Improved Mangrove α-Diversity Estimation by Coupling Multispectral Satellite Images, Canopy Traits and Soil Properties. Catena 2025, 251, 108813. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest Aboveground Biomass Estimation Using Landsat 8 and Sentinel-1A Data with Machine Learning Algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef] [PubMed]
- Pimple, U.; Simonetti, D.; Hinks, I.; Oszwald, J.; Berger, U.; Pungkul, S.; Leadprathom, K.; Pravinvongvuthi, T.; Maprasoap, P.; Gond, V. A History of the Rehabilitation of Mangroves and an Assessment of Their Diversity and Structure Using Landsat Annual Composites (1987–2019) and Transect Plot Inventories. For. Ecol. Manag. 2020, 462, 118007. [Google Scholar] [CrossRef]
- Peña-Lara, V.A.; Dupuy, J.M.; Reyes-Garcia, C.; Sanaphre-Villanueva, L.; Portillo-Quintero, C.A.; Hernández-Stefanoni, J.L. Modelling Species Richness and Functional Diversity in Tropical Dry Forests Using Multispectral Remotely Sensed and Topographic Data. Remote Sens. 2022, 14, 5919. [Google Scholar] [CrossRef]
- Chaurasia, A.N.; Parmar, R.M.; Dave, M.G.; Krishnayya, N.S.R. Integrating Field- and Remote Sensing Data to Perceive Species Heterogeneity across a Climate Gradient. Sci. Rep. 2024, 14, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Sesnie, S.E.; Espinosa, C.I.; Jara-Guerrero, A.K.; Tapia-Armijos, M.F. Ensemble Machine Learning for Mapping Tree Species Alpha-Diversity Using Multi-Source Satellite Data in an Ecuadorian Seasonally Dry Forest. Remote Sens. 2023, 15, 583. [Google Scholar] [CrossRef]
- Maeda, E.E.; Heiskanen, J.; Thijs, K.W.; Pellikka, P.K.E. Season-Dependence of Remote Sensing Indicators of Tree Species Diversity. Remote Sens. Lett. 2014, 5, 404–412. [Google Scholar] [CrossRef]
- Pouteau, R.; Gillespie, T.W.; Birnbaum, P. Predicting Tropical Tree Species Richness from Normalized Difference Vegetation Index Time Series: The Devil Is Perhaps Not in the Detail. Remote Sens. 2018, 10, 698. [Google Scholar] [CrossRef]
- Feeley, K.J.; Gillespie, T.W.; Terborgh, J.W. The Utility of Spectral Indices from Landsat ETM+ for Measuring the Structure and Composition of Tropical Dry Forests. Biotropica 2005, 37, 508–519. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Dupuy, J.M.; Castillo-Santiago, M.A. Assessing Species Density and Abundance of Tropical Trees from Remotely Sensed Data and Geostatistics. Appl. Veg. Sci. 2009, 12, 398–414. [Google Scholar] [CrossRef]
- Féret, J.-B.; Asner, G.P. Mapping Tropical Forest Canopy Diversity Using High-Fidelity Imaging Spectroscopy. Ecol. Appl. 2014, 24, 1289–1296. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, P.K.; Shah, D.; Pandey, M.K.; Anand, A.; Prasad, R.; Dave, R.; Verrelst, J.; Bhattacharya, B.K.; Raghubanshi, A.S. Crop Type Discrimination Using Geo-Stat Endmember Extraction and Machine Learning Algorithms. Adv. Space Res. 2024, 73, 1331–1348. [Google Scholar] [CrossRef]
- Wallis, C.I.B.; Brehm, G.; Donoso, D.A.; Fiedler, K.; Homeier, J.; Paulsch, D.; Süßenbach, D.; Tiede, Y.; Brandl, R.; Farwig, N.; et al. Remote Sensing Improves Prediction of Tropical Montane Species Diversity but Performance Differs among Taxa. Ecol. Indic. 2017, 83, 538–549. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Guzmán-Quesada, J.A.; Vega-Araya, M.; Campos-Vargas, C.; Durán, S.M.; D’Souza, N.; Gianoli, T.; Portillo-Quintero, C.; Sharp, I. Can Terrestrial Laser Scanners (TLSs) and Hemispherical Photographs Predict Tropical Dry Forest Succession with Liana Abundance? Biogeosciences 2017, 14, 977–988. [Google Scholar] [CrossRef]
- Bongalov, B.; Burslem, D.F.R.P.; Jucker, T.; Thompson, S.E.D.; Rosindell, J.; Swinfield, T.; Nilus, R.; Clewley, D.; Phillips, O.L.; Coomes, D.A. Reconciling the Contribution of Environmental and Stochastic Structuring of Tropical Forest Diversity through the Lens of Imaging Spectroscopy. Ecol. Lett. 2019, 22, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, D.C.; Mommer, L.; Sabatini, F.M.; Bruelheide, H.; Kuyper, T.W.; McCormack, M.L.; Bergmann, J.; Freschet, G.T.; Guerrero-Ramírez, N.R.; Iversen, C.M.; et al. Root Traits Explain Plant Species Distributions Along Climatic Gradients Yet Challenge the Nature of Ecological Trade-Offs. Nat. Ecol. Evol. 2021, 5, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Wohlgemuth, T. Quantitative Tools for Perfecting Species Lists. Environmetrics 2002, 13, 121–137. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A. Remote Sensing of Terrestrial Plant Biodiversity. Remote Sens. Environ. 2019, 231, 111218. [Google Scholar] [CrossRef]
- Williams, D.; Britten, A.; McCallum, S.; Jones, H.; Aitkenhead, M.; Karley, A.; Loades, K.; Prashar, A.; Graham, J. A Method for Automatic Segmentation and Splitting of Hyperspectral Images of Raspberry Plants Collected in Field Conditions. Plant Methods 2017, 13, 74. [Google Scholar] [CrossRef]
- Kumar, P.; Dobriyal, M.; Kale, A.; Pandey, A.K.; Tomar, R.S.; Thounaojam, E. Calculating Forest Species Diversity with Information-Theory Based Indices Using Sentinel-2A Sensor’s of Mahavir Swami Wildlife Sanctuary. PLoS ONE 2022, 17, e0268018. [Google Scholar] [CrossRef]
- Marselis, S.M.; Tang, H.; Armston, J.; Abernethy, K.; Alonso, A.; Barbier, N.; Bissiengou, P.; Jeffery, K.; Kenfack, D.; Labrière, N.; et al. Exploring the Relation between Remotely Sensed Vertical Canopy Structure and Tree Species Diversity in Gabon. Environ. Res. Lett. 2019, 14, 94013. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Ao, Z.; Lao, D.; Xin, Q. Deep Learning Approaches for the Mapping of Tree Species Diversity in a Tropical Wetland Using Airborne LiDAR and High-Spatial-Resolution Remote Sensing Images. Forests 2019, 10, 1047. [Google Scholar] [CrossRef]
- Ranglong, A.; Dutta Roy, A.; Das, S.; Deb, S. Estimating Aboveground Biomass and Biodiversity of a Protected Area in Moist Tropical Forest Ecosystem Using Remote Sensing Application. J. Nat. Conserv. 2025, 84, 126823. [Google Scholar] [CrossRef]
- Chitale, V.S.; Behera, M.D.; Roy, P.S. Deciphering Plant Richness Using Satellite Remote Sensing: A Study from Three Biodiversity Hotspots. Biodivers. Conserv. 2019, 28, 2183–2196. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Davies, S.J.; Bennett, A.C.; Gonzalez-Akre, E.B.; Muller-Landau, H.C.; Wright, S.J.; Abu Salim, K.; Almeyda Zambrano, A.M.; Alonso, A.; Baltzer, J.L.; et al. CTFS-ForestGEO: A Worldwide Network Monitoring Forests in an Era of Global Change. Glob. Change Biol. 2015, 21, 528–549. [Google Scholar] [CrossRef]
- Kishore, B.S.P.C.; Kumar, A.; Saikia, P.; Khan, M.L. Alpha and Beta Diversity Mapping in Indian Tropical Deciduous Forests Using High-Fidelity Imaging Spectroscopy. Adv. Space Res. 2024, 73, 1413–1426. [Google Scholar] [CrossRef]
- Sommeechai, M.; Wachrinrat, C.; Dell, B.; Thangtam, N.; Srichaichana, J. Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok. Forests 2018, 9, 36. [Google Scholar] [CrossRef]
- São Pedro, M.; Smith, M.N.; Zuquim, G.; Tuomisto, H.; Stark, S.C.; Pereira, L.G.d.A.; Bobrowiec, P.E.D.; Bueno, A.S.; Capaverde, U., Jr.; Castilho, C.; et al. Forest Structure Predicts Plant and Animal Species Diversity and Composition Changes in an Amazonian Forest. Biodivers. Conserv. 2025, 34, 3865–3888. [Google Scholar] [CrossRef]
- Rocchini, D.; Balkenhol, N.; Carter, G.A.; Foody, G.M.; Gillespie, T.W.; He, K.S.; Kark, S.; Levin, N.; Lucas, K.; Luoto, M.; et al. Remotely Sensed Spectral Heterogeneity as a Proxy of Species Diversity: Recent Advances and Open Challenges. Ecol. Inf. 2010, 5, 318–329. [Google Scholar] [CrossRef]
- Zheng, Z.; Schmid, B.; Zeng, Y.; Schuman, M.C.; Zhao, D.; Schaepman, M.E.; Morsdorf, F. Remotely Sensed Functional Diversity and Its Association with Productivity in a Subtropical Forest. Remote Sens. Environ. 2023, 290, 113530. [Google Scholar] [CrossRef]
- Guitet, S.; Sabatier, D.; Brunaux, O.; Couteron, P.; Denis, T.; Freycon, V.; Gonzalez, S.; Hérault, B.; Jaouen, G.; Molino, J.-F.; et al. Disturbance Regimes Drive the Diversity of Regional Floristic Pools across Guianan Rainforest Landscapes. Sci. Rep. 2018, 8, 3872. [Google Scholar] [CrossRef] [PubMed]
- Chraibi, E.; Arnold, H.; Luque, S.; Deacon, A.; Magurran, A.E.; Féret, J.-B. A Remote Sensing Approach to Understanding Patterns of Secondary Succession in Tropical Forest. Remote Sens. 2021, 13, 2148. [Google Scholar] [CrossRef]
- Chraibi, E.; de Boissieu, F.; Barbier, N.; Luque, S.; Féret, J.-B. Stability in Time and Consistency between Atmospheric Corrections: Assessing the Reliability of Sentinel-2 Products for Biodiversity Monitoring in Tropical Forests. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102884. [Google Scholar] [CrossRef]
- Bacar, F.F. Mapping Plant Taxonomic Diversity and Spatial Structure of Mangrove Communities with Spaceborne Imagery. Community Ecol. 2025, 26, 329–344. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Alberto Gallardo-Cruz, J.; Meave, J.A.; Dupuy, J.M. Combining Geostatistical Models and Remotely Sensed Data to Improve Tropical Tree Richness Mapping. Ecol. Indic. 2011, 11, 1046–1056. [Google Scholar] [CrossRef]
- Hernandez-Stefanoni, J.L. Relationships between Landscape Patterns and Species Richness of Trees, Shrubs and Vines in a Tropical Forest. Plant Ecol. 2005, 179, 53–65. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Gallardo-Cruz, J.A.; Meave, J.A.; Rocchini, D.; Bello-Pineda, J.; López-Martínez, J.O. Modeling α- and β-Diversity in a Tropical Forest from Remotely Sensed and Spatial Data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 359–368. [Google Scholar] [CrossRef]
- Medeiros, E.S.e.S.; Machado, C.C.C.; Galvíncio, J.D.; de Moura, M.S.B.; de Araujo, H.F.P. Predicting Plant Species Richness with Satellite Images in the Largest Dry Forest Nucleus in South America. J. Arid. Environ. 2019, 166, 43–50. [Google Scholar] [CrossRef]
- Agarwal, S.; Rocchini, D.; Marathe, A.; Nagendra, H. Exploring the Relationship between Remotely-Sensed Spectral Variables and Attributes of Tropical Forest Vegetation under the Influence of Local Forest Institutions. ISPRS Int. J. Geo-Inf. 2016, 5, 117. [Google Scholar] [CrossRef]
- Rajaniemi, S.; Tomppo, E.; Ruokolainen, K.; Tuomisto, H. Estimating and Mapping Pteridophyte and Melastomataceae Species Richness in Western Amazonian Rainforests. Int. J. Remote Sens. 2005, 26, 475–793. [Google Scholar] [CrossRef]
- Chen, B.; Ma, J.; Yang, C.; Xiao, X.; Kou, W.; Wu, Z.; Yun, T.; Zaw, Z.N.; Nawan, P.; Sengprakhon, R.; et al. Diversified Land Conversion Deepens Understanding of Impacts of Rapid Rubber Plantation Expansion on Plant Diversity in the Tropics. Sci. Total Environ. 2023, 874, 162505. [Google Scholar] [CrossRef]
- Canto-Sansores, W.G.; López-Martínez, J.O.; González, E.J.; Meave, J.A.; Hernández-Stefanoni, J.L.; Macario-Mendoza, P.A. The Importance of Spatial Scale and Vegetation Complexity in Woody Species Diversity and Its Relationship with Remotely Sensed Variables. ISPRS J. Photogramm. Remote Sens. 2024, 216, 142–153. [Google Scholar] [CrossRef]
- Ray, T.; Mohanasundari, T.; Madguni, O.D.; Rajkumar, M. Forest Fire Regimes and Plant Diversity in Tropical Dry Deciduous Forests of Central India. J. Sustain. For. 2025, 44, 1203–1217. [Google Scholar] [CrossRef]
- Fricker, G.A.; Wolf, J.A.; Saatchi, S.S.; Gillespie, T.W. Predicting Spatial Variations of Tree Species Richness in Tropical Forests from High-Resolution Remote Sensing. Ecol. Appl. 2015, 25, 1776–1789. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Qiu, P.; Wan, B.; Cao, Z.; Zhang, Q. Mapping α- and β-Diversity of Mangrove Forests with Multispectral and Hyperspectral Images. Remote Sens. Environ. 2022, 275, 113021. [Google Scholar] [CrossRef]
- Solórzano, J.V.; Gallardo-Cruz, J.A.; González, E.J.; Peralta-Carreta, C.; Hernández-Gómez, M.; Oca, A.F.-M.d.; Cervantes-Jiménez, L.G. Contrasting the Potential of Fourier Transformed Ordination and Gray Level Co-Occurrence Matrix Textures to Model a Tropical Swamp Forest’s Structural and Diversity Attributes. J. Appl. Remote Sens. 2018, 12, 36006. [Google Scholar] [CrossRef]
- Thakur, T.; Swamy, S.L.; Nain, A.S. Composition, Structure and Diversity Characterization of Dry Tropical Forest of Chhattisgarh Using Satellite Data. J. For. Res. 2014, 25, 819–825. [Google Scholar] [CrossRef]
- Pattanaik, C.; Reddy, C.S.; Murthy, M.S.R. Geospatial Modeling of Biological Richness in Kuldiha Wildlife Sanctuary of Orissa, India. J. Indian Soc. Remote Sens. 2010, 38, 477–485. [Google Scholar] [CrossRef]
- Njomaba, E.; Ofori, J.N.; Guuroh, R.T.; Aikins, B.E.; Nagbija, R.K.; Surový, P. Assessing Forest Species Diversity in Ghana’s Tropical Forest Using PlanetScope Data. Remote Sens. 2024, 16, 463. [Google Scholar] [CrossRef]
- Kumar, P.; Pandey, P.C.; Kumar, V.; Singh, B.K.; Tomar, V.; Rani, M. Efficient Recognition of Forest Species Biodiversity by Inventory-Based Geospatial Approach Using LISS IV Sensor. IEEE Sens. J. 2015, 15, 1884–1891. [Google Scholar] [CrossRef]
- Jha, C.S.; Fararoda, R.; Singhal, J.; Reddy, C.S.; Rajashekar, G.; Maity, S.; Patnaik, C.; Das, A.; Misra, A.; Singh, C.P.; et al. Characterization of Species Diversity and Forest Health Using AVIRIS-NG Hyperspectral Remote Sensing Data. Curr. Sci. 2019, 116, 1124–1135. [Google Scholar] [CrossRef]
- Anand, A.; Malhi, R.K.M.; Srivastava, P.K.; Singh, P.; Mudaliar, A.N.; Petropoulos, G.P.; Kiran, G.S. Optimal Band Characterization in Reformation of Hyperspectral Indices for Species Diversity Estimation. Phys. Chem. Earth Parts A/B/C 2022, 126, 103040. [Google Scholar] [CrossRef]
- Schäfer, E.; Heiskanen, J.; Heikinheimo, V.; Pellikka, P. Mapping Tree Species Diversity of a Tropical Montane Forest by Unsupervised Clustering of Airborne Imaging Spectroscopy Data. Ecol. Indic. 2016, 64, 49–58. [Google Scholar] [CrossRef]
- Badourdine, C.; Féret, J.-B.; Pélissier, R.; Vincent, G. Exploring the Link between Spectral Variance and Upper Canopy Taxonomic Diversity in a Tropical Forest: Influence of Spectral Processing and Feature Selection. Remote Sens. Ecol. Conserv. 2023, 9, 235–250. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E.; Wright, S.J.; Van De Kerchove, R. Mesoscale Assessment of Changes in Tropical Tree Species Richness across a Bioclimatic Gradient in Panama Using Airborne Imaging Spectroscopy. Remote Sens. Environ. 2015, 167, 111–120. [Google Scholar] [CrossRef]
- Fagua, J.C.; Jantz, P.; Burns, P.; Massey, R.; Buitrago, J.Y.; Saatchi, S.; Hakkenberg, C.; Goetz, S.J. Mapping Tree Diversity in the Tropical Forest Region of Chocó-Colombia. Environ. Res. Lett. 2021, 16, 054024. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Puletti, N.; Chen, Q.; Corona, P.; Papale, D.; Valentini, R. Above Ground Biomass and Tree Species Richness Estimation with Airborne Lidar in Tropical Ghana Forests. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 371–379. [Google Scholar] [CrossRef]
- Robinson, C.; Saatchi, S.; Clark, D.; Astaiza, J.H.; Hubel, A.F.; Gillespie, T.W. Topography and Three-Dimensional Structure Can Estimate Tree Diversity along a Tropical Elevational Gradient in Costa Rica. Remote Sens. 2018, 10, 629. [Google Scholar] [CrossRef]
- Martins-Neto, R.P.; Tommaselli, A.M.G.; Imai, N.N.; David, H.C.; Miltiadou, M.; Honkavaara, E. Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest. Remote Sens. 2021, 13, 2444. [Google Scholar] [CrossRef]
- Marselis, S.M.; Keil, P.; Chase, J.M.; Dubayah, R. The Use of GEDI Canopy Structure for Explaining Variation in Tree Species Richness in Natural Forests. Environ. Res. Lett. 2022, 17, 45003. [Google Scholar] [CrossRef]
- Almeida, D.R.A.; Almeyda Zambrano, A.M.; Broadbent, E.N.; Wendt, A.L.; Foster, P.; Wilkinson, B.E.; Salk, C.; Papa, D.d.A.; Stark, S.C.; Valbuena, R.; et al. Detecting Successional Changes in Tropical Forest Structure Using GatorEye Drone-Borne Lidar. Biotropica 2020, 52, 1155–1167. [Google Scholar] [CrossRef]
- Sitthi, A.; Pimple, U.; Piponiot, C.; Gond, V. Assessing the Effectiveness of Mangrove Rehabilitation Using Above-Ground Biomass and Structural Diversity. Sci. Rep. 2025, 15, 7839. [Google Scholar] [CrossRef]
- Kacic, P.; Hirner, A.; Ponte, E.D. Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco. Remote Sens. 2021, 13, 5105. [Google Scholar] [CrossRef]
- Andres-Mauricio, J.; Valdez-Lazalde, J.R.; George-Chacón, S.P.; Hernández-Stefanoni, J.L. Mapping Structural Attributes of Tropical Dry Forests by Combining Synthetic Aperture Radar and High-Resolution Satellite Imagery Data. Appl. Veg. Sci. 2021, 24, e12580. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Castillo-Santiago, M.Á.; Andres-Mauricio, J.; Portillo-Quintero, C.A.; Tun-Dzul, F.; Dupuy, J.M. Carbon Stocks, Species Diversity and Their Spatial Relationships in the Yucatán Peninsula, Mexico. Remote Sens. 2021, 13, 3179. [Google Scholar] [CrossRef]
- Chaurasia, A.N.; Dave, M.G.; Parmar, R.M.; Bhattacharya, B.; Marpu, P.R.; Singh, A.; Krishnayya, N.S.R. Inferring Species Diversity and Variability over Climatic Gradient with Spectral Diversity Metrics. Remote Sens. 2020, 12, 2130. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Kumar, S.; Singh, C.P.; Chowdary, V.M. Assessment of Mining Activities on Tree Species and Diversity in Hilltop Mining Areas Using Hyperion and Landsat Data. Environ. Sci. Pollut. Res. 2020, 27, 42750–42766. [Google Scholar] [CrossRef]
- Pangtey, D.; Padalia, H.; Bodh, R.; Rai, I.D.; Nandy, S. Application of Remote Sensing-Based Spectral Variability Hypothesis to Improve Tree Diversity Estimation of Seasonal Tropical Forest Considering Phenological Variations. Geocarto Int. 2023, 38, 2178525. [Google Scholar] [CrossRef]
- Wolf, J.A.; Fricker, G.A.; Meyer, V.; Hubbell, S.P.; Gillespie, T.W.; Saatchi, S.S. Plant Species Richness Is Associated with Canopy Height and Topography in a Neotropical Forest. Remote Sens. 2012, 4, 4010–4021. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Johnson, K.D.; Cook, B.D.; Dupuy, J.M.; Birdsey, R.; Peduzzi, A.; Tun-Dzul, F. Estimating Species Richness and Biomass of Tropical Dry Forests Using LIDAR during Leaf-on and Leaf-off Canopy Conditions. Appl. Veg. Sci. 2015, 18, 724–732. [Google Scholar] [CrossRef]
- Kacic, P.; Kuenzer, C. Forest Biodiversity Monitoring Based on Remotely Sensed Spectral Diversity—A Review. Remote Sens. 2022, 14, 5363. [Google Scholar] [CrossRef]
- Muise, E.R.; Andrew, M.E.; Coops, N.C.; Hermosilla, T.; Burton, A.C.; Ban, S.S. Disentangling Linkages between Satellite-Derived Indicators of Forest Structure and Productivity for Ecosystem Monitoring. Sci. Rep. 2024, 14, 13717. [Google Scholar] [CrossRef]
- Hoffmann, J.; Muro, J.; Dubovyk, O. Predicting Species and Structural Diversity of Temperate Forests with Satellite Remote Sensing and Deep Learning. Remote Sens. 2022, 14, 1631. [Google Scholar] [CrossRef]
- Ngo, Y.-N.; Huang, Y.; Minh, D.H.T.; Ferro-Famil, L.; Fayad, I.; Baghdadi, N. Tropical Forest Vertical Structure Characterization: From GEDI to P-Band SAR Tomography. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7004705. [Google Scholar] [CrossRef]
- de Conto, T.; Armston, J.; Dubayah, R. Characterizing the Structural Complexity of the Earth’s Forests with Spaceborne Lidar. Nat. Commun. 2024, 15, 8116. [Google Scholar] [CrossRef]
- Balestra, M.; Marselis, S.; Sankey, T.T.; Cabo, C.; Liang, X.; Mokroš, M.; Peng, X.; Singh, A.; Stereńczak, K.; Vega, C.; et al. LiDAR Data Fusion to Improve Forest Attribute Estimates: A Review. Curr. For. Rep. 2024, 10, 281–297. [Google Scholar] [CrossRef]
- van der Sande, M.T.; Poorter, L.; Kooistra, L.; Thonicke, K.; Boit, A.; Dutrieux, L.P.; Equihua, J.; Gerard, F.; Herold, M.; Kolb, M.; et al. The Integration of Empirical, Remote Sensing and Modelling Approaches Enhances Insight in the Role of Biodiversity in Climate Change Mitigation by Tropical Forests. Curr. Opin. Environ. Sustain. 2017, 26–27, 69–76. [Google Scholar] [CrossRef]
- Ojea, E.; Nunes, P.A.L.D.; Loureiro, M.L. Mapping Biodiversity Indicators and Assessing Biodiversity Values in Global Forests. Environ. Resour. Econ. 2010, 47, 329–347. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Müllerová, J.; Conti, L.; Malavasi, M.; Schmidtlein, S. About the Link between Biodiversity and Spectral Variation. Appl. Veg. Sci. 2022, 25, e12643. [Google Scholar] [CrossRef]
- Zagajewski, B.; Tømmervik, H.; Bjerke, J.W.; Raczko, E.; Bochenek, Z.; Kłos, A.; Jarocińska, A.; Lavender, S.; Ziółkowski, D. Intraspecific Differences in Spectral Reflectance Curves as Indicators of Reduced Vitality in High-Arctic Plants. Remote Sens. 2017, 9, 1289. [Google Scholar] [CrossRef]
- Rocchini, D.; Santos, M.J.; Ustin, S.L.; Féret, J.-B.; Asner, G.P.; Beierkuhnlein, C.; Dalponte, M.; Feilhauer, H.; Foody, G.M.; Geller, G.N.; et al. The Spectral Species Concept in Living Color. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG007026. [Google Scholar] [CrossRef]
- Foody, G.M. Characterising the Thematic Content of Image Pixels with Topologically Structured Clustering. Remote Sens. 2025, 17, 130. [Google Scholar] [CrossRef]
- Rama Rao, K.; Garg, S.; Montgomery, J. Investigation of Unsupervised Models for Biodiversity Assessment. In AI 2018: Advances in Artificial Intelligence; Mitrovic, T., Xue, B., Li, X., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 160–171. [Google Scholar]
- Chen, J.; Chen, Z.; Huang, R.; You, H.; Han, X.; Yue, T.; Zhou, G. The Effects of Spatial Resolution and Resampling on the Classification Accuracy of Wetland Vegetation Species and Ground Objects: A Study Based on High Spatial Resolution UAV Images. Drones 2023, 7, 61. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Sozzi, M.; Kayad, A.; Gobbo, S.; Cogato, A.; Sartori, L.; Marinello, F. Economic Comparison of Satellite, Plane and UAV-Acquired NDVI Images for Site-Specific Nitrogen Application: Observations from Italy. Agronomy 2021, 11, 2098. [Google Scholar] [CrossRef]
- Verde, N.; Mallinis, G.; Tsakiri-Strati, M.; Georgiadis, C.; Patias, P. Assessment of Radiometric Resolution Impact on Remote Sensing Data Classification Accuracy. Remote Sens. 2018, 10, 1267. [Google Scholar] [CrossRef]
- Lewis, S.L. Tropical Forests and the Changing Earth System. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 195–210. [Google Scholar] [CrossRef]
- Borer, E.T.; Seabloom, E.W.; Tilman, D. Plant Diversity Controls Arthropod Biomass and Temporal Stability. Ecol. Lett. 2012, 15, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Bongers, F.J.; Schmid, B.; Ma, K.; Liu, X. Ecosystem Consequences of Functional Diversity in Forests and Implications for Restoration. New Phytol. 2025, 247, 1081–1097. [Google Scholar] [CrossRef]
- Ali, A. Biodiversity–Ecosystem Functioning Research: Brief History, Major Trends and Perspectives. Biol. Conserv. 2023, 285, 110210. [Google Scholar] [CrossRef]
- Xu, M.; Yang, X.; Han, Y.; Huang, J.; Chen, Z.; Liu, X.; Yun, P.; Zhang, G.; Zeng, J. Variations in Macrofaunal Communities along Sand Physico-Chemical Gradient across the Intertidal Zones on Island Beaches. Ecol. Indic. 2024, 161, 111957. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Peng, S.; Xu, Y.; Sun, W.; Gao, J. Editorial: Remote Sensing Advances in Biodiversity and Ecosystem Functioning Research. Front. Ecol. Evol. 2024, 12, 1367840. [Google Scholar] [CrossRef]
- Li, W.; Ren, M.; Zhang, H.; Duan, Y.; Chen, D.; Li, S.; Xu, M.; Wang, L.; Yang, X. Estimation of Water Quality in Coastal Aquaculture Waters Using the Combination of Machine Learning and Unmanned Aerial Vehicle Multispectral Imagery. Aquaculture 2026, 611, 743002. [Google Scholar] [CrossRef]
- Xu, M.; Yang, A.; Yang, X.; Cao, W.; Zhang, Z.; Li, Z.; Zhang, Y.; Zhang, H.; You, W.; Yan, E.-R.; et al. Island Area and Remoteness Shape Plant and Soil Bacterial Diversity through Land Use and Biological Invasion. Funct. Ecol. 2023, 37, 1232–1244. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Yu, M.; Chen, D.; Xu, M.; Ren, M.; Yang, X. Urban Three-Dimension Green Quantity Estimation: An Approach Utilizing UAV, Satellite Imagery, and Machine Learning. Remote Sens. Appl. Soc. Environ. 2025, 39, 101691. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Remote Sensing and Geospatial Analysis in the Big Data Era: A Survey. Remote Sens. 2025, 17, 550. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, H.; Zheng, J.; Li, Z.; Qi, K.; Gong, J.; Xiang, L.; Cao, Y. A Distributed Data Management and Service Framework for Heterogeneous Remote Sensing Observations. Remote Sens. 2025, 17, 4009. [Google Scholar] [CrossRef]







| Satellite/Sensor Model | Wavelength Range (nm) | Resolution (m) | Number of Bands | Platform | Spectral Type | Reference |
|---|---|---|---|---|---|---|
| Sentinel-2 | 432–2290 | 10, 20, 60 | 13 | Satellite | Multispectral | [61,62,63] |
| Landsat 7 ETM+ | 450–2350 | 15, 30, 60 | 8 | Satellite | [64,65,66] | |
| Landsat 8 OLI | 460–2290 | 15, 30 | 9 | Satellite | [67,68] | |
| Landsat 5 TM | 450–2350 | 30, 120 | 7 | Satellite | [67,69,70] | |
| Landsat 9 OLI | 430–2290 | 15, 30 | 9 | Satellite | [71] | |
| MODIS | 405–14,385 | 250, 500, 1000 | 36 | Satellite | [72] | |
| RapidEye | 440–850 | 5 | 5 | Satellite | [73] | |
| WorldView-2 | 400–1040 | 2 | 8 | Satellite | [74] | |
| Kompsat-3 | 450–900 | 0.70, 2.80 | 5 | Satellite | [75] | |
| IKONOS | 445–900 | 4 | 5 | Satellite | [26] | |
| IRS ID LISS III | 520–1750 | 23.50, 70.50 | 4 | Satellite | [76,77] | |
| PlanetScope | 465–885 | 3 | 7 | Satellite | [78] | |
| Quickbird | 450–900 | 2.40 | 4 | Satellite | [73] | |
| Resourcesat-2 | 520–860 | 5.80 | 3 | Satellite | [79] | |
| AVIRIS-NG | 380–2510 | 4 | 425 | Airborne | Hyperspectral | [55,80] |
| EO-1 Hyperion | 357–2576 | 30 | 242 | Satellite | [81] | |
| AisaEAGLE | 400–1000 | 1 | 129 | Airborne | [82] | |
| Hyspex VNIR-1600 | 414–994 | 1 | 160 | Airborne | [83] | |
| Nano-Hyperspec | 397.80–1002.30 | 0.11 | 273 | UAV | [23] | |
| HSG-1 | 400–1000 | 0.10 | 220 | UAV | [13] | |
| Zhuhai-1 | 460–940 | 10 | 32 | Satellite | [74] | |
| CAO AToMS VSWIR | 380–2510 | 2 | 214 | Airborne | [40] | |
| Specim AISA Fenix | 380–2500 | 1 | 448 | Airborne | [44] | |
| CAO-2 AToMS VSWIR | 252–2648 | 2 | 480 | Airborne | [84] | |
| ASD spectroradiometer | 350–2500 | / | / | Handheld | [80] |
| Satellite/Sensor Model | Wavelength Range | Platform | Type | Reference |
|---|---|---|---|---|
| CAO AToMS LiDAR | 1064 nm | Airborne | LiDAR | [40] |
| Riegl LD90-3100VHS-FLP | 900 nm | Airborne | [57] | |
| VEGNET TLS | 635 nm | Ground | [43] | |
| Optech ALTM 3100 | 1064 nm | Airborne | [85] | |
| Optech ALTM Orion M-20 | 1064 nm | Airborne | [85] | |
| Optech ALTM 3033 | 1064 nm | Airborne | [85] | |
| Optech ALTM GEMINI | 1064 nm | Airborne | [86] | |
| LVIS | 1064 nm | Airborne | [87] | |
| RIEGL-QV-480 | 1550 nm | Airborne | [27] | |
| ALS | 1064/1550 nm | Airborne | [17] | |
| Riegl LMS-Q560 | 1550 nm | Airborne | [60] | |
| RIegl LMS-Q680i | 1550 nm | Airborne | [88] | |
| Riegl LMS-Q780 | 1550 nm | Airborne | [83] | |
| Riegl VQ-1560i | 1064 nm | Airborne | [28] | |
| Trimble Harrier 68i | 1550 nm | Airborne | [51] | |
| Leica ALS50-II | 1064 nm | Airborne | [44] | |
| GEDI | 1064 nm | Satellite | [89] | |
| ICESat | 1064/532 nm | Satellite | [50] | |
| AS-900HL | 905 nm | UAV | [13] | |
| Velodyne VLP-16 | 903 nm | UAV | [90] | |
| SRTM | 5.60 cm | Satellite | SAR | [25,53] |
| JERS-1 SAR | 23.50 cm | Satellite | [25] | |
| Sentinel-1 | 5.55 cm | Satellite | [29,91] | |
| TanDEM-X | 3.11 cm | Satellite | [92] | |
| ALOS PALSAR | 23.50 cm | Satellite | [93] | |
| ALOS2 PALSAR2 | 23.50 cm | Satellite | [94] | |
| TRMM PR | 2.22 cm | Satellite | [24] |
| Diversity Indexes | Remote Sensing Indexes | Sensor or Platform | Modeling Methods | Estimation Accuracy (R2) | Reference |
|---|---|---|---|---|---|
| Shannon diversity | CV | Nano-Hyperspec | Linear model | 0.74 | [23] |
| Simpson | 0.61 | ||||
| Species richness | 0.91 | ||||
| Shannon diversity | SD | 0.83 | |||
| Simpson | 0.37 | ||||
| Species richness | 0.56 | ||||
| Shannon diversity | Rao’s Q index | WorldView-2 | Linear model | 0.42 | [74] |
| CV | 0.39 | ||||
| SD | 0.39 | ||||
| Rao’s Q index | Zhuhai-1 | 0.07 | |||
| CV | 0.03 | ||||
| SD | 0.06 | ||||
| Rao’s Q index | Sentinel-2 | 0.11 | |||
| CV | 0.15 | ||||
| SD | 0.10 | ||||
| Shannon diversity | MDC | CAO AToMS | Linear model | 0.07 | [40] |
| Species richness | CHV | AVIRIS-NG | Support vector machine | 0.89 | [95] |
| 0.92 | |||||
| 0.95 | |||||
| Species richness | Mean Reflectance + Range of Reflectance + Mean First Derivative of Reflectance + Range of the First Derivative of Reflectance | AVIRIS | Linear model | 0.85 | [22] |
| Species richness | MEAN + SD | Landsat5 ETM | Linear model | 0.11 | [26] |
| Tree species richness | 0.08 | ||||
| Shannon diversity | 0.09 | ||||
| Species richness | IKONOS | 0.06 | |||
| Tree species richness | 0.03 | ||||
| Shannon diversity | 0.03 |
| Diversity Indexes | Remote Sensing Indexes | Sensor or Platform | Modeling Methods | Estimation Accuracy (R2) | Reference |
|---|---|---|---|---|---|
| Shannon diversity | NDVI + EVI + SAVI + SRI + NDRE | PlanetScope | Linear model | 0.42 | [78] |
| Simpson | 0.47 | ||||
| Pielou | NDVI + SAVI + EVI + MVI5 + MVI7 + Patch Metric | Landsat5 TM | Linear model | 0.75 | [65] |
| Shannon diversity | 0.65 | ||||
| Species richness | VV + VH + NDVI + SAVI + Band 2 (20 indexes) | Sentinel-1; Sentinel-2; LISS-IV | Random forest | 0.69 | [52] |
| Shannon diversity | 0.78 | ||||
| Margalef’s richness | 0.69 | ||||
| Shannon diversity | DVI + NDVI + RVI + mNDVI705 + TSAVI + NDVI705 + PVI + NLI + mSR705 + VOG1 + MSR + TC Greenness | Hyperion; Landsat-8-OLI | Linear model | 0.76 | [96] |
| Shannon diversity | NDVI | Sentinel 2 | Linear model | 0.69 | [97] |
| Species richness | Standard Deviation Canopy Height (SDCH) + Mean Canopy Height (MCH) + Mean Elevation + Mean Curvature + Intercept | Optech 3100 | Linear model | 0.48 | [98] |
| Species richness | Mean Height + Quadratic Mean Height + Standard Deviation Height + Skewness and Kurtosis + Height Bins at 5m Intervals + 10% Percentile Heights | Optech ALTM GEMINI | Linear model | 0.62 | [86] |
| Multivariate Adaptive Regression Splines | 0.64 | ||||
| Species richness (1 km2) | Canopy Height + Total PAI | GEDI | Random forest | 0.35 | [89] |
| Species richness (4 km2) | 0.38 | ||||
| Species richness (16 km2) | 0.44 | ||||
| Species richness (Area A) | Canopy Relief Ratio + Percentage of All Returns Above 4 | RIEGL-QV-480 | Linear model | 0.69 | [27] |
| Exponential Shannon (Area A) | Elevation Skewness + Percentage of All Returns Above 4 | 0.74 | |||
| Species richness (Area A) | NDVISE + NDVICONTR + Band 3 Range + Band 3 MOC | RapidEye | 0.87 | ||
| Exponential Shannon (Area A) | NDVIDV + Band 3 SV | 0.65 | |||
| Species richness (Area A) | Intercept + NDVISE + Band 3 Range + Band 3 MOC + Percentage of All Returns Above 4 | RIEGL-QV-480; RapidEye | 0.89 | ||
| Exponential Shannon (Area A) | Elevation MAD Mod + Elevation P95 + Elevation P99 + (All Returns Above 4/Total First Returns) × 100 | 0.81 | |||
| Species richness (Area B) | Elevation MAD Mode + Elevation P80 + (All Returns Above 4/Total First Returns) × 100 | RIEGL-QV-480 | 0.62 | ||
| Exponential Shannon (Area B) | Elevation MAD Mode + Elevation P95 + (All Returns Above 4/Total First Returns) × 100 | 0.68 | |||
| Species richness (Area B) | Band 3 ENTR + Band 3 SE + EVISD + NDVIDV | RapidEye | 0.72 | ||
| Exponential Shannon (Area B) | Band 3 SE + Band 4 SV + 4Band3 ASM + NDVIDV | 0.60 | |||
| Species richness (Area B) | Intercept + NDVISE + Band 3 Range + Band 3 MOC + Percentage of All Returns Above 4 | RIEGL-QV-480; RapidEye | 0.75 | ||
| Exponential Shannon (Area B) | 0.68 | ||||
| Plant abundance | 47 Canopy Structural Metrics from Three Categories: 34 Height Metrics, 4 Return Number Metrics, and 9 Shape Metrics | RIEGL VQ-1560i | Random forest | 0.67 | [28] |
| Species richness | 0.57 | ||||
| Shannon diversity | 0.30 | ||||
| Pielou’s evenness | 0.10 | ||||
| Gini-Simpson | 0.16 | ||||
| Species richness | Canopy Height + Gap Fraction + Spatial Heterogeneity + LAHV | Velodyne VLP-16 Puck Lite | Spearman correlation | / | [90] |
| Shannon diversity | / | ||||
| Species richness (DBH > 1 cm) | Maximum Canopy Height + Mean Canopy Height + Elevation-Relief Ratio + Vegetation Quantity + Leaf Area Index + Leaf Area Height Volume + Gap Fraction + Height of 50% Incident Light + Skewness + Kurtosis + Canopy Shannon Index | Riegl LD90-3100VHS-FLP | Linear model | 0.62 | [57] |
| Species richness (DBH > 10 cm) | 0.43 | ||||
| Shannon diversity | 54 Metrics Extracted Using Elevation, Intensity, and Pulse Return Values | RIEGL LMS-Q680i | Artificial neural network | / | [88] |
| Simpson | / | ||||
| Species richness | RH98 and Total PAI | LVIS; GEDI, ALS | Linear model | 0.39 | [17] |
| Species richness | Canopy Density Metrics + Canopy Threshold Height | RIEGL-QV-480; G-LiHT | Linear model | 0.49 | [99] |
| Fisher’s alpha | Elevation + CHM | Riegl LMS-Q560 | Linear model | 0.42 | [60] |
| Species richness | Aspect + RH100 + RH25 SD | LVIS | Linear model | 0.60 | [87] |
| Shannon diversity | Elevation + Aspect + Slope SD + Aspect SD + RH25 + RH50 + RH75 + RH100 + RH25 SD + RH50 SD | 0.94 | |||
| Margalef Richness | DEM + CHM + DSM | Trimble Harrier 68i | Convolutional neural network | 0.46 | [51] |
| Simpson | 0.79 | ||||
| Shannon diversity | 0.79 | ||||
| Pielou Evenness | 0.59 | ||||
| Shannon diversity | NDVI | Landsat 7 ETM+ | Linear model | 0.52 | [56] |
| Exponential Shannon | 0.55 | ||||
| Shannon’s equitability | 0.18 | ||||
| Shannon diversity | ARI + ARVI + CRI + CAI + DVI + GEMI + GARI + GDVI + GRVI + GVI + IPVI + MCARI (38 Vegetation indexes) | EO-1 Hyperion | Linear model | 0.41 | [81] |
| Margalef’s richness | 0.11 | ||||
| McIntosh | 0.40 | ||||
| Brillouin | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, X.-Q.; Wu, H.-B.; Chen, D.-S.; Yang, X.-D.; Ma, X.-R.; Feng, H.-C.; Cheng, X.-Y.; Yang, S.; Zhou, H.-T.; Wu, R.-Z. A Review of Remote Sensing Monitoring of Plant Diversity in Tropical Forests. Forests 2026, 17, 142. https://doi.org/10.3390/f17010142
Sun X-Q, Wu H-B, Chen D-S, Yang X-D, Ma X-R, Feng H-C, Cheng X-Y, Yang S, Zhou H-T, Wu R-Z. A Review of Remote Sensing Monitoring of Plant Diversity in Tropical Forests. Forests. 2026; 17(1):142. https://doi.org/10.3390/f17010142
Chicago/Turabian StyleSun, Xi-Qing, Hao-Biao Wu, Dao-Sheng Chen, Xiao-Dong Yang, Xing-Rong Ma, Huan-Cai Feng, Xiao-Yan Cheng, Shuang Yang, Hai-Tao Zhou, and Run-Ze Wu. 2026. "A Review of Remote Sensing Monitoring of Plant Diversity in Tropical Forests" Forests 17, no. 1: 142. https://doi.org/10.3390/f17010142
APA StyleSun, X.-Q., Wu, H.-B., Chen, D.-S., Yang, X.-D., Ma, X.-R., Feng, H.-C., Cheng, X.-Y., Yang, S., Zhou, H.-T., & Wu, R.-Z. (2026). A Review of Remote Sensing Monitoring of Plant Diversity in Tropical Forests. Forests, 17(1), 142. https://doi.org/10.3390/f17010142

