Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (558)

Search Parameters:
Keywords = forest canopy height estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4696 KB  
Article
A Dataset for Brazil Nut (Bertholletia excelsa Bonpl.) Fruit Detection in Native Amazonian Forests Using UAV Imagery
by Henrique Pereira de Carvalho, Quétila Souza Barros, Evandro José Linhares Ferreira, Leilson Ferreira, Nívea Maria Mafra Rodrigues, Larissa Freire da Silva, Bianca Tabosa de Almeida, Erica Gomes Cruz, Romário de Mesquita Pinheiro and Luís Pádua
Agronomy 2026, 16(3), 341; https://doi.org/10.3390/agronomy16030341 - 30 Jan 2026
Abstract
Brazil nut (Bertholletia excelsa Bonpl.) is a major non-timber forest product in the Amazon, supporting extractivist communities in Brazil, Bolivia, and Peru and contribute to forest conservation. Unlike other extractive products, Brazil nut production has not declined under commercial use and is [...] Read more.
Brazil nut (Bertholletia excelsa Bonpl.) is a major non-timber forest product in the Amazon, supporting extractivist communities in Brazil, Bolivia, and Peru and contribute to forest conservation. Unlike other extractive products, Brazil nut production has not declined under commercial use and is recognized for its socioeconomic and environmental importance. Precision agriculture has been transformed by the use of unmanned aerial vehicles (UAVs) and artificial intelligence (AI), which enable monitoring efficiency and yield estimation in several crops, including the Brazil nut. This study assessed the potential of using UAV-based imagery combined with YOLOv8 object detection model to identify and quantify Brazil nut fruits in a native forest fragment in eastern Acre, Brazil. A UAV was used to capture canopy images of 20 trees with varying diameters at breast height. Images were manually annotated and used to train the YOLOv8 with an 80/20 split for training and validation/testing. Model performance was evaluated using precision, recall, F1-score, and mean Average Precision (mAP). The model achieved recall above 90%, with an F1-score of 0.88, despite challenges from canopy complexity and partial occlusion. These results indicate that UAV-based imagery combined with AI detection provides an approach for estimating Brazil nut yield, reducing manual effort and improving market strategies for extractivist communities. This technology supports sustainable forest management and socioeconomic development in the Amazon. Full article
Show Figures

Figure 1

24 pages, 17944 KB  
Article
Evaluating and Calibrating ICESat-2 Canopy Height: Airborne Validation and Machine Learning Enhancement Across Boreal and Tropical Forests
by Chenxi Liu, Wei Gong and Shuo Shi
Forests 2026, 17(2), 185; https://doi.org/10.3390/f17020185 - 29 Jan 2026
Abstract
Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) represents a major advancement in remote sensing for terrestrial observation, substantially improving the capability to map vegetation structural parameters. However, spatial heterogeneity poses significant challenges to data accuracy. To evaluate the performance of ICESat-2 and improve [...] Read more.
Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) represents a major advancement in remote sensing for terrestrial observation, substantially improving the capability to map vegetation structural parameters. However, spatial heterogeneity poses significant challenges to data accuracy. To evaluate the performance of ICESat-2 and improve its inversion accuracy, this study used airborne LiDAR data to validate ICESat-2 terrain and canopy height measurements in boreal forests of Alberta, Canada, and in three tropical rainforest regions—Costa Rica, French Guiana, and Gabon. Machine-learning approaches were further applied to calibrate ICESat-2 canopy height estimates. Our results show that the uncalibrated ICESat-2 data exhibit strong consistency in boreal forests, with higher accuracy under snow-covered nighttime conditions (terrain error < 1 m, canopy height error of 3.19 m). In contrast, the uncertainties in tropical rainforests are considerably larger, with terrain errors of 3–7 m and canopy height errors of 5–7 m. After calibration, XGBoost reduced canopy height error by 0.84 m in boreal forests, whereas Random Forest calibration improved canopy height accuracy by 1.09 m in tropical regions. Overall, our findings provide additional scientific evidence supporting the reliability of ICESat-2 measurements and substantially enhance the accuracy of satellite-based canopy height estimation. Full article
(This article belongs to the Special Issue Applications of LiDAR and Photogrammetry for Forests)
Show Figures

Figure 1

29 pages, 1843 KB  
Systematic Review
Deep Learning for Tree Crown Detection and Delineation Using UAV and High-Resolution Imagery for Biometric Parameter Extraction: A Systematic Review
by Abdulrahman Sufyan Taha Mohammed Aldaeri, Chan Yee Kit, Lim Sin Ting and Mohamad Razmil Bin Abdul Rahman
Forests 2026, 17(2), 179; https://doi.org/10.3390/f17020179 - 29 Jan 2026
Abstract
Mapping individual-tree crowns (ITCs) along with extracting tree morphological attributes provides the core parameters required for estimating thermal stress and carbon emission functions. However, calculating morphological attributes relies on the prior delineation of ITCs. Using the Preferred Reporting Items for Systematic Reviews and [...] Read more.
Mapping individual-tree crowns (ITCs) along with extracting tree morphological attributes provides the core parameters required for estimating thermal stress and carbon emission functions. However, calculating morphological attributes relies on the prior delineation of ITCs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework, this review synthesizes how deep-learning (DL)-based methods enable the conversion of crown geometry into reliable biometric parameter extraction (BPE) from high-resolution imagery. This addresses a gap often overlooked in studies focused solely on detection by providing a direct link to forest inventory metrics. Our review showed that instance segmentation dominates (approximately 46% of studies), producing the most accurate pixel-level masks for BPE, while RGB imagery is most common (73%), often integrated with canopy-height models (CHM) to enhance accuracy. New architectural approaches, such as StarDist, outperform Mask R-CNN by 6% in dense canopies. However, performance differs with crown overlap, occlusion, species diversity, and the poor transferability of allometric equations. Future work could prioritize multisensor data fusion, develop end-to-end biomass modeling to minimize allometric dependence, develop open datasets to address model generalizability, and enhance and test models like StarDist for higher accuracy in dense forests. Full article
Show Figures

Figure 1

20 pages, 7359 KB  
Article
Urban Land Cover Mapping Enhanced with LiDAR Canopy Height Data to Quantify Urbanisation in an Arctic City: A Case Study of the City of Tromsø, Norway, 1984–2024
by Liliia Hebryn-Baidy, Gareth Rees, Sophie Weeks and Vadym Belenok
Geomatics 2026, 6(1), 11; https://doi.org/10.3390/geomatics6010011 - 28 Jan 2026
Viewed by 37
Abstract
Intensifying urbanisation in the Arctic, particularly in spatially constrained coastal and island cities, requires reliable information on long-term land-use/land-cover (LULC) change to assess environmental impacts and support urban planning. However, multi-decadal, high-resolution LULC datasets for Arctic cities remain limited. In this study, we [...] Read more.
Intensifying urbanisation in the Arctic, particularly in spatially constrained coastal and island cities, requires reliable information on long-term land-use/land-cover (LULC) change to assess environmental impacts and support urban planning. However, multi-decadal, high-resolution LULC datasets for Arctic cities remain limited. In this study, we quantify LULC change on Tromsøya (Tromsø, Norway) from 1984 to 2024 using a Random Forest classifier applied to multispectral satellite imagery from Landsat and PlanetScope, complemented by LiDAR-derived canopy height models (CHM) and building footprints. We mapped LULC change trajectories and examined how these shifts relate to district-level population redistribution using gridded population data. The integration of a LiDAR-derived CHM was found to substantially improve the accuracy of Landsat-based LULC mapping and to represent the dominant source of classification gains, particularly for spectrally similar urban classes such as residential areas, roads, and other paved surfaces. Landsat augmented with CHM was shown to achieve practical equivalence to PlanetScope when the latter was modelled using spectral features only, supporting the feasibility of scalable and cost-effective long-term monitoring of urbanisation in Arctic cities. Based on the best-performing Landsat configuration, the proportions of artificial and green surfaces were estimated, indicating that approximately 20% of green areas were transformed into artificial classes. Spatially, population growth was concentrated in a small number of districts and broadly coincided with hotspots of green-to-artificial conversion The workflow provides a reproducible basis for long-term, district-scale LULC monitoring in small Arctic cities where data constraints limit the consistent use of high-resolution image. Full article
Show Figures

Figure 1

36 pages, 2213 KB  
Review
Sustainable Estimation of Tree Biomass and Volume Using UAV Imagery: A Comprehensive Review
by Dan Munteanu, Simona Moldovanu, Gabriel Murariu and Lucian Dinca
Sustainability 2026, 18(2), 1095; https://doi.org/10.3390/su18021095 - 21 Jan 2026
Viewed by 111
Abstract
Accurate estimation of tree biomass and volume is essential for sustainable forest management, climate change mitigation, and ecosystem service assessment. Recent advances in unmanned aerial vehicle (UAV) technology enable the acquisition of ultra-high-resolution optical and three-dimensional data, providing a resource-efficient alternative to traditional [...] Read more.
Accurate estimation of tree biomass and volume is essential for sustainable forest management, climate change mitigation, and ecosystem service assessment. Recent advances in unmanned aerial vehicle (UAV) technology enable the acquisition of ultra-high-resolution optical and three-dimensional data, providing a resource-efficient alternative to traditional field-based inventories. This review synthesizes 181 peer-reviewed studies on UAV-based estimation of tree biomass and volume across forestry, agricultural, and urban ecosystems, integrating bibliometric analysis with qualitative literature review. The results reveal a clear methodological shift from early structure-from-motion photogrammetry toward integrated frameworks combining three-dimensional canopy metrics, multispectral or LiDAR data, and machine learning or deep learning models. Across applications, tree height, crown geometry, and canopy volume consistently emerge as the most robust predictors of biomass and volume, enabling accurate individual-tree and plot-level estimates while substantially reducing field effort and ecological disturbance. UAV-based approaches demonstrate particularly strong performance in orchards, plantation forests, and urban environments, and increasing applicability in complex systems such as mangroves and mixed forests. Despite significant progress, key challenges remain, including limited methodological standardization, insufficient uncertainty quantification, scaling constraints beyond local extents, and the underrepresentation of biodiversity-rich and structurally complex ecosystems. Addressing these gaps is critical for the operational integration of UAV-derived biomass and volume estimates into sustainable land management, carbon accounting, and climate-resilient monitoring frameworks. Full article
Show Figures

Figure 1

35 pages, 14165 KB  
Article
Spatiotemporal Patterns of Aboveground Carbon Storage in Hainan Mangroves Based on Machine Learning and Multi-Source Remote Sensing Data
by Zhikuan Liu, Zhaode Yin, Wenlu Zhao, Zhongke Feng, Huiqing Pei, Pietro Grimaldi and Zixuan Qiu
Forests 2026, 17(1), 131; https://doi.org/10.3390/f17010131 - 19 Jan 2026
Viewed by 177
Abstract
As an essential blue carbon ecosystem, mangroves play a vital role in coastal protection, biodiversity conservation, and climate regulation. However, their complex and variable growth environments pose challenges for precise monitoring. Hainan Island represents a region within China where mangrove forests are the [...] Read more.
As an essential blue carbon ecosystem, mangroves play a vital role in coastal protection, biodiversity conservation, and climate regulation. However, their complex and variable growth environments pose challenges for precise monitoring. Hainan Island represents a region within China where mangrove forests are the most concentrated and diverse in type. In recent years, ecological restoration efforts have led to the recovery of their coverage areas. This study analyzed the spatial distribution, canopy height, and aboveground carbon storage variations in Hainan mangrove forests. Deep-learning and multiple machine-learning algorithms were used to integrate multitemporal Sentinel-2 remote sensing imagery from 2019 to 2023 with unmanned aerial vehicle observations and field survey data. Multi-rule image fusion and deep-learning techniques effectively enhanced mangrove identification accuracy. The mangrove classification achieved an overall accuracy exceeding 90%. The mangrove area in Hainan increased from 3948.83 ha in 2019 to 4304.29 ha in 2023. Gradient-boosted decision tree (GBDT) models estimated average canopy height with a high coefficient of determination (R2 = 0.89), and Random Forest (RF) models yielded the best estimations of total above-ground carbon stock with strong agreement to field observations. Integrating multisource remote sensing data with artificial intelligence algorithms enabled high-precision dynamic monitoring of mangrove distribution, structure, and carbon storage to provide scientific support for the assessment, management, and carbon sink accounting of Hainan mangrove ecosystems. Full article
Show Figures

Figure 1

20 pages, 15923 KB  
Article
Sub-Canopy Topography Inversion Using Multi-Baseline Bistatic InSAR Without External Vegetation-Related Data
by Huiqiang Wang, Zhimin Feng, Ruiping Li and Yanan Yu
Remote Sens. 2026, 18(2), 231; https://doi.org/10.3390/rs18020231 - 11 Jan 2026
Viewed by 151
Abstract
Previous studies on single-polarized InSAR-based sub-canopy topography inversion have mainly relied on simplified or empirical models that only consider the volume scattering process. In a boreal forest area, the canopy layer is often discontinuous. In such a case, the radar backscattering echoes are [...] Read more.
Previous studies on single-polarized InSAR-based sub-canopy topography inversion have mainly relied on simplified or empirical models that only consider the volume scattering process. In a boreal forest area, the canopy layer is often discontinuous. In such a case, the radar backscattering echoes are mainly dominated by ground surface and volume scattering processes. However, interferometric scattering models like Random Volume over Ground (RVoG) have been little utilized in the case of single-polarized InSAR. In this study, we propose a novel method for retrieving sub-canopy topography by combining the RVoG model with multi-baseline InSAR data. Prior to the RVoG model inversion, a SAR-based dimidiate pixel model and a coherence-based penetration depth model are introduced to quantify the initial values of the unknown parameters, thereby minimizing the reliance on external vegetation datasets. Building on this, a nonlinear least-squares algorithm is employed. Then, we estimate the scattering phase center height and subsequently derive the sub-canopy topography. Two frames of multi-baseline TanDEM-X co-registered single-look slant-range complex (CoSSC) data (resampled to 10 m × 10 m) over the Krycklan catchment in northern Sweden are used for the inversion. Validation from airborne light detection and ranging (LiDAR) data shows that the root-mean-square error (RMSE) for the two test sites is 3.82 m and 3.47 m, respectively, demonstrating a significant improvement over the InSAR phase-measured digital elevation model (DEM). Furthermore, diverse interferometric baseline geometries and different initial values are identified as key factors influencing retrieval performance. In summary, our work effectively addresses the limitations of the traditional RVoG model and provides an advanced and practical tool for sub-canopy topography mapping in forested areas. Full article
Show Figures

Figure 1

28 pages, 12746 KB  
Article
Spatiotemporal Dynamics of Forest Biomass in the Hainan Tropical Rainforest Based on Multimodal Remote Sensing and Machine Learning
by Zhikuan Liu, Qingping Ling, Wenlu Zhao, Zhongke Feng, Huiqing Pei, Pietro Grimaldi and Zixuan Qiu
Forests 2026, 17(1), 85; https://doi.org/10.3390/f17010085 - 8 Jan 2026
Viewed by 219
Abstract
Tropical rainforests play a vital role in maintaining global ecological balance, carbon cycling, and biodiversity conservation, making research on their biomass dynamics scientifically significant. This study integrates multi-source remote sensing data, including canopy height derived from GEDI and ICESat-2 satellite-borne lidar, Landsat imagery, [...] Read more.
Tropical rainforests play a vital role in maintaining global ecological balance, carbon cycling, and biodiversity conservation, making research on their biomass dynamics scientifically significant. This study integrates multi-source remote sensing data, including canopy height derived from GEDI and ICESat-2 satellite-borne lidar, Landsat imagery, and environmental variables, to estimate forest biomass dynamics in Hainan’s tropical rainforests at a 30 m spatial resolution, involving a correlation analysis of factors influencing spatiotemporal changes in Hainan Tropical Rainforest biomass. The research aims to investigate the spatiotemporal variations in forest biomass and identify key environmental drivers influencing biomass accumulation. Four machine learning algorithms—Backpropagation Neural Network (BP), Convolutional Neural Network (CNN), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT)—were applied to estimate biomass across five forest types from 2003 to 2023. Results indicate the Random Forest model achieved the highest accuracy (R2 = 0.82). Forest biomass and carbon stocks in Hainan Tropical Rainforest National Park increased significantly, with total carbon stocks rising from 29.03 million tons of carbon to 42.47 million tons of carbon—a 46.36% increase over 20 years. These findings demonstrate that integrating multimodal remote sensing data with advanced machine learning provides an effective approach for accurately assessing biomass dynamics, supporting forest management and carbon sink evaluations in tropical rainforest ecosystems. Full article
Show Figures

Figure 1

29 pages, 14822 KB  
Article
Estimation of Cotton Aboveground Biomass Based on UAV Multispectral Images: Multi-Feature Fusion and CNN Model
by Shuhan Huang, Xinjun Wang, Hanyu Cui, Qingfu Liang, Songrui Ning, Haoran Yang, Panfeng Wang and Jiandong Sheng
Agronomy 2026, 16(1), 74; https://doi.org/10.3390/agronomy16010074 - 26 Dec 2025
Viewed by 427
Abstract
Precise estimation of cotton aboveground biomass (AGB) plays a crucial role in effectively analyzing growth variations and development of cotton, as well as guiding agricultural management practices. Multispectral (MS) sensors mounted on UAVs offer a practical and accurate approach for estimating the AGB [...] Read more.
Precise estimation of cotton aboveground biomass (AGB) plays a crucial role in effectively analyzing growth variations and development of cotton, as well as guiding agricultural management practices. Multispectral (MS) sensors mounted on UAVs offer a practical and accurate approach for estimating the AGB of cotton. Many previous studies have mainly emphasized the combination of spectral and texture features, as well as canopy height (CH). However, current research overlooks the potential of integrating spectral, textural features, and CH to estimate AGB. In addition, the accumulation of AGB often exhibits synergistic effects rather than a simple additive relationship. Conventional algorithms, including Bayesian Ridge Regression (BRR) and Random Forest Regression (RFR), often fail to accurately capture the nonlinear and intricate correlations between biomass and its relevant variables. Therefore, this research develops a method to estimate cotton AGB by integrating multiple feature information with a deep learning model. Spectral and texture features were derived from MS images. Cotton CH extracted from UAV point cloud data. Variables of multiple features were selected using Spearman’s Correlation (SC) coefficients and the variance inflation factor (VIF). Convolutional neural network (CNN) was chosen to build a model for estimating cotton AGB and contrasted with traditional machine learning models (RFR and BRR). The results indicated that (1) combining spectral, textural features, and CH yielded the highest precision in cotton AGB estimation; (2) compared to traditional ML models (RFR and BRR), the accuracy of applying CNN for estimating cotton AGB is better. CNN has more advanced power to learn complex nonlinear relationships among cotton AGB and multiple features; (3) the most effective strategy in this study involves combining spectral, texture features, and CH, selecting variables using the SC and VIF methods, and employing CNN for estimating AGB of cotton. The R2 of this model is 0.80, with an RMSE of 0.17 kg·m−2 and an MAE of 0.11 kg·m−2. This study develops a framework for evaluating cotton AGB by multiple features fusion with a deep learning model. It provides technical support for monitoring crop growth and improving field management. Full article
Show Figures

Figure 1

17 pages, 2184 KB  
Article
Soybean Yield Prediction with High-Throughput Phenotyping Data and Machine Learning
by Predrag Ranđelović, Vuk Đorđević, Jegor Miladinović, Simona Bukonja, Marina Ćeran, Vojin Đukić and Marjana Vasiljević
Agriculture 2026, 16(1), 22; https://doi.org/10.3390/agriculture16010022 - 21 Dec 2025
Cited by 1 | Viewed by 574
Abstract
The non-destructive estimation of grain yield could increase the efficiency of soybean breeding through early genotype testing, allowing for more precise selection of superior varieties. High-throughput phenotyping (HTPP) data can be combined with machine learning (ML) to develop accurate prediction models. In this [...] Read more.
The non-destructive estimation of grain yield could increase the efficiency of soybean breeding through early genotype testing, allowing for more precise selection of superior varieties. High-throughput phenotyping (HTPP) data can be combined with machine learning (ML) to develop accurate prediction models. In this study, an unmanned aerial vehicle (UAV) equipped with a multispectral camera was utilized to collect data on plant density (PD), plant height (PH), canopy cover (CC), biomass (BM), and various vegetation indices (VIs) from different stages of soybean development. These traits were used within random forest (RF) and partial least squares regression (PLSR) algorithms to develop models for soybean yield estimation. The initial RF model produced more accurate results, as it had a smaller error between actual and predicted yield compared with the PLSR model. To increase the efficiency of the RF model and optimize the data collection process, the number of predictors was gradually decreased by eliminating highly correlated VIs and selecting the most important variables. The final prediction was based only on several VIs calculated from a few mid-soybean stages. Although the reduction in the number of predictors increased the yield estimation error to some extent, the R2 in the final model remained high (R2 = 0.79). Therefore, the proposed ML model based on specific HTPP variables represents an optimal balance between efficiency and prediction accuracy for in-season soybean yield estimation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

35 pages, 18467 KB  
Article
Monitoring Rubber Plantation Distribution and Biomass with Sentinel-2 Using Deep Learning and Machine Learning Algorithm (2019–2024)
by Yingtan Chen, Jialong Duanmu, Zhongke Feng, Jun Qian, Zhikuan Liu, Huiqing Pei, Pietro Grimaldi and Zixuan Qiu
Remote Sens. 2025, 17(24), 4042; https://doi.org/10.3390/rs17244042 - 16 Dec 2025
Viewed by 504
Abstract
The number of rubber plantations has increased significantly since 2000, especially in Southeast Asia and China, and their ecological impacts are becoming more evident. A robust rubber supply monitoring system is currently required at both the production and ecological levels. This study used [...] Read more.
The number of rubber plantations has increased significantly since 2000, especially in Southeast Asia and China, and their ecological impacts are becoming more evident. A robust rubber supply monitoring system is currently required at both the production and ecological levels. This study used Sentinel-2 multi-rule remote sensing images and a deep learning method to construct a deep learning model that could generate a distribution map of rubber plantations in Danzhou City, Hainan Province, from 2019 to 2024. For biomass modeling, 52 sample plots (27 of which were historical plots) were integrated, and the canopy structure was extracted as an auxiliary variable from the point cloud data generated by an unmanned aerial vehicle survey. Five algorithms, namely Random Forest (RF), Gradient Boosting Decision Tree, Convolutional Neural Network, Back Propagation Neural Network, and Extreme Gradient Boosting, were used to characterize the spatiotemporal changes in rubber plantation biomass and analyze the driving mechanisms. The developed deep learning model was exceptional at identifying rubber plantations (overall accuracy = 91.63%, Kappa = 0.83). The RF model performed the best in terms of biomass prediction (R2 = 0.72, RRMSE = 21.48 Mg/ha). Research shows that canopy height as a characteristic factor enhances the explanatory power and stability of the biomass model. However, due to limitations such as sample plot size, image differences, canopy closure degree, and point cloud density, uncertainties in its generalization across years and regions remain. In summary, the proposed framework effectively captures the spatial and temporal dynamics of rubber plantations and estimates their biomass with high accuracy. This study provides a crucial reference for the refined management and ongoing monitoring of rubber plantations. Full article
Show Figures

Graphical abstract

25 pages, 12181 KB  
Article
Characterizing Growth and Estimating Yield in Winter Wheat Breeding Lines and Registered Varieties Using Multi-Temporal UAV Data
by Liwei Liu, Xinxing Zhou, Tao Liu, Dongtao Liu, Jing Liu, Jing Wang, Yuan Yi, Xuecheng Zhu, Na Zhang, Huiyun Zhang, Guohua Feng and Hongbo Ma
Agriculture 2025, 15(24), 2554; https://doi.org/10.3390/agriculture15242554 - 10 Dec 2025
Cited by 1 | Viewed by 518
Abstract
Grain yield is one of the most critical indicators for evaluating the performance of wheat breeding. However, the assessment process, from early-stage breeding lines to officially registered varieties that have passed the DUS (Distinctness, Uniformity, and Stability) test, is often time-consuming and labor-intensive. [...] Read more.
Grain yield is one of the most critical indicators for evaluating the performance of wheat breeding. However, the assessment process, from early-stage breeding lines to officially registered varieties that have passed the DUS (Distinctness, Uniformity, and Stability) test, is often time-consuming and labor-intensive. Multispectral remote sensing based on unmanned aerial vehicles (UAVs) has demonstrated significant potential in crop phenotyping and yield estimation due to its high throughput, non-destructive nature, and ability to rapidly collect large-scale, multi-temporal data. In this study, multi-temporal UAV-based multispectral imagery, RGB images, and canopy height data were collected throughout the entire wheat growth stage (2023–2024) in Xuzhou, Jiangsu Province, China, to characterize the dynamic growth patterns of both breeding lines and registered cultivars. Vegetation indices (VIs), texture parameters (Tes), and a time-series crop height model (CHM), including the logistic-derived growth rate (GR) and the projected area (PA), were extracted to construct a comprehensive multi-source feature set. Four machine learning algorithms, namely a random forest (RF), support vector machine regression (SVR), extreme gradient boosting (XGBoost), and partial least squares regression (PLSR), were employed to model and estimate yield. The results demonstrated that spectral, texture, and canopy height features derived from multi-temporal UAV data effectively captured phenotypic differences among wheat types and contributed to yield estimation. Features obtained from later growth stages generally led to higher estimation accuracy. The integration of vegetation indices and texture features outperformed models using single-feature types. Furthermore, the integration of time-series features and feature selection further improved predictive accuracy, with XGBoost incorporating VIs, Tes, GR, and PA yielding the best performance (R2 = 0.714, RMSE = 0.516 t/ha, rRMSE = 5.96%). Overall, the proposed multi-source modeling framework offers a practical and efficient solution for yield estimation in early-stage wheat breeding and can support breeders and growers by enabling earlier, more accurate selection and management decisions in real-world production environments. Full article
Show Figures

Figure 1

20 pages, 5982 KB  
Article
Estimating Growing Stock Volume at Tree and Stand Levels for Chinese Fir (Cunninghamia lanceolata) in Southern China Using UAV Laser Scanning
by Zhigang Yang, Zexin Guo, Jianpei Zhou, Kang Shen, Die Zhong, Xinfu Feng, Sheng Ding and Jinsheng Ye
Forests 2025, 16(12), 1779; https://doi.org/10.3390/f16121779 - 27 Nov 2025
Viewed by 492
Abstract
UAV laser scanning (UAV-LS) combines extensive scanning coverage with high point cloud density, enabling efficient and precise acquisition of key forest attributes. Based on field-measured data and UAV-LS data from 138 Chinese fir (Cunninghamia lanceolata) plantation plots in southern China, this [...] Read more.
UAV laser scanning (UAV-LS) combines extensive scanning coverage with high point cloud density, enabling efficient and precise acquisition of key forest attributes. Based on field-measured data and UAV-LS data from 138 Chinese fir (Cunninghamia lanceolata) plantation plots in southern China, this study systematically developed growing stock volume (GSV) estimation models at both tree and stand levels. The models included base models (allometric models), linear models, dummy variable models incorporating age groups, and nonlinear mixed-effects models incorporating random effects (plot and area levels for the tree level, and only the area level for the stand level). The results showed the following: (1) Stand-level GSV prediction relied primarily on height metrics, achieving optimal performance through a combination of the 10th cumulative height percentile (AIH10) and canopy cover (CC), both of which showed near-linear relationships with GSV; tree-level GSV was predicted by LiDAR-derived tree height (LH) and crown width (LCW), with LH explaining most variation. (2) Tree-level models achieved R2 = 0.639–0.725 and RMSE = 0.050–0.058 m3, exhibiting larger individual prediction errors (mean percentage standard error, MPSE > 30%) with smaller aggregate prediction errors (mean prediction error, MPE < 1%); stand-level models reached R2 = 0.785–0.879 and RMSE = 46.052–61.314 m3 ha−1 while maintaining controlled errors across scales (MPE < 5%, MPSE < 20%). (3) At both the tree and stand levels, the nonlinear mixed-effects model outperformed the others, followed by the dummy variable model and the base model, with the linear model exhibiting the worst performance; area-level random effects primarily influenced the baseline value of tree-level GSV and the allometric relationship between stand-level GSV and AIH10, whereas plot-level random effects affected the allometric relationships of tree-level GSV with LH and LCW. This study confirms the effectiveness of UAV-LS for large-scale forest resource monitoring, while underscoring the necessity of incorporating spatial heterogeneity in GSV estimation. Full article
(This article belongs to the Special Issue Forest Resources Inventory, Monitoring, and Assessment)
Show Figures

Figure 1

21 pages, 3883 KB  
Article
Individual Tree-Level Biomass Mapping in Chinese Coniferous Plantation Forests Using Multimodal UAV Remote Sensing Approach Integrating Deep Learning and Machine Learning
by Yiru Wang, Zhaohua Liu, Jiping Li, Hui Lin, Jiangping Long, Guangyi Mu, Sijia Li and Yong Lv
Remote Sens. 2025, 17(23), 3830; https://doi.org/10.3390/rs17233830 - 26 Nov 2025
Cited by 1 | Viewed by 563
Abstract
Accurate estimation of individual tree aboveground biomass (AGB) is essential for understanding forest carbon dynamics, optimizing resource management, and addressing climate change. Conventional methods rely on destructive sampling, whereas unmanned aerial vehicle (UAV) remote sensing provides a non-destructive alternative. In this study, spectral [...] Read more.
Accurate estimation of individual tree aboveground biomass (AGB) is essential for understanding forest carbon dynamics, optimizing resource management, and addressing climate change. Conventional methods rely on destructive sampling, whereas unmanned aerial vehicle (UAV) remote sensing provides a non-destructive alternative. In this study, spectral indices, textural features, and canopy height attributes were extracted from high-resolution UAV optical imagery and Light Detection And Ranging (LiDAR) point clouds. We developed an improved YOLOv8 model (NB-YOLOv8), incorporating Neural Architecture Manipulation (NAM) attention and a Bidirectional Feature Pyramid Network (BiFPN), for individual tree detection. Combined with a random forest algorithm, this hybrid framework enabled accurate biomass estimation of Chinese fir, Chinese pine, and larch plantations. NB-YOLOv8 achieved superior detection performance, with 92.3% precision and 90.6% recall, outperforming the original YOLOv8 by 4.8% and 4.2%, and the watershed algorithm by 12.4% and 11.7%, respectively. The integrated model produced reliable tree-level AGB predictions (R2 = 0.65–0.76). SHapley Additive exPlanation (SHAP) analysis further revealed that local feature contributions often diverged from global rankings, underscoring the importance of interpretable modeling. These results demonstrate the effectiveness of combining deep learning and machine learning for tree-level AGB estimation, and highlight the potential of multi-source UAV remote sensing to support large-scale, fine-resolution forest carbon monitoring and management. Full article
Show Figures

Figure 1

27 pages, 13822 KB  
Article
Multi-Source Data Fusion and Ensemble Learning for Canopy Height Estimation: Application of PolInSAR-Derived Labels in Tropical Forests
by Yinhang Li, Xiang Zhou, Tingting Lv, Zui Tao, Hongming Zhang and Weijia Cao
Remote Sens. 2025, 17(23), 3822; https://doi.org/10.3390/rs17233822 - 26 Nov 2025
Viewed by 524
Abstract
Forest canopy height is essential for ecosystem process modeling and carbon stock assessment. However, most prediction approaches rely on sparse or interpolated LiDAR labels, leading to uncertainties in heterogeneous forests where laser footprints are limited or unevenly distributed. To address these issues, this [...] Read more.
Forest canopy height is essential for ecosystem process modeling and carbon stock assessment. However, most prediction approaches rely on sparse or interpolated LiDAR labels, leading to uncertainties in heterogeneous forests where laser footprints are limited or unevenly distributed. To address these issues, this study proposes a multi-source ensemble learning framework that uses airborne PolInSAR-derived continuous canopy height as training labels for accurate forest height prediction. The framework features two key innovations: (1) a hybrid baseline selection strategy (PROD+ECC) within the PolInSAR inversion, significantly improving the quality and stability of initial labels; (2) a dual-layer ensemble learning model that integrates machine learning and deep learning to interpret multi-source features (Landsat-8, GEDI, DEM, and kNDVI), enabling robust upscaling from local inversion to regional prediction. Independent validation in Gabon’s Akanda National Park achieved R2 = 0.748 and RMSE = 5.873 m, reducing RMSE by 43.6% compared with existing global products. This framework mitigates sparse supervision and extrapolation bias, providing a scalable paradigm for high-accuracy canopy height mapping in complex tropical forests and offering an effective alternative to LiDAR-based approaches for global carbon assessment. Full article
(This article belongs to the Special Issue SAR for Forest Mapping III)
Show Figures

Graphical abstract

Back to TopTop