The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview
Abstract
1. Introduction
2. Application of Liquid Chromatography for Metabolite Profiling in Plant Waste
3. Mass Spectrometry for Plant Waste Metabolome Analysis
3.1. Untargeted and Targeted Approaches in Metabolomics
3.1.1. Untargeted Analysis
3.1.2. MS Scanning Modes for Untargeted Analysis
3.1.3. Targeted Metabolomics
3.1.4. Software for LC-MS Data Analysis in Plant By-Products
4. Sample Preparation for LC-MS Analysis of Natural Products
- Microwave-assisted extraction (MAE) offers speed, efficiency, and low cost. However, it is not suitable for thermally labile compounds.
- Enzyme-assisted extraction (EAE) is highly efficient, selective, eco-friendly, and can be performed at low temperatures. Nonetheless, it requires expensive enzymes and is a time-consuming process.
- Ultrasound-assisted extraction (UAE) is user-friendly, efficient, environmentally friendly, and allows versatile solvent selection. Its drawbacks include the need for multiple extractions and the potential generation of radicals.
- Supercritical fluid extraction (SFE) is non-toxic, cost-effective, and rapid. Additionally, the supercritical fluid can be recycled. However, it has a high initial cost and is mainly limited to non-polar phytochemicals.
- Pulsed electric field (PEF) requires shorter extraction times and increases cell permeability, but the equipment is costly to maintain.
- Pressurized liquid extraction (PLE) is energy-efficient, uses non-toxic solvents, and requires simple equipment. However, it has high equipment costs and may lead to the inactivation of certain compounds [82].
5. Bioactive Compounds Detected by LC-MS in Plant Waste
Plant Waste | Extraction Methods | Analytical Techniques | Bioactive Compounds | Ref. |
---|---|---|---|---|
Wine lees | Maceration followed by microfiltration step | UHPLC-LTQ Orbitrap and Velos LC-QTrap 4000 | Phenolic compounds | [91] |
Olive leaves | Organo-solv extraction | LC-Finnigan AQA | Polyphenols | [92] |
Tomato pomace | Maceration | LC-Q-Exactive | Polyphenols | [93] |
Spent black tea | Pressurised liquid extraction | LC-LTQ-Orbitrap XL | Phenolic compounds | [94] |
Aloe vera leaf | UAE and MAE extractions | LC/MS single quadrupole | Anthraquinone and chromone derivatives | [95] |
Olive mill wastewater | Liquid-liquid extraction | LC-QTRAP 6500 | Polyphenols | [58] |
Saffron tepals | Enzymatic and subcritical water extractions | LC-LTQ XL linear ion trap | Flavonoids | [96] |
Red cabbage waste | Pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), and heating and stirring extraction (HSE) | LC-Linear Ion Trap | Anthocyanyns | [99] |
Annatto by-product | Maceration | UPLC-MS/QTOF Analysis | Terpenoids, ceramides | [41] |
flower P. serrulata | Maceration | LC-Q-Trap 6500 in MRM mode | Anthocyanins | [64] |
Plum seed residue | Matrix solid-phase dispersion | HPLC-ESI-QTOF-MS | Phenolic compounds | [37] |
Walnut husk and pellicle | Ultrasound | UHPLC-Q-Exactive | Flavonoids, tannins and quinones | [38] |
Chia leaves | Maceration | UHPLC-Q-Exactive | Polyphenols | [39] |
Peach by-product | Extraction with enzyme (EAE) | UPLC-Qexactive | Phenolic acid Flavonoids | [40] |
Mustard, kale, and broccoli microgreens | Maceration | UHPL-Fusion Orbitrap | Flavonoids | [43] |
Foxnut | Maceration | LC-Orbitrap eclipse | Lipids, amino acids, phenolic acid Flavonoids alkaloids | [44] |
Roots of red beet and sugar beet | Maceration | LC-LTQ XL linear ion trap | Betalins Phenolic compounds | [59] |
Peel of Citrus retigulata | Ultrasound extraction | LC-Q-Exactive | Flavonoids | [63] |
Fennel waste | Ultrasound extraction | UPLC-Qtrap 6500 | Flavonoids | [66] |
Apple cider by-products | Maceration | LC-Q-TOF | Carotenoids, phenols | [85] |
Tamarillos | Maceration | LC-APCI-MS/MS | Carotenoids | [100] |
Red pepper skin | Maceration | LC-Q-Exactive | Carotenoids | [102] |
Avocado | Maceration | UHPLC-Q-Tof | Phenolic acids | [108] |
Mango peel | Maceration | LC-ESI-MS | Polyphenols | [109] |
6. Bioactive Compounds from Plant Waste and Their Potential Application in Cosmetics
Plant Matrix | Bioactive Compounds | Activity | Cosmetic Applications |
---|---|---|---|
Rosmarinus officinalis (rosemary) leaf extracts [151] | Phenolic, flavonoidic compounds | Antimicrobial | Natural preservatives |
Coffea arabica and Coffea canephora by-products [152] | Terspens, alkaloids, phenolic acids | Antimicrobial | Natural preservatives |
Prunus leaves [153] | Tannins | Antioxidant and lipid peroxidation inhibitory activities | Anti-aging |
Horse chestnut flower [154] | Flavanols derivatives, phenolic acids, flavanols | Antioxidant, ROS scavenging. | Anti-aging, antioxidant serums |
Camellia sinensis flowers [155,156] | Flavonols, Catechins, Caffeine, Theanine, triterpene saponins | Antioxidant, Anti-inflammatory, Anti-obesity, | Anti-aging creams Skin-soothing products Slimming and UV-protection boosters, hair protection |
Eucalyptus globulus leaves [157] | Polyphenols (Gallic acid, 5-caffeoylquinic acid, ellagic acid, ellagitannins, quercetin derivatives, and luteolin 7-O-glucuronide) | Anti-aging | Polyphenols (gallic acid, 5-caffeoylquinic acid, ellagic acid, ellagitannins, quercetin derivatives, and luteolin 7-O-glucuronide) |
Harpagophytum procumbens (devil’s claw) [158] | Verbascoside, leucosceptoside A | Anti-inflammatory | Treatment for psoriasis-prone skin, soothing or skin-repairing formulations |
Lycium barbarum (seed dreg) [159] | Polysaccharides | Antioxidant protection, hydration support | Polysaccharides |
Mentha × piperita L. [160] | Flavonoids, phenolic acids, triterpenoids, hydroxybenzoic acids, hydroxycinnamic acids | Antioxidant, anti-inflammatory, antimicrobial, immunomodulatory, hepatoprotective, antiviral | Anti-aging, relieving, oxidative stress protection, |
Ginseng root [161] | Ginsenosides, lignans, glycosides, polyphenols | Antioxidant, anti-inflammatory, collagen synthesis promotion, skin barrier support | Anti-aging, skin hydration, skin barrier protection |
Olive fruit, leaves, and byproducts [114] | Phenolic acids, phenolic alcohols, flavonoids | Antioxidant, anti-inflammatory, antimicrobial, antiproliferative | Anti-aging, antioxidant skin care, anti-inflammatory formulations, skin barrier protection |
Tomato processing waste (pomace: peel and seeds) [106] | Carotenoids (lycopene), phenolic compounds, vitamins, flavonoids | Antioxidant, antimicrobial, anti-inflammatory, antithrombotic, glycaemic regulation, cardiovascular protection | Antioxidant skin protection, anti-aging, preservatives |
Olive leaf meal and spent Pleurotus ostreatus substrate [118,162] | Carotenoids | Antioxidant, provitamin A activity | Photo-protective |
Pomegranate (Punica granatum L.) peel and peel extract [121] | Polyphenols, flavonoids, tannins, ellagitannins, anthocyanins | Antioxidant, anti-inflammatory, antimicrobial, radical scavenging, UV-protective | Anti-aging creams, UV protection, anti-wrinkle, soothing lotions, and acne treatment |
Blackcurrant pomace [163] | Pectin polysaccharides | Antioxidant activity Antimicrobic | Prebiotic cosmetic ingredients, emulsifiers |
Tomato, apple, guava, dates seeds [134] | Proteins (bioactive peptides), carotenoids, polysaccharides (pectin), flavonoids, vitamin. | Antioxidant, antibacterial, anti-inflammatory | Skin aging and skin hydration and elasticity |
Camellia sinensis, Uncaria gambir Roxb, Canarium patentinervium Miq, Grapes, apples, pears, cherries [147] | Catechins, flavonoids | Antioxidant, antimicrobial anti-inflammatory | UV protection, anti-aging, wound healing, sunscreen |
7. Materials and Methods
8. Conclusions
- Reduction of food waste: food processing residues can be transformed into functional nutraceuticals or cosmeceuticals, thereby minimising environmental impact.
- Convenient nutraceutical integration: plant by-products are an economical source of compounds with diverse biological properties.
- Ecological and renewable resources for cosmetics: unlike synthetic antioxidants and antimicrobials, bioactive compounds of plant origin are naturally occurring and biodegradable.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Popielarz, D.; Farkas, P.; Bzducha-Wrobel, A. Current Directions of Selected Plant-Origin Wastes’ Valorization in Biotechnology of Food Additives and Other Important Chemicals. Foods 2025, 14, 954. [Google Scholar] [CrossRef]
- Di Maro, M.; Gargiulo, L.; Gomez d’Ayala, G.; Duraccio, D. Exploring Antimicrobial Compounds from Agri-Food Wastes for Sustainable Applications. Int. J. Mol. Sci. 2024, 25, 13171. [Google Scholar] [CrossRef]
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Environmental and climate challenges to agriculture in Poland in the context of objectives adopted in the European Green Deal strategy. Sustainability 2021, 13, 10318. [Google Scholar] [CrossRef]
- Oliveira, T.C.; Caleja, C.; Oliveira, M.B.P.; Pereira, E.; Barros, L. Reuse of fruits and vegetables biowaste for sustainable development of natural ingredients. Food Biosci. 2023, 53, 102711. [Google Scholar] [CrossRef]
- Krzyżostan, M.; Wawrzyńczak, A.; Nowak, I. Use of Waste from the Food Industry and Applications of the Fermentation Process to Create Sustainable Cosmetic Products: A Review. Sustainability 2024, 16, 2757. [Google Scholar] [CrossRef]
- Parra-Pacheco, B.; Cruz-Moreno, B.A.; Aguirre-Becerra, H.; Garcia-Trejo, J.F.; Feregrino-Perez, A.A. Bioactive Compounds from Organic Waste. Molecules 2024, 29, 2243. [Google Scholar] [CrossRef] [PubMed]
- Chinenye Agnes Ariwaodo, O.F.O. Fleshy fruit waste and the green chemistry of its conversion to valuable products for humans and animals. Food Chem. Adv. 2024, 4, 100634. [Google Scholar] [CrossRef]
- Hrelia, S.; Barbalace, M.C.; Angeloni, C. Agri-Food Wastes as Natural Source of Bioactive Antioxidants—Third Edition. Antioxidants 2025, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.R.; Ponticelli, M.; Sinisgalli, C.; Milella, L.; Todaro, L.; Faraone, I. Natural Bioactive Compounds from Orchard Biomass Waste and Cosmetic Applications. Forests 2025, 16, 79. [Google Scholar] [CrossRef]
- Kakuda, L.; Maia Campos, P.M.B.G.; Oliveira, W.P. Development and Efficacy Evaluation of Innovative Cosmetic Formulations with Caryocar brasiliense Fruit Pulp Oil Encapsulated in Freeze-Dried Liposomes. Pharmaceutics 2024, 16, 595. [Google Scholar] [CrossRef]
- d’Avanzo, N.; Mancuso, A.; Mare, R.; Silletta, A.; Maurotti, S.; Parisi, O.I.; Cristiano, M.C.; Paolino, D. Olive Leaves and Citrus Peels: From Waste to Potential Resource for Cosmetic Products. Cosmetics. 2024, 11, 41. [Google Scholar] [CrossRef]
- Broeckling, C.D.; Beger, R.D.; Cheng, L.L.; Cumeras, R.; Cuthbertson, D.J.; Dasari, S.; Davis, W.C.; Dunn, W.B.; Evans, A.M.; Fernandez-Ochoa, A.; et al. Current Practices in LC-MS Untargeted Metabolomics: A Scoping Review on the Use of Pooled Quality Control Samples. Anal. Chem. 2023, 95, 18645–18654. [Google Scholar] [CrossRef]
- Nayana, P.; Wani, K.M. Unlocking the green potential: Sustainable extraction of bioactives from orange peel waste for environmental and health benefits. J. Food Meas. Charact. 2024, 18, 8145–8162. [Google Scholar] [CrossRef]
- Yadav, S.; Malik, K.; Moore, J.M.; Kamboj, B.R.; Malik, S.; Malik, V.K.; Arya, S.; Singh, K.; Mahanta, S.; Bishnoi, D.K. Valorisation of Agri-Food Waste for Bioactive Compounds: Recent Trends and Future Sustainable Challenges. Molecules 2024, 29, 2055. [Google Scholar] [CrossRef] [PubMed]
- García, S.L.R.; Raghavan, V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds-A review. Crit. Rev. Food Sci. 2022, 62, 6446–6466. [Google Scholar] [CrossRef]
- Aili, Q.; Cui, D.; Li, Y.; Zhige, W.; Yongping, W.; Minfen, Y.; Dongbin, L.; Xiao, R.; Qiang, W. Composing functional food from agro-forest wastes: Selectively extracting bioactive compounds using supercritical fluid extraction. Food Chem. 2024, 455, 139848. [Google Scholar] [CrossRef]
- Nonglait, D.L.; Gokhale, J.S. Review Insights on the Demand for Natural Pigments and Their Recovery by Emerging Microwave-Assisted Extraction (MAE). Food Bioprocess. Tech. 2024, 17, 1681–1705. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem 2023, 101, 106646. [Google Scholar] [CrossRef]
- Rusli, H.; Putri, R.M.; Alni, A. Recent Developments of Liquid Chromatography Stationary Phases for Compound Separation: From Proteins to Small Organic Compounds. Molecules 2022, 27, 907. [Google Scholar] [CrossRef]
- Vagare, R.D.; Mane, S.R.; Bais, S.K. Review on Phytochemical Analysis of Finished Product by Chromatographic Techniques. Int. J. Pharm. Herbal. Technol. 2025, 3, 2583–8962. [Google Scholar]
- Mir-Cerdà, A.; Nunez, O.; Granados, M.; Sentellas, S.; Saurina, J. An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. TrAC Trends Anal. Chem. 2023, 161, 116994. [Google Scholar] [CrossRef]
- Swapna, M.; Indu, R.; Latha, P.M.; Madhuri, B.R. A Comprehensive Review on UHPLC and UPLC: Advancements, Comparison, and Applications. Int. J. Sci. R. Tech. 2024, 1, 87–91. [Google Scholar]
- Ali, A.H. High-performance liquid chromatography (HPLC): A review. Ann. Adv. Chem. 2022, 6, 10–20. [Google Scholar] [CrossRef]
- Nuikin, S.A.; Timchenko, Y.V.; Rodin, I.A. Simultaneous Determination of Biologically Active Components of Rhodiola rosea in Extracts of Plant Raw Materials by HILIC–MS/MS. J. Anal. Chem. 2025, 80, 267–278. [Google Scholar] [CrossRef]
- Meriö-Talvio, H.; Dou, J.; Vuorinen, T.; Pitkänen, L. Fast HILIC Method for Separation and Quantification of Non-Volatile Aromatic Compounds and Monosaccharides from Willow (Salix sp.) Bark Extract. Appl. Sci. 2021, 11, 3808. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Altamirano, J.C.; Camargo, A.B. Multi-phytochemical determination of polar and non-polar garlic bioactive compounds in different food and nutraceutical preparations. Food Chem. 2021, 337, 127648. [Google Scholar] [CrossRef]
- Garcia-Jimenez, P.; Rico, M.; del Rosario-Santana, D.; Arbona, V.; Carrasco-Acosta, M.; Osca, D. Metabolite Profiling and Antioxidant Activities in Seagrass Biomass. Mar. Drugs 2025, 23, 193. [Google Scholar] [CrossRef]
- Nanda, B.P.; Chopra, A.; Kumari, Y.; Narang, R.K.; Bhatia, R. A comprehensive exploration of diverse green analytical techniques and their influence in different analytical fields. Sep. Sci. Plus 2024, 7, 2400004. [Google Scholar] [CrossRef]
- Harrieder, E.M.; Kretschmer, F.; Bocker, S.; Witting, M. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1188, 123069. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Lee, D.Y.; Yu, J.; Lin, Y.N.; Lin, T.M. Recent advances in LC-MS-based metabolomics for clinical biomarker discovery. Mass. Spectrom. Rev. 2023, 42, 2349–2378. [Google Scholar] [CrossRef] [PubMed]
- Zeki, O.C.; Eylem, C.C.; Recber, T.; Kir, S.; Nemutlu, E. Integration of GC-MS and LC-MS for untargeted metabolomics profiling. J. Pharm. Biomed. Anal. 2020, 190, 113509. [Google Scholar] [CrossRef]
- Lacalle-Bergeron, L.; Izquierdo-Sandoval, D.; Sancho, J.V.; Lopez, F.J.; Hernandez, F.; Portoles, T. Chromatography Hyphenated to High Resolution Mass Spectrometry in Untargeted Metabolomics for Investigation of Food (Bio)Markers. TrAC Trends Anal. Chem. 2021, 135, 116161. [Google Scholar] [CrossRef]
- Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat. Methods 2021, 18, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Mase, C.; Hubert-Roux, M.; Afonso, C.; Giusti, P. Contribution of atmospheric pressure chemical ionization mass spectrometry for the characterization of bio-oils from lignocellulosic biomass: Comparison with electrospray ionization and atmospheric pressure photoionization. J. Anal. Appl. Pyrolysis 2022, 167, 105694. [Google Scholar] [CrossRef]
- Han, W.; Ward, J.L.; Kong, Y.; Li, X. Editorial: Targeted and untargeted metabolomics for the evaluation of plant metabolites in response to the environment. Front. Plant Sci. 2023, 14, 1167513. [Google Scholar] [CrossRef]
- Piasecka, A.; Sawikowska, A.; Jedrzejczak-Rey, N.; Pislewska-Bednarek, M.; Bednarek, P. Targeted and Untargeted Metabolomic Analyses Reveal Organ Specificity of Specialized Metabolites in the Model Grass Brachypodium distachyon. Molecules 2022, 27, 5956. [Google Scholar] [CrossRef]
- Rodriguez-Blazquez, S.; Pedrera-Cajas, L.; Gomez-Mejia, E.; Vicente-Zurdo, D.; Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Rodriguez-Bencomo, J.J.; Miranda, R. The Potential of Plum Seed Residue: Unraveling the Effect of Processing on Phytochemical Composition and Bioactive Properties. Int. J. Mol. Sci. 2024, 25, 1236. [Google Scholar] [CrossRef]
- Sheng, F.; Hu, B.; Jin, Q.; Wang, J.; Wu, C.; Luo, Z. The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules 2021, 26, 3013. [Google Scholar] [CrossRef]
- Zuniga-Lopez, M.C.; Maturana, G.; Campmajo, G.; Saurina, J.; Nunez, O. Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant In Vitro Capacity. Antioxidants 2021, 10, 1151. [Google Scholar] [CrossRef]
- Garcia-Aparicio, M.D.P.; Castro-Rubio, F.; Marina, M.L. Unlocking peach juice byproduct potential in food waste biorefineries: Phenolic compounds profile, antioxidant capacity and fermentable sugars. Bioresour. Technol. 2024, 396, 130441. [Google Scholar] [CrossRef]
- Arruda-Peixoto, V.A.S.; Vera Estacho, P.; Wrona, M.; Nogueira Carvalho, P.R.; Aparecida Ferrari, R.; Nerin, C.; Canellas, E. Promoting Circular Economy by Leveraging Annatto Byproducts from Bixa orellana L. into Sustainable Antioxidant Food Packaging. Foods 2025, 14, 704. [Google Scholar] [CrossRef]
- Bergmann, D.; Matarrita-Rodriguez, J.; Abdulla, H. Toward a More Comprehensive Approach for Dissolved Organic Matter Chemical Characterization Using an Orbitrap Fusion Tribrid Mass Spectrometer Coupled with Ion and Liquid Chromatography Techniques. Anal. Chem. 2024, 96, 3744–3753. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, B.; Teng, Z.; Zhang, M.; Yu, L.; Luo, Y.; Chen, P.; Sun, J. Improved metabolomic approach for evaluation of phytochemicals in mustard, kale, and broccoli microgreens under different controlled environment agriculture conditions. J. Agric. Food Res. 2023, 14, 100719. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Kumar Singh, M.; Dhyani, P.; Mishra, H.; Chandra Rai, D. Bioactive metabolites identification of the foxnut and broken millet-based nutritional bar using HR-MS. Food Chem. 2024, 9, 100214. [Google Scholar] [CrossRef]
- Ibáñez, E.; Bicchi, C.; Capozzi, F.; Chen, Y.; Coppola, F.; Fanali, S.; Ferreira, S.R.S.; Fischer, M.; Gavahian, M.; Gavara, R.; et al. Future trends in Food Science and Foodomics: A perspective view by the Editorial Team of Exploration of Foods and Foodomics. Explor. Foods Foodomics 2024, 2, 707–766. [Google Scholar] [CrossRef]
- Ruan, Q.; Comstock, K. A New Workflow for Drug Metabolite Profiling by Utilizing Advanced Tribrid Mass Spectrometry and Data-Processing Techniques. J. Am. Soc. Mass. Spectrom. 2021, 32, 2050–2061. [Google Scholar] [CrossRef]
- Te Brinke, E.; Arrizabalaga-Larranaga, A.; Blokland, M.H. Insights of ion mobility spectrometry and its application on food safety and authenticity: A review. Anal. Chim. Acta 2022, 1222, 340039. [Google Scholar] [CrossRef]
- Moses, T.; Burgess, K. Right in two: Capabilities of ion mobility spectrometry for untargeted metabolomics. Front. Mol. Biosci. 2023, 10, 1230282. [Google Scholar] [CrossRef]
- Ramachandran, S.; Thomas, T. Statistical Characterization of the Multi-Charged Fragment Ions in the CID and HCD Spectrum. Mass. Spectrom. Lett. 2021, 12, 41–46. [Google Scholar] [CrossRef]
- Zalidis, A.P.; Kalogiouri, N.P.; Mourtzinos, I.; Sarris, D.; Gkatzionis, K. A Novel Liquid Chromatographic Time-of-Flight Tandem Mass Spectrometric Method for the Determination of Secondary Metabolites in Functional Flours Produced from Grape Seed and Olive Stone Waste. Molecules 2025, 30, 1527. [Google Scholar] [CrossRef]
- Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92, 8072–8080. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Zheng, M.; Cao, D.; Liu, G. Data acquisition methods for non-targeted screening in environmental analysis. TrAC Trends Anal. Chem. 2023, 160, 116966. [Google Scholar] [CrossRef]
- Xia, D.; Pan, G.; Liu, Y.; Liu, H.; Zhao, B.; Wu, J.; Tang, T.; Lu, G.; Wang, R. Unlocking the future potential of SWATH-MS: Advancing non-target screening workflow for the qualitative and quantitative analysis of emerging contaminants. Water Res. 2025, 277, 123323. [Google Scholar] [CrossRef]
- Wang, H.; Ding, H. Dereplication of secondary metabolites from Sophora flavescens using an LC-MS/MS-based molecular networking strategy. Sci. Rep. 2025, 15, 10148. [Google Scholar] [CrossRef]
- Allwood, J.W.; Williams, A.; Uthe, H.; van Dam, N.M.; Mur, L.A.J.; Grant, M.R.; Petriacq, P. Unravelling Plant Responses to Stress-The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021, 11, 558. [Google Scholar] [CrossRef]
- Limjiasahapong, S.; Kaewnarin, K.; Jariyasopit, N.; Hongthong, S.; Nuntasaen, N.; Robinson, J.L.; Nookaew, I.; Sirivatanauksorn, Y.; Kuhakarn, C.; Reutrakul, V.; et al. UPLC-ESI-MRM/MS for Absolute Quantification and MS/MS Structural Elucidation of Six Specialized Pyranonaphthoquinone Metabolites from Ventilago harmandiana. Front. Plant Sci. 2020, 11, 602993. [Google Scholar] [CrossRef]
- Yan, S.; Bhawal, R.; Yin, Z.; Thannhauser, T.W.; Zhang, S. Recent advances in proteomics and metabolomics in plants. Mol. Hortic. 2022, 2, 17. [Google Scholar] [CrossRef]
- Cuffaro, D.; Bertolini, A.; Bertini, S.; Ricci, C.; Cascone, M.G.; Danti, S.; Saba, A.; Macchia, M.; Digiacomo, M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients 2023, 15, 3746. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Liu, N.; Zhou, Q.; Li, L.; Zhao, W. Comparative Metabolomics Analysis of Terpenoid and Flavonoid in Roots of Red Beet and Sugar Beet (Beta vulgaris L.). Sugar Tech. 2025, 27, 811–820. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, F.; Zhu, J. Bridging Targeted and Untargeted Mass Spectrometry-Based Metabolomics via Hybrid Approaches. Metabolites 2020, 10, 348. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, M.; Chen, P.; Harnly, J.M.; Sun, J. Mass Spectrometry-Based Nontargeted and Targeted Analytical Approaches in Fingerprinting and Metabolomics of Food and Agricultural Research. J. Agric. Food Chem. 2022, 70, 11138–11153. [Google Scholar] [CrossRef]
- Cho, B.G.; Gutierrez Reyes, C.D.; Goli, M.; Gautam, S.; Banazadeh, A.; Mechref, Y. Targeted N-Glycan Analysis with Parallel Reaction Monitoring Using a Quadrupole-Orbitrap Hybrid Mass Spectrometer. Anal. Chem. 2022, 94, 15215–15222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, X.; Qiu, J.; Zhang, L.; Zhang, Y.; Qiu, X.; Huang, Z.; Xu, W. Comprehensive Comparison on the Chemical Profile of Guang Chen Pi at Different Ripeness Stages Using Untargeted and Pseudotargeted Metabolomics. Agric. Food Chem. 2020, 68, 8483–8495. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Liu, F.; Feng, K.; Fu, T.; Li, W.; Zhang, C.; Li, M.; Wang, Z. Integrated Metabolomics and Transcriptome Analysis of Anthocyanin Biosynthetic Pathway in Prunus serrulata. Plants 2025, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ma, Q.; Hou, Q.; Zuo, T.; Zhang, Z.; Ni, W. Identification and quantitative chemical analysis of betaines in different organic wastes and their bioconversion composts. Bioresour. Technol. 2021, 328, 124857. [Google Scholar] [CrossRef]
- Crescenzi, M.A.; D’Urso, G.; Piacente, S.; Montoro, P. UPLC-ESI-QTRAP-MS/MS Analysis to Quantify Bioactive Compounds in Fennel (Foeniculum vulgare Mill.) Waste with Potential Anti-Inflammatory Activity. Metabolites 2022, 12, 701. [Google Scholar] [CrossRef]
- Heuckeroth, S.; Damiani, T.; Smirnov, A.; Mokshyna, O.; Brungs, C.; Korf, A.; Smith, J.D.; Stincone, P.; Dreolin, N.; Nothias, L.F.; et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat. Protoc. 2024, 19, 2597–2641. [Google Scholar] [CrossRef]
- Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38, 1159–1163. [Google Scholar] [CrossRef]
- Adams, K.J.; Pratt, B.; Bose, N.; Dubois, L.G.; St John-Williams, L.; Perrott, K.M.; Ky, K.; Kapahi, P.; Sharma, V.; MacCoss, M.J.; et al. Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. J. Proteome Res. 2020, 19, 1447–1458. [Google Scholar] [CrossRef]
- Rurik, M.; Alka, O.; Aicheler, F.; Kohlbacher, O. Metabolomics Data Processing Using OpenMS. Methods Mol. Biol. 2020, 2104, 49–60. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Sanches, P.H.; Oliveira, D.C.D.; Reis, I.G.D.; Fernandes, A.M.; Silva, A.A.; Eberlin, M.N.; Carvalho, P.O.; Duarte, G.H.; Porcari, A.M. Fitting structure-data files (. SDF) libraries to progenesis QI identification searches. J. Braz. Chem. Soc. 2023, 37, 1013–1019. [Google Scholar] [CrossRef]
- Cooper, B.; Yang, R. An assessment of AcquireX and Compound Discoverer software 3.3 for non-targeted metabolomics. Sci. Rep. 2024, 14, 4841. [Google Scholar] [CrossRef]
- Sarkar, J.; Singh, R.; Chandel, S. Understanding LC/MS-Based Metabolomics: A Detailed Reference for Natural Product Analysis. Proteom. Clin. Appl. 2025, 19, e202400048. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, A.; Jahani, R.; Mokhtari, S.; Yazdanpanah, H.; Daraei, B.; Faizi, M.; Kobarfard, F. Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: A critical review. Analyst 2021, 146, 6049–6063. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Perez de Souza, L.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020, 10, 37. [Google Scholar] [CrossRef]
- da Silva, W.B.; Hispagnol, G.F.; Nunes, E.V.D.; Castro-Gamboa, I.; Pilon, A.C. Plant Sample Preparation for Metabolomics, Lipidomics, Ionomics, Fluxomics, and Peptidomics. Separations 2025, 12, 21. [Google Scholar] [CrossRef]
- Dhua, S.; Kumar, K.; Sharanagat, V.S.; Nema, P.K. Bioactive compounds and its optimization from food waste: Review on novel extraction techniques. Nutr. Food Sci. 2022, 52, 1270–1288. [Google Scholar] [CrossRef]
- Moro, K.I.B.; Bender, A.B.B.; da Silva, L.P.; Penna, N.G. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. Food Bioprocess. Tech. 2021, 14, 1407–1431. [Google Scholar] [CrossRef]
- Tapia-Quiros, P.; Granados, M.; Sentellas, S.; Saurina, J. Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up? Sci. Total Environ. 2024, 912, 168716. [Google Scholar] [CrossRef]
- Chanioti, S.; Katsouli, M.; Tzia, C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules 2021, 26, 1781. [Google Scholar] [CrossRef]
- Valisakkagari, H.; Chaturvedi, C.; Rupasinghe, H.P.V. Green Extraction of Phytochemicals from Fresh Vegetable Waste and Their Potential Application as Cosmeceuticals for Skin Health. Processes 2024, 12, 742. [Google Scholar] [CrossRef]
- Kupnik, K.; Primozic, M.; Vasic, K.; Knez, Z.; Leitgeb, M. A Comprehensive Study of the Antibacterial Activity of Bioactive Juice and Extracts from Pomegranate (Punica granatum L.) Peels and Seeds. Plants 2021, 10, 1554. [Google Scholar] [CrossRef]
- Thakur, R.K.; Singh, M.; Patra, S.; Biswas, P.K.; Bhowmik, A. Phytochemicals Identification Using GC-MS in Four Extracts of Fruit Peels and Enactment of Extracts Against MZ269380. Waste Biomass Valori 2024, 15, 521. [Google Scholar] [CrossRef]
- Tsoupras, A.; Moran, D.; Shiels, K.; Saha, S.K.; Abu-Reidah, I.M.; Thomas, R.H.; Redfern, S. Enrichment of Whole-Grain Breads with Food-Grade Extracted Apple Pomace Bioactives Enhanced Their Anti-Inflammatory, Antithrombotic and Anti-Oxidant Functional Properties. Antioxidants 2024, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Silletta, A.; Mancuso, A.; d’Avanzo, N.; Cristiano, M.C.; Paolino, D. Antimicrobial Compounds from Food Waste in Cosmetics. Cosmetics 2024, 11, 151. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Fruit and vegetable processing wastes as natural sources of antioxidant-rich extracts: Evaluation of advanced extraction technologies by surface response methodology. J. Environ. Chem. Eng. 2021, 9, 105330. [Google Scholar] [CrossRef]
- Hoss, I.; Rajha, H.N.; El Khoury, R.; Youssef, S.; Manca, M.L.; Manconi, M.; Louka, N.; Maroun, R.G. Valorization of Wine-Making By-Products’ Extracts in Cosmetics. Cosmetics 2021, 8, 109. [Google Scholar] [CrossRef]
- Chaudhary, K.; Khalid, S.; Zahid, M.; Ansar, S.; Zaffar, M.; Hassan, S.A.; Naeem, M.; Maan, A.A.; Aadil, R.M. Emerging ways to extract lycopene from waste of tomato and other fruits, a comprehensive review. J. Food Process Eng. 2024, 47, e14720. [Google Scholar] [CrossRef]
- Masala, V.; Jokic, S.; Aladic, K.; Molnar, M.; Tuberoso, C.I.G. Exploring Phenolic Compounds Extraction from Saffron (C. sativus) Floral By-Products Using Ultrasound-Assisted Extraction, Deep Eutectic Solvent Extraction, and Subcritical Water Extraction. Molecules 2024, 29, 2600. [Google Scholar] [CrossRef]
- Mir-Cerda, A.; Carretero, I.; Coves, J.R.; Pedrouso, A.; Castro-Barros, C.M.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Sentellas, S. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance. Sci. Total Environ. 2023, 857, 159623. [Google Scholar] [CrossRef]
- Houasni, A.; Grigorakis, S.; Kellil, A.; Makris, D.P. Organosolv Treatment/Polyphenol Extraction from Olive Leaves (L.) Using Glycerol and Glycerol-Based Deep Eutectic Solvents: Effect on Metabolite Stability. Biomass 2022, 2, 46–61. [Google Scholar] [CrossRef]
- Farinon, B.; Felli, M.; Sulli, M.; Diretto, G.; Savatin, D.; Mazzucato, A.; Merendino, N.; Costantini, L. Tomato pomace food waste from different variants as a high antioxidant potential resource. Food Chem. 2024, 452, 139509. [Google Scholar] [CrossRef]
- Rajapaksha, S.; Shimizu, N. Pilot-scale extraction of polyphenols from spent black tea by semi-continuous subcritical solvent extraction. Food Chem. X 2022, 13, 100200. [Google Scholar] [CrossRef] [PubMed]
- Elferjane, M.R.; Jovanovic, A.A.; Milutinovic, V.; Cutovic, N.; Jovanovic Krivokuca, M.; Marinkovic, A. From Aloe vera Leaf Waste to the Extracts with Biological Potential: Optimization of the Extractions, Physicochemical Characterization, and Biological Activities. Plants 2023, 12, 2744. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, A.; Vassilev, K.; Nenov, N.; Passon, M.; Shikov, V.; Schieber, A.; Mihalev, K. Combining Enzymatic and Subcritical Water Treatments for Green Extraction of Polyphenolic Co-pigments from Saffron Tepals. Waste Biomass Valori 2024, 15, 207–217. [Google Scholar] [CrossRef]
- Lianza, M.; Marincich, L.; Antognoni, F. The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products. Antioxidants 2022, 11, 2169. [Google Scholar] [CrossRef]
- Samota, M.K.; Sharma, M.; Kaur, K.; Sarita; Yadav, D.K.; Pandey, A.K.; Tak, Y.; Rawat, M.; Thakur, J.; Rani, H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front. Nutr. 2022, 9, 917617. [Google Scholar] [CrossRef]
- Oliveira, J.; Benvenutti, L.; Albuquerque, B.R.; Finimundy, T.C.; Mandim, F.; Pires, T.C.S.P.; Pereira, C.; Corrêa, R.C.G.; Barros, L.; Zielinski, A.A.F. Green extraction of anthocyanin from red cabbage waste using acid whey as a promising bio-based solvent. Innov. Food Sci. Emerg. 2025, 100, 103926. [Google Scholar] [CrossRef]
- Diep, T.T.; Pook, C.; Rush, E.C.; Yoo, M.J.Y. Quantification of Carotenoids, α-Tocopherol, and Ascorbic Acid in Amber, Mulligan, and Laird’s Large Cultivars of New Zealand Tamarillos (Cav.). Foods 2020, 9, 769. [Google Scholar] [CrossRef]
- Papapostolou, H.; Kachrimanidou, V.; Alexandri, M.; Plessas, S.; Papadaki, A.; Kopsahelis, N. Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants 2023, 12, 1030. [Google Scholar] [CrossRef]
- Feng, X.Y.; Yu, Q.Q.; Li, B.; Kan, J.Q. Comparative analysis of carotenoids and metabolite characteristics in discolored red pepper and normal red pepper based on non-targeted metabolomics. Lwt-Food Sci. Technol. 2022, 153, 112398. [Google Scholar] [CrossRef]
- Nagarajan, J.; Pui Kay, H.; Krishnamurthy, N.P.; Ramakrishnan, N.R.; Aldawoud, T.M.S.; Galanakis, C.M.; Wei, O.C. Extraction of Carotenoids from Tomato Pomace via Water-Induced Hydrocolloidal Complexation. Biomolecules 2020, 10, 1019. [Google Scholar] [CrossRef] [PubMed]
- Gentili, A.; Caretti, F.; D’Ascenzo, G.; Marchese, S.; Perret, D.; Di Corcia, D.; Rocca, L.M. Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2008, 22, 2029–2043. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.; Lodge, J.K. Determination of selected water-soluble vitamins (thiamine, riboflavin, nicotinamide and pyridoxine) from a food matrix using hydrophilic interaction liquid chromatography coupled with mass spectroscopy. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1171, 122541. [Google Scholar] [CrossRef] [PubMed]
- Trombino, S.; Cassano, R.; Procopio, D.; Di Gioia, M.L.; Barone, E. Valorization of Tomato Waste as a Source of Carotenoids. Molecules 2021, 26, 5062. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Oshiro, A.; Farias, F.O.; Haddad, F.F.; dos Santos, J.L.; Scarim, C.B.; Herculano, R.D.; Pessoa, A.P.; Santos-Ebinuma, V.C. Emerging role of bio-based solvents mixtures to increase the solubility and recovery of carotenoids from processed carrot wastes for potential skin care application. Ind. Crop Prod. 2023, 205, 117436. [Google Scholar] [CrossRef]
- Serrano-Garcia, I.; Dominguez-Garcia, J.; Hurtado-Fernandez, E.; Gonzalez-Fernandez, J.J.; Hormaza, J.I.; Beiro-Valenzuela, M.G.; Monasterio, R.; Pedreschi, R.; Olmo-Garcia, L.; Carrasco-Pancorbo, A. Assessing the RP-LC-MS-Based Metabolic Profile of Hass Avocados Marketed in Europe from Different Geographical Origins (Peru, Chile, and Spain) over the Whole Season. Plants 2023, 12, 3004. [Google Scholar] [CrossRef]
- Leòn-roque, N.; Omero Guzmàn, B.M.; Blitas-Cruz, J.F.; Idalgo-Chàvez, H.W. Optimization of total polyphenol extraction and flavonoid screening by mass spectrometry in mango (Mangifera indica L.) waste from Peru. Food Sci. Technol. 2023, 43, e105322. [Google Scholar] [CrossRef]
- Bharadvaja, N.; Gautam, S.; Singh, H. Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Mol. Biol. Rep. 2023, 50, 1817–1828. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products—Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef]
- Fantasma, F.; Samukha, V.; Saviano, G.; Chini, M.G.; Iorizzi, M.; Caprari, C. Nutraceutical Aspects of Selected Wild Edible Plants of the Italian Central Apennines. Nutraceuticals 2024, 4, 190–231. [Google Scholar] [CrossRef]
- Afaq, F.; Katiyar, S.K. Polyphenols: Skin photoprotection and inhibition of photocarcinogenesis. Mini Rev. Med. Chem. 2011, 11, 1200–1215. [Google Scholar] [CrossRef]
- Bernini, R.; Campo, M.; Cassiani, C.; Fochetti, A.; Ieri, F.; Lombardi, A.; Urciuoli, S.; Vignolini, P.; Villanova, N.; Vita, C. Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. J. Agric. Food Chem. 2024, 72, 12871–12895. [Google Scholar] [CrossRef]
- Eskandari, M.; Rembiesa, J.; Startaite, L.; Holefors, A.; Valanciute, A.; Faridbod, F.; Ganjali, M.R.; Engblom, J.; Ruzgas, T. Polyphenol-hydrogen peroxide reactions in skin: Model relevant to study ROS reactions at inflammation. Anal. Chim. Acta 2019, 1075, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Maleki Dana, P.; Sadoughi, F.; Asemi, Z.; Yousefi, B. The role of polyphenols in overcoming cancer drug resistance: A comprehensive review. Cell Mol. Biol. Lett. 2022, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Liu, C.Q.; Li, Y.W.; Yuan, K.L.; Zhang, W.B.; Cai, D.B.; Peng, Z.Y.; Hu, Y.F.; Sun, J.X.; Bai, W.B. Bioactivity and application of anthocyanins in skin protection and cosmetics: An extension as a functional pigment. Phytochem. Rev. 2023, 22, 1441–1467. [Google Scholar] [CrossRef]
- Bas, T.G. Bioactivity and Bioavailability of Carotenoids Applied in Human Health: Technological Advances and Innovation. Int. J. Mol. Sci. 2024, 25, 7603. [Google Scholar] [CrossRef]
- Hossain, M.S.; Wazed, M.A.; Asha, S.; Amin, M.R.; Shimul, I.M. Dietary Phytochemicals in Health and Disease: Mechanisms, Clinical Evidence, and Applications—A Comprehensive Review. Food Sci. Nutr. 2025, 13, e70101. [Google Scholar] [CrossRef]
- Pollio, A.; Zarrelli, A.; Romanucci, V.; Di Mauro, A.; Barra, F.; Pinto, G.; Crescenzi, E.; Roscetto, E.; Palumbo, G. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines. Molecules 2016, 21, 395. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhaes, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the use of antioxidants in anti-ageing cosmetics. Int. J. Cosmet. Sci. 2019, 41, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants 2022, 11, 1663. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Ruan, Z.; Ma, A.; Wang, D.; Kou, J. Effect of vitamin K on wound healing: A systematic review and meta-analysis based on preclinical studies. Front. Pharmacol. 2022, 13, 1063349. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Wang, T. Phytosterols in cereal by-products. J. Am. Oil Chem. Soc. 2005, 82, 439–444. [Google Scholar] [CrossRef]
- Silva, E.O.; Bracarense, A.P. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. J. Food Sci. 2016, 81, R1357–R1362. [Google Scholar] [CrossRef]
- Daneluti, A.M.L.; Velasco, M.V.R.; Baby, A.R.; Do Rosário Matos, J. Thermal Behavior and Free-Radical-Scavenging Activity of Phytic Acid Alone and Incorporated in Cosmetic Emulsions. Cosmetics 2015, 2, 248–258. [Google Scholar] [CrossRef]
- Alba, K.; Campbell, G.M.; Kontogiorgos, V. Dietary fibre from berry-processing waste and its impact on bread structure: A review. J. Sci. Food Agric. 2019, 99, 4189–4199. [Google Scholar] [CrossRef]
- Xiang, T.; Yang, R.; Li, L.; Lin, H.; Kai, G. Research progress and application of pectin: A review. J. Food Sci. 2024, 89, 6985–7007. [Google Scholar] [CrossRef]
- De Luca, M.; Pappalardo, I.; Limongi, A.R.; Viviano, E.; Radice, R.P.; Todisco, S.; Martelli, G.; Infantino, V.; Vassallo, A. Lipids from Microalgae for Cosmetic Applications. Cosmetics 2021, 8, 52. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef]
- Tkaczewska, J. Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings—A review. Trends Food Sci. Tech. 2020, 106, 298–311. [Google Scholar] [CrossRef]
- Zhou, S.X.; Zhai, X.S.; Zhang, R.; Wang, W.T.; Lim, L.T.; Hou, H.X. High-Throughput Fabrication of Antibacterial Starch/PBAT/AgNPs@SiO Films for Food Packaging. Nanomaterials 2021, 11, 3062. [Google Scholar] [CrossRef]
- Allaqaband, S.; Dar, A.H.; Patel, U.; Kumar, N.; Nayik, G.A.; Khan, S.A.; Ansari, M.J.; Alabdallah, N.M.; Kumar, P.; Pandey, V.K.; et al. Utilization of Fruit Seed-Based Bioactive Compounds for Formulating the Nutraceuticals and Functional Food: A Review. Front. Nutr. 2022, 9, 902554. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol. 2017, 174, 1378–1394. [Google Scholar] [CrossRef]
- Colombo, R.; Pellicorio, V.; Barberis, M.; Frosi, I.; Papetti, A. Recent advances in the valorization of seed wastes as source of bioactive peptides with multifunctional properties. Trends Food Sci. Tech. 2024, 144, 104322. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Magalhaes, M.C.; Sousa-Lobo, J.M.; Almeida, I.F. Trending Anti-Aging Peptides. Cosmetics 2020, 7, 91. [Google Scholar] [CrossRef]
- Tang, Y.; Nie, T.; Zhang, L.; Liu, X.; Deng, H. Peptides in Cosmetics: From Pharmaceutical Breakthroughs to Skincare Innovations. Cosmetics 2025, 12, 107. [Google Scholar] [CrossRef]
- Castro-Jácome, T.P.; Alcántara-Quintana, L.E.; Montalvo-González, E.; Chacón-López, A.; Kalixto-Sánchez, M.A.; Rivera, M.D.; López-García, U.M.; Tovar-Pérez, E.G. Skin-protective properties of peptide extracts produced from white sorghum grain kafirins. Ind. Crop Prod. 2021, 167, 81–92. [Google Scholar] [CrossRef]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef]
- Dini, I.; Mancusi, A. Food Peptides for the Nutricosmetic Industry. Antioxidants 2023, 12, 788. [Google Scholar] [CrossRef]
- Rybczynska-Tkaczyk, K.; Grenda, A.; Jakubczyk, A.; Kiersnowska, K.; Bik-Malodzinska, M. Natural Compounds with Antimicrobial Properties in Cosmetics. Pathogens 2023, 12, 320. [Google Scholar] [CrossRef]
- Baysal, G.; Kasapbasi, E.E.; Yavuz, N.; Hur, Z.; Genc, K.; Genc, M. Determination of theoretical calculations by DFT method and investigation of antioxidant, antimicrobial properties of olive leaf extracts from different regions. J. Food Sci. Technol. 2021, 58, 1909–1917. [Google Scholar] [CrossRef]
- Oikeh, E.I.; Oviasogie, F.E.; Omoregie, E.S. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clin. Phytoscience 2020, 6, 46. [Google Scholar] [CrossRef]
- Prevete, G.; Carvalho, L.G.; Del Carmen Razola-Diaz, M.; Verardo, V.; Mancini, G.; Fiore, A.; Mazzonna, M. Ultrasound assisted extraction and liposome encapsulation of olive leaves and orange peels: How to transform biomass waste into valuable resources with antimicrobial activity. Ultrason. Sonochem 2024, 102, 106765. [Google Scholar] [CrossRef] [PubMed]
- Mita, S.R.; Muhtar, N.I.; Kusuma, S.A.F.; Sriwidodo, S.; Hendrawan, R.P. Catechins as Antimicrobial Agents and Their Contribution to Cosmetics. Cosmetics 2025, 12, 11. [Google Scholar] [CrossRef]
- Mita, S.R.; Husni, P.; Putriana, N.A.; Maharani, R.; Hendrawan, R.P.; Dewi, D.A. A Recent Update on the Potential Use of Catechins in Cosmeceuticals. Cosmetics 2024, 11, 23. [Google Scholar] [CrossRef]
- Jubair, N.; R, M.; Fatima, A.; Mahdi, Y.K.; Abdullah, N.H. Evaluation of Catechin Synergistic and Antibacterial Efficacy on Biofilm Formation and acrA Gene Expression of Uropathogenic E. coli Clinical Isolates. Antibiotics 2022, 11, 1223. [Google Scholar] [CrossRef]
- Zhou, P.F.; Tang, D.B.; Zou, J.H.; Wang, X.P. An alternative strategy for enhancing stability and antimicrobial activity of catechins by natural deep eutectic solvents. Lwt-Food Sci. Technol. 2022, 153, 112558. [Google Scholar] [CrossRef]
- Zlotek, U.; Jakubczyk, A.; Rybczynska-Tkaczyk, K.; Cwiek, P.; Baraniak, B.; Lewicki, S. Characteristics of New Peptides GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ, YGNPVGGVGH, and GNPVGGVGHGTTGT as Inhibitors of Enzymes Involved in Metabolic Syndrome and Antimicrobial Potential. Molecules 2020, 25, 2492. [Google Scholar] [CrossRef]
- Silvério, L.A.L.; dos Santos, É.M.; de Oliveira Moreira, J.C.; Tasca Gois Ruiz, A.L.; Cogo-Müller, K.; Ataide, J.A.; Paiva-Santos, A.C.; Mazzola, P.G. Evaluating Coffee and Rosemary Extracts as Sustainable Alternatives to Synthetic Preservatives. Cosmetics 2025, 12, 147. [Google Scholar] [CrossRef]
- Castro-Díaz, R.; Silva-Beltrán, N.P.; Gámez-Meza, N.; Calderón, K. The Antimicrobial Effects of Coffee and By-Products and Their Potential Applications in Healthcare and Agricultural Sectors: A State-of-Art Review. Microorganisms 2025, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Mungmai, L.; Wongwad, E.; Tanamatayarat, P.; Rungsang, T.; Vivattanaseth, P.; Aunsri, N.; Preedalikit, W. Stability, Bioactivity, and Skin Penetration of Prunus Leaf Extracts in Cream Formulations: A Clinical Study on Skin Irritation. Cosmetics 2025, 12, 146. [Google Scholar] [CrossRef]
- Owczarek, A.; Kolodziejczyk-Czepas, J.; Marczuk, P.; Siwek, J.; Wasowicz, K.; Olszewska, M.A. Bioactivity Potential of Aesculus hippocastanum L. Flower: Phytochemical Profile, Antiradical Capacity and Protective Effects on Human Plasma Components under Oxidative/Nitrative Stress In Vitro. Pharmaceuticals 2021, 14, 1301. [Google Scholar] [CrossRef] [PubMed]
- Chiang Chan, E.W. An overview of the chemical constituents, pharmacological properties, and safety evaluation of Camellia sinensis flowers. J. Appl. Pharm. Sci. 2024, 14, 22–29. [Google Scholar] [CrossRef]
- Davis, S.L.; Marsh, J.M.; Kelly, C.P.; Li, L.; Tansky, C.S.; Fang, R.; Simmonds, M.S.J. Protection of hair from damage induced by ultraviolet irradiation using tea (Camellia sinensis) extracts. J. Cosmet. Dermatol. 2022, 21, 2246–2254. [Google Scholar] [CrossRef]
- Moreira, P.; Sousa, F.J.; Matos, P.; Brites, G.S.; Gonçalves, M.J.; Cavaleiro, C.; Figueirinha, A.; Salgueiro, L.; Batista, M.T.; Branco, P.C.; et al. Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Leaves. Pharmaceutics 2022, 14, 561. [Google Scholar] [CrossRef]
- Koycheva, I.K.; Mihaylova, L.; Todorova, M.N.; Balcheva-Sivenova, Z.P.; Alipieva, K.; Ferrante, C.; Orlando, G.; Georgiev, M. Leucosceptoside A from Devil’s Claw Modulates Psoriasis-like Inflammation via Suppression of the PI3K/AKT Signaling Pathway in Keratinocytes. Molecules 2021, 26, 7014. [Google Scholar] [CrossRef]
- Zhang, X.X.; Ni, Z.J.; Zhang, F.; Thakur, K.; Zhang, J.G.; Khan, M.R.; Busquets, R.; Wei, Z.J. Physicochemical and antioxidant properties of seed dreg polysaccharides prepared by continuous extraction. Food Chem. X 2022, 14, 100282. [Google Scholar] [CrossRef]
- Hudz, N.; Kobylinska, L.; Pokajewicz, K.; Sedlackova, V.H.; Fedin, R.; Voloshyn, M.; Myskiv, I.; Brindza, J.; Wieczorek, P.P.; Lipok, J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023, 28, 7444. [Google Scholar] [CrossRef]
- Kang, M.; Park, S.; Son, S.R.; Noh, Y.; Jang, D.S.; Lee, S. Anti-Aging and Anti-Inflammatory Effects of Compounds from Fresh Panax ginseng Roots: A Study on TNF-alpha/IFN-gamma-Induced Skin Cell Damage. Molecules 2024, 29, 5479. [Google Scholar] [CrossRef]
- Benítez-González, A.M.; Aguilera-Velázquez, J.R.; Palomas, J.B.; Meléndez-Martínez, A.J. Evaluation of carrot and agroindustrial residues for obtaining Tenebrio molitor (yellow mealworm) powder enriched in bioaccessible provitamin A and colourless carotenoids. Lwt-Food Sci. Technol. 2024, 214, 117011. [Google Scholar] [CrossRef]
- Corovic, M.; Ivankovic, A.P.; Milivojevic, A.; Veljkovic, M.; Simovic, M.; López-Revenga, P.; Montilla, A.; Moreno, F.J.; Bezbradica, D. Valorisation of Blackcurrant Pomace by Extraction of Pectin-Rich Fractions: Structural Characterization and Evaluation as Multifunctional Cosmetic Ingredient. Polymers 2024, 16, 2779. [Google Scholar] [CrossRef]
Instrument | Configuration | Acquisition Modes |
---|---|---|
Thermo Scientific Q Exactive (Q Exactive, Q Exactive Plus, Q Exactive HF-X) | Quadrupole + Orbitrap | Full MS, DDA, DIA, PRM * |
Thermo Scientific Orbitrap Exploris (Exploris 120, 240, 480) | Quadrupole + Orbitrap | Full MS, DDA, DIA, PRM * |
Thermo Scientific Orbitrap Tribrid (Fusion, Fusion Lumos, Eclipse, ID-X, IQ-X) | Quadrupole + Ion Trap + Orbitrap | DDA, MSn |
Agilent Q-TOF (6545, 6546) | Quadrupole + Time-of-Flight | DDA, DIA, SWATH, MS/MS |
Waters Xevo QTOF (G2-XS, G3-XS) | Quadrupole + Time-of-Flight | DDA, DIA |
Bruker timsTOF (timsTOF Pro, timsTOF Flex) | Quadrupole + TIMS + Time-of-Flight | DDA, DIA |
SCIEX ZenoTOF 7600 | Quadrupole + Zeno Trap + Time-of-Flight | DDA, SWATH, MRM^HR * |
Software | Type | Functions | Supported Database | Notes |
---|---|---|---|---|
XCMS | Open-source | Peak detection, retention time alignment, feature extraction | METLIN, HMDB | Often used with METLIN for identification |
Mzmine | Open-source | Peak picking, deconvolution, alignment, quantification | MassBank, GNPS | User-friendly interface; commonly used in academic research |
MS-DIAL | Open-source | Deconvolution, alignment, MS/MS-based identification | Built-in libraries, MassBank | Includes large MS/MS libraries |
Skyline | Open-source | Targeted and untargeted analysis, quantification | HMDB, METLIN | Originally for proteomics, now also used in metabolomics |
OpenMS | Open-source | Full pipeline support: preprocessing to statistical analysis | Various | Highly modular; used in bioinformatics workflows |
Workflow4Metabolomics | Open-source | Full LC-MS data analysis pipeline (XCMS-based) | METLIN, HMDB | Integrated into Galaxy platform |
MetaboAnalyst (Galaxy) | Open-source | Statistical, pathway, and functional analysis | Various | Integrated into Galaxy; requires preprocessed data |
Progenesis QI | Commercial | Feature extraction, identification, statistical analysis | Vendor specific | Developed by Waters |
Compound Discoverer | Commercial | Peak picking, identification, isotope/adduct analysis | Vendor specific | Developed by Thermo Fisher Scientific |
MetaboScape | Commercial | Data processing and annotation supports ion mobility | Vendor specific | Developed by Bruker |
MarkerLynx | Commercial | Data pre-processing and statistical analysis | Vendor specific | From Waters; integrated with their instruments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Urso, G.; Capuano, A.; Fantasma, F.; Chini, M.G.; De Felice, V.; Saviano, G.; Lauro, G.; Casapullo, A.; Bifulco, G.; Iorizzi, M. The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview. Plants 2025, 14, 2284. https://doi.org/10.3390/plants14152284
D’Urso G, Capuano A, Fantasma F, Chini MG, De Felice V, Saviano G, Lauro G, Casapullo A, Bifulco G, Iorizzi M. The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview. Plants. 2025; 14(15):2284. https://doi.org/10.3390/plants14152284
Chicago/Turabian StyleD’Urso, Gilda, Alessandra Capuano, Francesca Fantasma, Maria Giovanna Chini, Vincenzo De Felice, Gabriella Saviano, Gianluigi Lauro, Agostino Casapullo, Giuseppe Bifulco, and Maria Iorizzi. 2025. "The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview" Plants 14, no. 15: 2284. https://doi.org/10.3390/plants14152284
APA StyleD’Urso, G., Capuano, A., Fantasma, F., Chini, M. G., De Felice, V., Saviano, G., Lauro, G., Casapullo, A., Bifulco, G., & Iorizzi, M. (2025). The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview. Plants, 14(15), 2284. https://doi.org/10.3390/plants14152284