Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,411)

Search Parameters:
Keywords = food industry by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3330 KiB  
Article
Valorization of Coffee Silverskin via Integrated Biorefinery for the Production of Bioactive Peptides and Xylooligosaccharides: Functional and Prebiotic Properties
by Thanongsak Chaiyaso, Kamon Yakul, Wilasinee Jirarat, Wanaporn Tapingkae, Noppol Leksawasdi and Pornchai Rachtanapun
Foods 2025, 14(15), 2745; https://doi.org/10.3390/foods14152745 - 6 Aug 2025
Abstract
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional [...] Read more.
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional alkaline extraction (CAE) under optimized conditions (1.0 M NaOH, 90 °C, 30 min) yielded 80.64 mg of protein per gram of CS and rendered the solid residue suitable for XOS production. Enzymatic hydrolysis of the extracted protein using protease_SE5 generated low-molecular-weight peptides (0.302 ± 0.01 mg/mL), including FLGY, FYDTYY, and FDYGKY. These peptides were non-toxic, exhibited in vitro antioxidant activity (0–50%), and showed ACE-inhibitory activities of 60%, 26%, and 79%, and DPP-IV-inhibitory activities of 19%, 18%, and 0%, respectively. Concurrently, the alkaline-treated CS solid residue (ACSS) was hydrolyzed using recombinant endo-xylanase, yielding 52.5 ± 0.08 mg of CS-XOS per gram of ACSS. The CS-XOS exhibited prebiotic effects by enhancing the growth of probiotic lactic acid bacteria (μmax 0.100–0.122 h−1), comparable to commercial XOS. This integrated bioprocess eliminates the need for separate processing lines, enhances resource efficiency, and provides a sustainable strategy for valorizing agro-industrial waste. The co-produced peptides and CS-XOS offer significant potential as functional food ingredients and nutraceuticals. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 674 KiB  
Article
Oil Extraction Systems Influence the Techno-Functional and Nutritional Properties of Pistachio Processing By-Products
by Rito J. Mendoza-Pérez, Elena Álvarez-Olmedo, Ainhoa Vicente, Felicidad Ronda and Pedro A. Caballero
Foods 2025, 14(15), 2722; https://doi.org/10.3390/foods14152722 - 4 Aug 2025
Viewed by 186
Abstract
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) [...] Read more.
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) systems, combined with pretreatment at 25 °C and 60 °C. The extraction method significantly influenced flour’s characteristics, underscoring the need to tailor processing conditions to the specific technological requirements of each food application. HP-derived flours presented lighter colour, greater tocopherol content, and higher water absorption capacity (up to 2.75 g/g), suggesting preservation of hydrophilic proteins. SSP-derived flours showed higher concentration of protein (44 g/100 g), fibre (12 g/100 g), and minerals, and improved emulsifying properties, enhancing their suitability for emulsified products. Pretreatment at 25 °C enhanced functional properties such as swelling power (~7.0 g/g) and water absorption index (~5.7 g/g). The SSP system achieved the highest oil extraction yield, with no significant effect of pretreatment temperature. The oils extracted showed high levels of unsaturated fatty acids, particularly oleic acid (~48% of ω-9), highlighting their nutritional and industrial value. The findings support the valorisation of pistachio oil extraction by-products as functional food ingredients, offering a promising strategy for reducing food waste and promoting circular economy approaches in the agri-food sector. Full article
Show Figures

Figure 1

46 pages, 2160 KiB  
Review
Potential of Plant-Based Oil Processing Wastes/By-Products as an Alternative Source of Bioactive Compounds in the Food Industry
by Elifsu Nemli, Deniz Günal-Köroğlu, Resat Apak and Esra Capanoglu
Foods 2025, 14(15), 2718; https://doi.org/10.3390/foods14152718 - 2 Aug 2025
Viewed by 370
Abstract
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) [...] Read more.
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) with proven health-promoting effects. The utilization of them as natural, cost-effective, and food-grade functional ingredients in novel food formulations holds considerable potential. This review highlights the potential of waste/by-products generated during plant-based oil processing as a promising source of bioactive compounds and covers systematic research, including recent studies focusing on innovative extraction and processing techniques. It also sheds light on their promising potential for valorization as food ingredients, with a focus on specific examples of food fortification. Furthermore, the potential for value creation in the food industry is emphasized, taking into account associated challenges and limitations, as well as future perspectives. Overall, the current information suggests that the valorization of plant-based oil industry waste and by-products for use in the food industry could substantially reduce malnutrition and poverty, generate favorable health outcomes, mitigate environmental concerns, and enhance economic profit in a sustainable way by developing health-promoting, environmentally sustainable food systems. Full article
Show Figures

Figure 1

43 pages, 1138 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 - 1 Aug 2025
Viewed by 147
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
Show Figures

Figure 1

32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 - 31 Jul 2025
Viewed by 284
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

24 pages, 1766 KiB  
Article
From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications
by Maria de Lurdes Roque, Claudia Botelho and Ana Novo Barros
Molecules 2025, 30(15), 3212; https://doi.org/10.3390/molecules30153212 - 31 Jul 2025
Viewed by 276
Abstract
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing [...] Read more.
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing interest in circular economy approaches that promote the valorization of agricultural residues. These by-products are rich in bioactive compounds, particularly phenolics such as oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities. This study aimed to evaluate the phenolic content and antioxidant capacity of by-products from three olive cultivars using high-performance liquid chromatography with photodiode array detection (HPLC–PDA) and mass spectrometry (MS). The leaves and seeds, particularly from the “Cobrança” and a non-identified variety, presented the highest antioxidant activity, as well as the highest concentration of phenolic compounds, demonstrating once again the direct relationship between these two parameters. The identification of the compounds present demonstrated that the leaves and branches have a high diversity of phenolic compounds, particularly secoiridoids, flavonoids, phenylpropanoids, phenylethanoids, and lignans. An inverse relationship was observed between the chlorophyll and carotenoid content and the antioxidant activity, suggesting that phenolic compounds, rather than pigments, are the major contributors to antioxidant properties. Therefore, the by-products of the olive oil industry are a valuable source of sustainable bioactive compounds for distinct industrial sectors, such as the food, nutraceutical, and pharmaceutical industries, aligning with the European strategies for resource efficiency and waste reduction in the agri-food industries. Full article
Show Figures

Figure 1

26 pages, 2467 KiB  
Article
Antioxidant and Nutrient Profile of Tomato Processing Waste from the Mixture of Indigenous Croatian Varieties: Influence of Drying and Milling
by Tea Petković, Emerik Galić, Kristina Radić, Nikolina Golub, Jasna Jablan, Maja Bival Štefan, Tihomir Moslavac, Karla Grudenić, Ivana Rumora Samarin, Tomislav Vinković and Dubravka Vitali Čepo
Appl. Sci. 2025, 15(15), 8447; https://doi.org/10.3390/app15158447 - 30 Jul 2025
Viewed by 181
Abstract
Tomato processing waste (TPW) represents a valuable but underutilized by-product of the food industry with potential for valorization within bioeconomy models. This study investigated the chemical composition, antioxidant profile, and sanitary safety of TPW, analyzing the whole TPW; its fractions (peels and seeds) [...] Read more.
Tomato processing waste (TPW) represents a valuable but underutilized by-product of the food industry with potential for valorization within bioeconomy models. This study investigated the chemical composition, antioxidant profile, and sanitary safety of TPW, analyzing the whole TPW; its fractions (peels and seeds) and oil are obtained from TPW seeds. All samples showed contaminant levels within regulatory limits, confirming their safety for further applications. Various drying methods (air-drying at 70 °C and at 50 °C, lyophilization and vacuum drying) and grinding intensities were evaluated to determine their impact on TPW bioactive compounds retention and organoleptic characteristics. TPW exhibited valuable nutritional properties, particularly high protein and dietary fiber content while TPW oil was characterized with high monounsaturated fatty acid content. Results demonstrated that drying method and particle size significantly influenced the yield of bioactive compound and organoleptic properties, with either lyophilization or vacuum drying and finer milling generally enhancing the recovery of polyphenols, β-carotene, and lycopene and improving color intensity. This research provides the first characterization of the TPW obtained from Croatian indigenous tomato varieties, establishing a scientific foundation for its sustainable valorization and, in broader terms, supporting circular economy objectives and contributing to more resource-efficient food systems. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

18 pages, 4319 KiB  
Article
Exploring the Synthesis of Lactic Acid from Sugarcane Molasses Collected in Côte d’Ivoire Using Limosilactobacillus fermentum ATCC 9338 in a Batch Fermentation Process
by Asengo Gerardin Mabia, Harinaivo Anderson Andrianisa, Chiara Danielli, Leygnima Yaya Ouattara, N’da Einstein Kouadio, Esaïe Kouadio Appiah Kouassi, Lucia Gardossi and Kouassi Benjamin Yao
Bioengineering 2025, 12(8), 817; https://doi.org/10.3390/bioengineering12080817 - 29 Jul 2025
Viewed by 244
Abstract
Lactic acid (LA) is a high-value chemical with growing demand for the production of polymers and plastics and in the food and pharmaceutical industries. However, production costs remain a significant constraint when using conventional food-grade substrates. This study investigates Ivorian sugarcane molasses, an [...] Read more.
Lactic acid (LA) is a high-value chemical with growing demand for the production of polymers and plastics and in the food and pharmaceutical industries. However, production costs remain a significant constraint when using conventional food-grade substrates. This study investigates Ivorian sugarcane molasses, an abundant agro-industrial by-product, as a low-cost carbon source for LA production via batch fermentation with Limosilactobacillus fermentum ATCC 9338. Molasses was pretreated by acid hydrolysis to improve fermentability, increasing glucose and fructose concentrations. Comparative fermentations using raw and pretreated molasses showed a 75% increase in LA production (32.4 ± 0.03 g/L) after pretreatment. Optimisation using Box–Behnken design revealed that the initial sugar concentration, inoculation rate, and stirring speed significantly influenced lactic acid production. Under optimal conditions, a maximum LA concentration of 52.4 ± 0.49 g/L was achieved with a yield of 0.95 g/g and productivity of 0.73 g/L·h. Kinetic analysis confirmed efficient sugar utilisation under the optimised conditions, and polarimetry revealed a near-racemic lactic acid. A simplified cost analysis showed that molasses could reduce carbon source costs by over 70% compared to refined sugars, supporting its economic viability. This work demonstrates the potential of pretreated molasses under robust fermentation conditions as a sustainable and cost-effective substrate for LA production in resource-limited contexts. The approach aligns with circular bioeconomy principles and presents a replicable model for decentralised bioproduction in a developing country like Côte d’Ivoire. Full article
(This article belongs to the Special Issue Development of Biocatalytic Processes and Green Energy Technologies)
Show Figures

Figure 1

18 pages, 1650 KiB  
Article
Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization
by Teresa Abreu, Rui Ferreira, Paula C. Castilho, José S. Câmara, Juan Teixeira and Rosa Perestrelo
Molecules 2025, 30(15), 3150; https://doi.org/10.3390/molecules30153150 - 28 Jul 2025
Viewed by 289
Abstract
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content [...] Read more.
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities (DPPH, ABTS, ORAC) of GP derived from seven grape varieties across three consecutive vintages (2022–2024). White GP, particularly Verdelho and Sercial, exhibited a superior lipid quality with high concentrations of methyl linoleate (up to 1997 mg/100 g DW) and methyl oleate (up to 1294 mg/100 g DW), low atherogenic (AI < 0.05) and thrombogenic indices (TI ≤ 0.13), and elevated PUFA/SFA ratios (≥8.2). In contrast, red GP, especially from Complexa and Tinta Negra, demonstrated the highest antioxidant potential, with TPC values up to 6687 mgGAE/100 g DW, TFC up to 4624 mgQE/100 g DW, and antioxidant activities reaching 5399 mgTE/100 g (DPPH) and 7219 mgTE/100 g (ABTS). Multivariate statistical analyses (PCA, PLS-DA, HCA) revealed distinct varietal and vintage-dependent clustering and identified key discriminant fatty acids, including linolenic acid (C18:3), lauric acid (C12:0), and arachidic acid (C20:0). These findings underscore the compositional diversity and functional potential of GP, reinforcing its suitability for applications in functional foods, nutraceuticals, and cosmetics, in alignment with circular economy principles. Full article
Show Figures

Figure 1

26 pages, 1614 KiB  
Review
The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview
by Gilda D’Urso, Alessandra Capuano, Francesca Fantasma, Maria Giovanna Chini, Vincenzo De Felice, Gabriella Saviano, Gianluigi Lauro, Agostino Casapullo, Giuseppe Bifulco and Maria Iorizzi
Plants 2025, 14(15), 2284; https://doi.org/10.3390/plants14152284 - 24 Jul 2025
Viewed by 306
Abstract
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products [...] Read more.
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products such as animal feed, biopolymers, or products for human use, (e.g., cosmetics and nutraceuticals) due to its antioxidant, antimicrobial, and anti-inflammatory properties. Advanced analytical methodologies such as liquid chromatography coupled to mass spectrometry (LC-MS) are crucial for the characterisation of bioactive chemicals in these waste materials. LC-MS enables both targeted and untargeted metabolomic approaches, facilitating the identification and quantification of a wide range of secondary metabolites, including polyphenols, flavonoids, alkaloids, and terpenoids. The choice of extraction methodology is essential for the precise identification and quantification of these metabolites. This study provides an overview of LC-MS as an effective tool for analysing complex extracts derived from plant waste, discussing both methodological aspects and typical bioactive metabolites identified, and offering examples of their potential applications in cosmeceutics. Full article
(This article belongs to the Special Issue Plant-Based Foods and By-Products)
Show Figures

Figure 1

15 pages, 1843 KiB  
Article
Multidimensional Evaluation of Local Rye Bread Fortified with Whey as a Model for Food Waste Valorization: From Recipe Development to Consumer Acceptance
by Márcio Moura-Alves, João Mota, Diogo Lameirão, Ana Francisca Teixeira, Cristina Saraiva, María Ángeles Romero-Rodríguez, Alice Vilela and Carla Gonçalves
Sustainability 2025, 17(15), 6710; https://doi.org/10.3390/su17156710 - 23 Jul 2025
Viewed by 317
Abstract
The growing demand for functional and sustainable foods has driven food innovation, enhancing its nutritional value. This study aimed to develop a nutritious bread using local rye from the Trás-os-Montes region of Portugal and incorporating whey, a by-product of the dairy industry, as [...] Read more.
The growing demand for functional and sustainable foods has driven food innovation, enhancing its nutritional value. This study aimed to develop a nutritious bread using local rye from the Trás-os-Montes region of Portugal and incorporating whey, a by-product of the dairy industry, as a replacement for water. Three bread formulations were tested: a traditional recipe with 37.5% rye flour and water (Control—CTR); the same recipe using whey instead of water (Rye Whey—RW); and a formulation with 100% local rye and whey replacing water (Full Rye Whey—FRW). Nutritional composition was assessed, including moisture, ash, protein, dietary fiber, sodium, potassium, lipids, and carbohydrates. Sensory analysis included both quantitative descriptive analysis and consumer acceptance testing. Microbiological quality was also evaluated. Whey-containing samples showed lower moisture and increased levels of ash, lipids, carbohydrates, and potassium. RW had the highest protein content (6.54 ± 0.28 g/100 g, p < 0.05), while FRW exhibited the highest dietary fiber (6.96 ± 0.15 g/100 g, p < 0.05). RW demonstrated a balanced nutritional and sensory profile, with high consumer acceptance. Overall, the combination of local rye and whey presents a promising strategy for producing nutritious bread while valorizing local agricultural resources and dairy by-products. These findings support sustainable food production practices and contribute to circular economy approaches. Full article
Show Figures

Figure 1

25 pages, 1919 KiB  
Article
Valorisation of Beetroot Peel for the Development of Nutrient-Enriched Dehydrated Apple Snacks
by Ioana Buțerchi, Liliana Ciurlă, Iuliana-Maria Enache, Antoanela Patraș, Gabriel-Ciprian Teliban and Liviu-Mihai Irimia
Foods 2025, 14(15), 2560; https://doi.org/10.3390/foods14152560 - 22 Jul 2025
Viewed by 388
Abstract
Beetroot peel, an underutilised by-product of the food industry, has significant potential for valorisation due to its high content of bioactive compounds and natural pigments. This study aimed to sustainably reintroduce beetroot peel into the food chain by enriching the nutritional value of [...] Read more.
Beetroot peel, an underutilised by-product of the food industry, has significant potential for valorisation due to its high content of bioactive compounds and natural pigments. This study aimed to sustainably reintroduce beetroot peel into the food chain by enriching the nutritional value of dehydrated apple snacks. Five experimental formulations of apple slices were developed: dipped in 5% RBPP in water, dipped in 10% RBPP in water, dipped in 5% RBPP in 50% lemon juice, dipped in 10% RBPP in 50% lemon juice all seasoned with cinnamon powder, and a control formulation. The biochemical analysis showed that the total phenolic content (2780.01 ± 68.38 mg GAE/100 g DM) and antioxidant activity of apple snacks significantly increased (503.96 ± 1.83 µmol TE/g DM). Sensory evaluation indicated that snacks with beetroot peel powder and lemon juice achieved the highest scores in colour, flavour, and acceptability. These results demonstrate that the valorisation of beetroot peel has the potential to reduce agro-industrial waste and also enhance the nutritional and functional quality of apple snacks. It is recommended that beetroot peel be further explored as a cost-effective natural ingredient to develop healthier, value-added snack products within a circular economy framework. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

32 pages, 1269 KiB  
Review
Potential of Marine Biomolecules: Advances in Extraction and Applications of Proteins, Polysaccharides, and Antioxidant Compounds
by Gabriela Sousa, Suzana Ferreira-Dias, Carla Tecelão and Vítor D. Alves
Foods 2025, 14(15), 2555; https://doi.org/10.3390/foods14152555 - 22 Jul 2025
Viewed by 613
Abstract
Oceans are increasingly viewed as a new frontier for economic development, contributing to the bridge between food industry, sea bioeconomy, and health. Nowadays, oceans are under attention as a strategy for creating opportunities and driving innovation, and their vital importance will become even [...] Read more.
Oceans are increasingly viewed as a new frontier for economic development, contributing to the bridge between food industry, sea bioeconomy, and health. Nowadays, oceans are under attention as a strategy for creating opportunities and driving innovation, and their vital importance will become even more evident in the years to come. Therefore, it is crucial to study oceans under a holistic approach, taking the maximum value of their abundant resources in a sustainable way. As such, blue bioeconomy is the path forward, since it is a development strategy that meets the economic potential without compromising the environmental health. A special look needs to be taken at the underutilized resources and by-products, which hold unexploited value. For instance, green macroalgae are widespread marine macroalgae that lack industry applications, despite being rich in biopolymers (polysaccharides) and antioxidants. Moreover, fish by-products are also rich sources of biopolymers, mostly proteins. Thus, among other potential uses, raw materials could be explored to produce functional edible coatings under a blue bioeconomy approach. A detailed characterization of raw materials is the first step for the development of value-added products. These topics will be addressed in this review. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Graphical abstract

22 pages, 3522 KiB  
Article
Seasonal Variation in Volatile Profiles of Lemon Catnip (Nepeta cataria var. citriodora) Essential Oil and Hydrolate
by Milica Aćimović, Biljana Lončar, Milica Rat, Mirjana Cvetković, Jovana Stanković Jeremić, Milada Pezo and Lato Pezo
Horticulturae 2025, 11(7), 862; https://doi.org/10.3390/horticulturae11070862 - 21 Jul 2025
Viewed by 404
Abstract
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks [...] Read more.
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks nepetalactones and is rich in terpene alcohols, such as nerol and geraniol, making it a promising substitute for lemon balm. Despite its diverse applications, little attention has been paid to the valorization of byproducts from essential oil distillation, such as hydrolates and their secondary recovery oils. This study aimed to thoroughly analyze the volatile compound profiles of the essential oil from Lemon catnip and the recovery oil derived from its hydrolate over three consecutive growing seasons, with particular emphasis on how temperature and precipitation influence the major volatile constituents. The essential oil was obtained via semi-industrial steam distillation, producing hydrolate as a byproduct, which was then further processed using a Likens–Nickerson apparatus to extract the recovery oil, also known as secondary oil. Both essential and recovery oils were predominantly composed of terpene alcohols, with nerol (47.5–52.3% in essential oils; 43.5–54.3% in recovery oils) and geraniol (25.2–27.9% in essential oils; 29.4–32.6% in recovery oils) as the primary components. While sesquiterpene hydrocarbons were mostly confined to the essential oil, the recovery oil was distinguished by a higher presence of monooxygenated and more hydrophilic terpenes. Over the three-year period, elevated temperatures led to increased levels of geraniol, geranial, neral, and citronellal in both oils, whereas cooler conditions favored the accumulation of nerol and linalool, especially in the recovery oils. Higher precipitation was associated with elevated concentrations of nerol and linalool but decreased levels of geraniol, geranial, and neral, possibly due to dilution or degradation processes. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

20 pages, 2541 KiB  
Article
Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry
by Miguel A. Gallardo, M. Esther Martínez-Navarro, Irene García Panadero, José E. Pardo and Manuel Álvarez-Ortí
Foods 2025, 14(14), 2548; https://doi.org/10.3390/foods14142548 - 21 Jul 2025
Viewed by 289
Abstract
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) [...] Read more.
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) obtained from by-products into cracker formulation. Crackers were prepared by replacing 10% and 20% of wheat flour with pumpkin flour, assessing the effects based on drying method. Physical parameters (expansion, color, and texture parameters) were measured, in the dough and in the baked products. Furthermore, β-carotene content was analyzed by HPLC-DAD, antioxidant capacity was measured with DPPH, ABTS, and ORAC, and total phenolic content was evaluated with the Folin–Ciocalteu method. Proximate composition and mineral content were also analyzed. Additionally, a preliminary sensory evaluation was conducted with 50 untrained consumer judges to assess acceptability of external appearance, texture, and taste. The inclusion of pumpkin flour significantly increased β-carotene content (up to 2.36 mg/100 g), total phenolics, and antioxidant activity of the baked crackers. Proximate analysis showed a marked improvement in fiber content and a slight reduction in energy value compared to wheat flour. Mineral analysis revealed that pumpkin flours exhibited significantly higher levels of K, Ca, Mg, and P, with improved but not always statistically significant retention in the final crackers. Freeze-dried flour retained more bioactive compounds and enhanced color. However, it also increased cracker hardness, particularly with dehydrated flour. Only the 10% freeze-dried formulation showed mechanical properties similar to those of the control. Sensory analysis indicated that all formulations were positively accepted, with the 10% freeze-dried sample showing the best balance in consumer preference across all evaluated attributes. Frozen pumpkin by-products can be effectively valorized through their incorporation into bakery products such as crackers, enhancing their nutritional and functional profile. Freeze-drying better preserves antioxidants and β-carotene, while a 10% substitution offers a balance between nutritional enrichment and technological performance and sensory acceptability. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

Back to TopTop