Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = fly spots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5233 KiB  
Article
Neosilba batesi Curran (Diptera: Lonchaeidae): Identification, Distribution, and Its Relationship with Avocado Fruits
by Braulio Alberto Lemus-Soriano, Oscar Morales-Galván, David García-Gallegos, Diana Vely García-Banderas, Mona Kassem and Carlos Patricio Illescas-Riquelme
Diversity 2025, 17(7), 499; https://doi.org/10.3390/d17070499 - 21 Jul 2025
Viewed by 425
Abstract
In this study, the association between Neosilba batesi (Diptera: Lonchaeidae) and avocado fruits (Persea americana L.) was investigated. Fruits showing signs of rot and infested with Diptera larvae were collected from commercial orchards in the states of Michoacán and Jalisco, Mexico. N. [...] Read more.
In this study, the association between Neosilba batesi (Diptera: Lonchaeidae) and avocado fruits (Persea americana L.) was investigated. Fruits showing signs of rot and infested with Diptera larvae were collected from commercial orchards in the states of Michoacán and Jalisco, Mexico. N. batesi was identified in association with fruits from both trees and the ground at all sampling sites. Furthermore, a phylogenetic analysis based on the mitochondrial cytochrome c oxidase subunit I (COI) gene supported the morphological identification, showing >99% identity with records from Veracruz, and revealed distinct genetic lineages within the Neosilba genus. In a study within one Michoacán orchard, infested tree-borne fruits averaged 5.40 cm in length and 3.90 cm in width, with a mean of 9.61 larvae emerging per fruit. Females were observed to lay eggs in openings between the pedicel and the fruit, never piercing the exocarp. In contrast, on fallen fruit, they utilized existing wounds with exposed pulp. Infested avocados exhibit characteristic spots indicating the presence of internal larvae and generally detach from the tree. Larvae can feed on avocados in various stages of decomposition and may either emerge through wounds or pupate within the fruit. These findings support the opportunistic and saprophagous behavior associated with this fly species. Full article
Show Figures

Figure 1

15 pages, 929 KiB  
Article
Assessing Wine Grape Cultivar Susceptibility to Spotted Wing Drosophila and Melanogaster-Type Drosophila in Hungarian Vineyards: Effects of Berry Integrity and Insights into Larval Interactions
by Abir Ibn Amor, Ágnes Kukorellyné Szénási, Csaba Németh, Ferenc Deutsch and Balázs Kiss
Insects 2025, 16(5), 497; https://doi.org/10.3390/insects16050497 - 5 May 2025
Viewed by 663
Abstract
The invasive spotted wing Drosophila (SWD) represents new challenges for European and North American fruit producers. The aim of our study was to examine wine grape cultivar susceptibility to this pest and melanogaster-type Drosophila (MTD) by surveying drosophilid populations using field traps and [...] Read more.
The invasive spotted wing Drosophila (SWD) represents new challenges for European and North American fruit producers. The aim of our study was to examine wine grape cultivar susceptibility to this pest and melanogaster-type Drosophila (MTD) by surveying drosophilid populations using field traps and conducting emergence tests. We assessed fly development from intact and artificially injured berries collected from four cultivars. Berries were incubated individually and in pooled samples to evaluate infestation patterns and potential larval interactions. Although grapes are generally considered less favorable hosts for SWD, the pest was consistently present across all vineyard plots. Infestation levels differed significantly among cultivars, with the Hungarian white cultivar Furmint being the most susceptible, while French-origin red cultivars Cabernet Franc and Cabernet Sauvignon, along with the other Hungarian cultivar Rózsakő, were less susceptible. Berry integrity played a crucial role: intact berries showed minimal infestation, whereas physical injuries led to a substantial and significant increase in infestation rates and fly emergence. In contrast to SWD-dominated trap catches and the nearly equal proportions of SWD and MTD observed in intact berries, injured berries were predominantly colonized by MTD. This dominance became even more pronounced in pooled samples, suggesting that larval competition in shared environments favors MTD over SWD. These findings underscore the importance of grape cultivar traits and berry condition in shaping Drosophila infestation dynamics. Further research into the chemical and ecological drivers of host selection and interspecific interactions is warranted to improve vineyard pest management strategies. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

13 pages, 7764 KiB  
Article
An Environmentally-Friendly RNAi Yeast-Attractive Targeted Sugar Bait Turns off the Drosophila suzukii Rbfox1 Gene
by Keshava Mysore, Jackson Graham, Saisuhas Nelaturi, Teresia M. Njoroge, Majidah Hamid-Adiamoh, Akilah T. M. Stewart, Longhua Sun and Molly Duman-Scheel
Insects 2025, 16(5), 481; https://doi.org/10.3390/insects16050481 - 1 May 2025
Viewed by 640
Abstract
Spotted wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), are invasive vinegar flies of East Asian origin that are an increasingly global threat to the small fruit industry. It is essential that new classes of eco-friendly insecticides and cost-effective strategies for SWD control are [...] Read more.
Spotted wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), are invasive vinegar flies of East Asian origin that are an increasingly global threat to the small fruit industry. It is essential that new classes of eco-friendly insecticides and cost-effective strategies for SWD control are developed. Here, we describe the preparation of a strain of RNA interference (RNAi) Saccharomyces cerevisiae expressing shRNA that specifically targets the SWD RNA-binding Fox protein 1 (Rbfox1) gene. The yeast effectively silences the SWD Rbfox1 gene, resulting in significant loss of fly neural activity. Laboratory trials demonstrated that the RNAi yeast can be mixed with soda, which functions as SWD attractive targeted sugar bait (ATSB) that can be delivered in a soda bottle feeder. The ATSB, mixed with yeast that was heat-killed prior to suspension in the ATSB, resulted in 92 ± 1% mortality of SWD flies that consumed it, yet had no impact on non-target dipterans. Rbfox.687 yeast delivered in ATSB feeders may one day be a useful component of integrated SWD control programs. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Insects)
Show Figures

Graphical abstract

24 pages, 427 KiB  
Review
Ecology of Ahasverus advena in Stored Products and Other Habitats
by David W. Hagstrum and Bhadriraju Subramanyam
Insects 2025, 16(3), 313; https://doi.org/10.3390/insects16030313 - 18 Mar 2025
Viewed by 799
Abstract
The foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera: Silvanidae), has been reported from 110 countries on more than 162 commodities, more than 35 types of facilities, and 14 other habitats such as compost heaps and haystacks or manure. Compost heaps, haystacks, and manure [...] Read more.
The foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera: Silvanidae), has been reported from 110 countries on more than 162 commodities, more than 35 types of facilities, and 14 other habitats such as compost heaps and haystacks or manure. Compost heaps, haystacks, and manure heated by fermentation may allow overwintering in cold climates, making them important sources of infestation. From these sources the A. advena can fly and infest grain storage and processing facilities. A. advena has been found in empty grain storage bins, is often found in wheat immediately after harvest, and is most abundant early in wheat storage. Larvae and adults of A. advena are well adapted to feeding on several species of fungi and have higher chitinase levels and greater tolerance for fungal aflatoxins than other species. A. advena lay more eggs on the fungal species on which their offspring can develop most successfully. They are attracted to fungal odors and high moisture commodities and have the capability to disseminate grain fungi that cause hot spots within the grain mass. The presence of fungus beetles is indicative of poor storage conditions. A. advena is capable of feeding on some commodities and is a predator that may have a potential role in biological control. They are strong fliers but are distributed extensively with the movement of commodities in the marketing system. In countries with a zero tolerance for insects, their presence is sufficient for rejection of a load and associated economic losses. In other countries, contamination by A. advena is a problem, and in India, it is listed as a quarantine pest. Extension agents have had many requests for the identification of this species, and two other species of the same genus have been found in stored products. Some information is available for the effectiveness of nine pest management methods for A. advena. Full article
(This article belongs to the Section Insect Pest and Vector Management)
13 pages, 229 KiB  
Article
Possibilities for Controlling the Most Important Diseases and Pests of Sour Cherries and an Analysis of Pesticide Residues in Fruits
by Nenad Tamaš, Bojana Špirović Trifunović, Dragica Brkić, Novica Miletić and Marko Sretenović
Horticulturae 2025, 11(2), 191; https://doi.org/10.3390/horticulturae11020191 - 12 Feb 2025
Viewed by 1116
Abstract
This study investigated various protection programs to control the European cherry fruit fly, cherry brown rot, and cherry leaf spot on sour cherries. The effects of acetamiprid, spinetoram, dodine, boscalid, and pyraclostrobin, applied alone and in combination with sucrose, were determined using standard [...] Read more.
This study investigated various protection programs to control the European cherry fruit fly, cherry brown rot, and cherry leaf spot on sour cherries. The effects of acetamiprid, spinetoram, dodine, boscalid, and pyraclostrobin, applied alone and in combination with sucrose, were determined using standard EPPO methods. Pesticide residues in the cherry fruit were analyzed using liquid chromatography coupled with mass spectrometry. The highest efficacy in controlling the European cherry fruit fly was achieved by applying acetamiprid twice and spinetoram three times during fruit ripening. Successful protection against brown rot was achieved with a single application of boscalid and pyraclostrobin with the addition of sucrose. Dodine in combination with boscalid and pyraclostrobin showed good efficacy in controlling cherry leaf spot, which increased with the addition of sucrose. Residues of spinetoram, boscalid, and pyraclostrobin were below the limit of quantification, while only acetamiprid and dodine residues were detected in the fruit samples, but these were well below the maximum residue levels. This study demonstrates that several alternative protection programs can successfully protect cherries against the European cherry fruit fly and diseases during the critical stage of fruit ripening, with residue levels below the prescribed maximum levels. Full article
12 pages, 2492 KiB  
Article
Divergence in the Morphology and Energy Metabolism of Adult Polyphenism in the Cowpea Beetle Callosobruchus maculatus
by Zhong Du, Xiaokun Liu, Sipei Liu, Lei Jiang, Le Zong, Wenjie Li, Weili Fan, Lijie Zhang, Fengming Wu and Siqin Ge
Insects 2025, 16(1), 29; https://doi.org/10.3390/insects16010029 - 30 Dec 2024
Cited by 2 | Viewed by 938
Abstract
Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in Callosobruchus maculatus (a global storage pest) remain elusive. Understanding these mechanisms is crucial [...] Read more.
Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in Callosobruchus maculatus (a global storage pest) remain elusive. Understanding these mechanisms is crucial for predicting the dispersal and population dynamics of C. maculatus. This knowledge can also provide a theoretical basis for biological control strategies. In this study, we compared the morphology of the hind wing and chest muscles, the transcriptional profiles, the energy metabolism substances, and the fecundity between the flight form and the normal form. The flight form displays a lighter overall appearance with small black spots, while the normal form lacks most flight muscles. Moreover, there are differences in the energy metabolism pathways between the two forms, including carbohydrate metabolism and oxidative phosphorylation. The flight form exhibits higher contents of carbohydrates, lipids, and mitochondrial energetic storage. The normal form exhibits better fertility but has lost its ability to fly. This is the first study to analyze the morphology and molecular characteristics of adult polyphenism in C. maculatus using morphological, physiological, and behavioral approaches, providing a foundational understanding of these aspects. Our study on C. maculatus also provides supporting evidence of a trade-off between dispersion and reproduction, where the flight form is capable of flying while the normal form has more reproductive benefits. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

48 pages, 3070 KiB  
Review
Arthropod Pests, Nematodes, and Microbial Pathogens of Okra (Abelmoschus esculentus) and Their Management—A Review
by Samara Ounis, György Turóczi and József Kiss
Agronomy 2024, 14(12), 2841; https://doi.org/10.3390/agronomy14122841 - 28 Nov 2024
Cited by 3 | Viewed by 5142
Abstract
Okra (Abelmoschus esculentus) is an important agricultural crop of the Malvaceae family, cultivated across tropical, subtropical, and warm temperate regions. However, okra production faces numerous challenges from diverse pest species, including insects, nematodes, arachnids, and mites, that significantly reduce its yield. [...] Read more.
Okra (Abelmoschus esculentus) is an important agricultural crop of the Malvaceae family, cultivated across tropical, subtropical, and warm temperate regions. However, okra production faces numerous challenges from diverse pest species, including insects, nematodes, arachnids, and mites, that significantly reduce its yield. Major economic pests include the cotton aphid, cotton spotted bollworm, Egyptian bollworm, cotton mealybug, whitefly, cotton leafhopper, cotton bollworm, two-spotted spider mite, root-knot nematode, reniform nematode, cotton leaf roller, and flea beetle. Additionally, less prevalent pests such as the blister beetle, okra stem fly, red cotton bug, cotton seed bug, cotton looper, onion thrips, green plant bug, and lesion nematode are also described. This review also addresses fungal and oomycete diseases that present high risks to okra production, including damping-off, powdery mildew, Cercospora leaf spot, gray mold, Alternaria leaf spot and pod rot, Phyllosticta leaf spot, Fusarium wilt, Verticillium wilt, collar rot, stem canker, anthracnose, and fruit rot. In addition to these fungal diseases, okra is also severely affected by several viral diseases, with the most important being okra yellow vein mosaic disease, okra enation leaf curl disease, and okra mosaic disease, which can cause significant yield losses. Moreover, okra may also suffer from bacterial diseases, with bacterial leaf spot and blight, caused primarily by Pseudomonas syringae, being the most significant. This manuscript synthesizes the current knowledge on these pests. It outlines various management techniques and strategies to expand the knowledge base of farmers and researchers, highlighting the key role of integrated pest management (IPM). Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

22 pages, 1952 KiB  
Article
A Fully Autonomous On-Board GNC Methodology for Small-Body Environments Based on CNN Image Processing and MPCs
by Pelayo Peñarroya, Alfredo Escalante, Thomas Frekhaug and Manuel Sanjurjo
Aerospace 2024, 11(11), 952; https://doi.org/10.3390/aerospace11110952 - 19 Nov 2024
Cited by 1 | Viewed by 1408
Abstract
The increasing need for autonomy in space exploration missions is becoming more and more relevant in the design of missions to small bodies. The long communication latencies and sensitivity of the system to unplanned environmental perturbations mean autonomous methods could be a key [...] Read more.
The increasing need for autonomy in space exploration missions is becoming more and more relevant in the design of missions to small bodies. The long communication latencies and sensitivity of the system to unplanned environmental perturbations mean autonomous methods could be a key design block for this type of mission. In this work, a fully autonomous Guidance, Navigation, and Control (GNC) methodology is introduced. This methodology relies on published CNN-based techniques for surface recognition and pose estimation and also on existing MPC-based techniques for the design of a trajectory to perform a soft landing on an asteroid. Combining Hazard Detection and Avoidance (HDA) with relative navigation systems, a Global Safety Map (GSM) is built on the fly as images are acquired. These GSMs provide the GNC system with information about feasible landing spots and populate a longitude–latitude map with safe/hazardous labels that are later processed to find an optimal landing spot based on mission requirements and a distance-fromhazard metric. The methodology is exemplified using Bennu as the body of interest, and a GSM is built for an arbitrary reconnaissance orbit. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

11 pages, 1770 KiB  
Article
Comparative Metabolic Profiling in Drosophila suzukii by Combined Treatment of Fumigant Phosphine and Low Temperature
by Junbeom Lee, Hyun-Kyung Kim, Jong-Chan Jeon, Seung-Ju Seok, Gil-Hah Kim, Hyun-Na Koo and Dae-Weon Lee
Metabolites 2024, 14(10), 526; https://doi.org/10.3390/metabo14100526 - 28 Sep 2024
Cited by 3 | Viewed by 1526
Abstract
Background/Objectives: The mechanisms of action of phosphine are diverse and include neurotoxicity, metabolic inhibition, and oxidative stress; however, its efficacy at low temperatures is unclear. Methods: Comparative metabolomics is suitable for investigating the response of the spotted-wing fly Drosophila suzukii to exposure [...] Read more.
Background/Objectives: The mechanisms of action of phosphine are diverse and include neurotoxicity, metabolic inhibition, and oxidative stress; however, its efficacy at low temperatures is unclear. Methods: Comparative metabolomics is suitable for investigating the response of the spotted-wing fly Drosophila suzukii to exposure toward a combination of cold stimuli and fumigant PH3. Results: Under this combined exposure, 52 metabolites exhibiting significant differences in stress were identified and their physiological roles were analyzed in the Drosophila metabolic pathway. Most metabolites were involved in amino acids, TCA cycle, and nucleic acids. In addition, the alteration levels of cell membrane lipids, such as glycerophospholipids, sphingolipids, and glycerolipids, clearly showed changes in the combined treatment compared to PH3 and low temperatures alone. Aconitic acid, a component of the TCA cycle, was completely inhibited by the combined treatment. Conclusions: These results suggest that treatment-specific indicators could be useful biomarkers to indicate the synergistic effects of PH3 and low temperature on energy metabolism. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

23 pages, 13140 KiB  
Article
MSCR-FuResNet: A Three-Residual Network Fusion Model Based on Multi-Scale Feature Extraction and Enhanced Channel Spatial Features for Close-Range Apple Leaf Diseases Classification under Optimal Conditions
by Xili Chen, Xuanzhu Xing, Yongzhong Zhang, Ruifeng Liu, Lin Li, Ruopeng Zhang, Lei Tang, Ziyang Shi, Hao Zhou, Ruitian Guo and Jingrong Dong
Horticulturae 2024, 10(9), 953; https://doi.org/10.3390/horticulturae10090953 - 6 Sep 2024
Cited by 3 | Viewed by 1182
Abstract
The precise and automated diagnosis of apple leaf diseases is essential for maximizing apple yield and advancing agricultural development. Despite the widespread utilization of deep learning techniques, several challenges persist: (1) the presence of small disease spots on apple leaves poses difficulties for [...] Read more.
The precise and automated diagnosis of apple leaf diseases is essential for maximizing apple yield and advancing agricultural development. Despite the widespread utilization of deep learning techniques, several challenges persist: (1) the presence of small disease spots on apple leaves poses difficulties for models to capture intricate features; (2) the high similarity among different types of apple leaf diseases complicates their differentiation; and (3) images with complex backgrounds often exhibit low contrast, thereby reducing classification accuracy. To tackle these challenges, we propose a three-residual fusion network known as MSCR-FuResNet (Fusion of Multi-scale Feature Extraction and Enhancements of Channels and Residual Blocks Net), which consists of three sub-networks: (1) enhancing detailed feature extraction through multi-scale feature extraction; (2) improving the discrimination of similar features by suppressing insignificant channels and pixels; and (3) increasing low-contrast feature extraction by modifying the activation function and residual blocks. The model was validated with a comprehensive dataset from public repositories, including Plant Village and Baidu Flying Paddle. Various data augmentation techniques were employed to address class imbalance. Experimental results demonstrate that the proposed model outperforms ResNet-50 with an accuracy of 97.27% on the constructed dataset, indicating significant advancements in apple leaf disease recognition. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

22 pages, 1625 KiB  
Article
The Diet of Eleonora’s Falcons (Falco eleonorae) during the Autumn Migration of Passerine Birds across the Aegean Sea
by Dietrich Ristow and Michael Wink
Diversity 2024, 16(9), 538; https://doi.org/10.3390/d16090538 - 2 Sep 2024
Cited by 1 | Viewed by 2734
Abstract
Every year, several hundred million birds cross the Mediterranean on their migration from Eurasia to their wintering quarters in Africa. As many migrants travel at night or at high altitudes, direct observations of bird migration are difficult and thus our information about migrating [...] Read more.
Every year, several hundred million birds cross the Mediterranean on their migration from Eurasia to their wintering quarters in Africa. As many migrants travel at night or at high altitudes, direct observations of bird migration are difficult and thus our information about migrating species, numbers and timing is incomplete. An indirect way to assess autumn migration is the analysis of prey remains of Eleonora’s Falcons (Falco eleonorae). These falcons breed in large colonies on islands in the Mediterranean and on the Canary Islands. Many migrants have to pass these islands on their flight to their African wintering quarters. Eleonora’s Falcons appear to be adapted to the autumn bird migration and raise their young between August and October, when migrating birds are abundant. When nestlings have to be fed, falcons exclusively hunt small birds of 10 to 150 g body mass, whereas they prey mostly on aerial invertebrates (Coleoptera, Hymenoptera, Diptera, Orthoptera, Hemiptera, Odonata, Lepidoptera) from November to July. We studied Eleonora’s Falcons from 1965 to 2001 on a rocky islet, north of Crete, which harboured a colony of about 200 breeding pairs. In 1969, 1971, 1977, and 1988 we systematically monitored and collected the pluckings and cached food items in 22 to 36 nest sites each year. Pluckings were systematically analysed later in Germany using a reference collection of bird feathers for identification. In total, we determined more than 111 prey species (mostly Passerines) comprising more than 13,450 individuals. The top 12 prey species were: Willow Warbler (27.8% of all prey items), Red-backed Shrike (10.7%), Spotted Flycatcher (9.9%), Whinchat (8.8%), Common Whitethroat (5.1%), Wood Warbler (3.8), Tree Pipit (2.9%), Icterine Warbler (2.5%), Greater Short-toed Lark (2.5%), Northern Wheatear (1.8%), Common Nightingale (1.6%), and European Pied Flycatcher (1.5%). Eleonora’s Falcons are selective hunters to some degree; thus, the phenology and abundance data derived from the plucking analyses are biased towards slow-flying species or smaller birds (only up to a body mass of 150 g). When the young falcons develop and grow, food demand increases concomitantly. Comparing the total weight of prey over time indicates a correlation with food demand and in consequence with the number of prey items brought to the nest sites by the falcons. Full article
(This article belongs to the Special Issue 2024 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Graphical abstract

12 pages, 2417 KiB  
Article
The Interruption of Transmission of Onchocerciasis in Abia, Anambra, Enugu, and Imo States, Nigeria: The Largest Global Onchocerciasis Stop-Treatment Decision to Date
by Cephas Ityonzughul, Adamu Sallau, Emmanuel Miri, Emmanuel Emukah, Barminas Kahansim, Solomon Adelamo, George Chiedo, Samuel Ifeanyichukwu, Jenna E. Coalson, Lindsay Rakers, Emily Griswold, Chukwuemeka Makata, Fatai Oyediran, Stella Osuji, Solomon Offor, Emmanuel Obikwelu, Ifeoma Otiji, Frank O. Richards and Gregory S. Noland
Pathogens 2024, 13(8), 671; https://doi.org/10.3390/pathogens13080671 - 8 Aug 2024
Viewed by 1797
Abstract
Onchocerciasis causes severe morbidity in sub-Saharan Africa. Abia, Anambra, Enugu, and Imo states of Nigeria were historically classified meso- or hyperendemic and eligible for ivermectin mass drug administration (MDA). After ≥25 years of annual and biannual MDA, serological and entomological assessments were conducted [...] Read more.
Onchocerciasis causes severe morbidity in sub-Saharan Africa. Abia, Anambra, Enugu, and Imo states of Nigeria were historically classified meso- or hyperendemic and eligible for ivermectin mass drug administration (MDA). After ≥25 years of annual and biannual MDA, serological and entomological assessments were conducted to determine if Onchocerca volvulus transmission was interrupted. Dried blood spots collected in October 2020 from ≥3167 children 5–9 years old in each state were screened for O. volvulus-specific Ov16 antibody by enzyme-linked immunosorbent assay. Additionally, 52,187 Simulium damnosum heads (≥8845 per state) collected over 12 months between 2021 and 2022 were tested by pooled polymerase chain reaction (PCR) for O-150 DNA. Among seven seropositive children, four were found for follow-up skin snip PCR to confirm active infection. Three were negative and the fourth was excluded as he was visiting from an endemic state. The final seroprevalence estimates of each state had 95% upper confidence limits (UCL) < 0.1%. All fly pools were negative by O-150 PCR, giving a 95% UCL infective fly prevalence < 0.05% in each state. Each state therefore met the World Health Organization epidemiological and entomological criteria for stopping MDA effective January 2023. With 18.9 million residents eligible for MDA, this marked the largest global onchocerciasis stop-treatment decision to date. Full article
(This article belongs to the Special Issue Research on the Epidemiology and Transmission of Filarial Diseases)
Show Figures

Figure 1

13 pages, 1220 KiB  
Article
Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes
by Tian-Bi Ma, Bo Liu, Yan Fang, Wen-Na Gao, Qing-Ying Zhao, Zhi-Hong Li and Guo-Ping Zhan
Horticulturae 2024, 10(8), 781; https://doi.org/10.3390/horticulturae10080781 - 24 Jul 2024
Viewed by 1287
Abstract
The spotted wing drosophila, Drosophila suzukii (Matsumura), is currently distributed in the main soft-skinned fruits production areas in China and 59 other countries, presenting a significant threat to importing nations. Optimal phytosanitary treatments, including fumigation, irradiation, and cold treatment, have been developed to [...] Read more.
The spotted wing drosophila, Drosophila suzukii (Matsumura), is currently distributed in the main soft-skinned fruits production areas in China and 59 other countries, presenting a significant threat to importing nations. Optimal phytosanitary treatments, including fumigation, irradiation, and cold treatment, have been developed to prevent the international movement of this invasive fly. To determine the most cold-tolerant stage and facilitate the development of the technical schedules requested by the Technical Panel on Phytosanitary Treatment (TPPT), cold treatments of D. suzukii immature stages in ‘Red Globe’ grapes were conducted. Dose–mortality data at 0 °C and 2 °C from repeated trials were subjected to analysis of covariance, linear regression, and probit analysis. Results identified 3 d old pupae as the most cold-tolerant stage, followed by 1 d old pupae, 4 d old larvae, and 6 h old eggs with similar tolerance. The 2 d old larvae were the most sensitive stage. In subsequent confirmatory tests, 3 d old pupae were subjected to cold treatment at 0 °C for 9 and 10 days, and at 2 °C for 10 and 12 days, based on the probit estimation of the probit-9 value. No adult emergence occurred in the confirmatory tests except for one deformed adult from a 2 °C 10 d treatment. Therefore, the recommended treatment schedule requires fruit temperatures below 0.00 °C (or 1.62 °C) for no less than 10 (or 12) continuous days, with treatment efficacy not less than 99.9960% (or 99.9955%) at a 95% confidence level, respectively. These schedules are intended for submission to TPPT for the development of phytosanitary treatment standards. Full article
Show Figures

Figure 1

26 pages, 8458 KiB  
Article
An Advanced IBVS-Flatness Approach for Real-Time Quadrotor Navigation: A Full Control Scheme in the Image Plane
by Ahmed Alshahir, Khaled Kaaniche, Mohammed Albekairi, Shahr Alshahr, Hassen Mekki, Anis Sahbani and Meshari D. Alanazi
Machines 2024, 12(5), 350; https://doi.org/10.3390/machines12050350 - 19 May 2024
Cited by 2 | Viewed by 1775
Abstract
This article presents an innovative method for planning and tracking the trajectory in the image plane for the visual control of a quadrotor. The community of researchers working on 2D control widely recognizes this challenge as complex, because a trajectory defined in image [...] Read more.
This article presents an innovative method for planning and tracking the trajectory in the image plane for the visual control of a quadrotor. The community of researchers working on 2D control widely recognizes this challenge as complex, because a trajectory defined in image space can lead to unpredictable movements of the robot in Cartesian space. While researchers have addressed this problem for mobile robots, quadrotors continue to face significant challenges. To tackle this issue, the adopted approach involves considering the separation of altitude control from the other variables, thus reducing the workspace. Furthermore, the movements of the quadrotor (pitch, roll, and yaw) are interdependent. Consequently, the connection between the inputs and outputs cannot be reversed. The task complexity becomes significant. To address this issue, we propose the following scenario: When the quadrotor is equipped with a downward-facing camera, flying at high altitude is sensible to spot a target. However, to minimize disturbances and conserve energy, the quadrotor needs to descend in altitude. This can result in the target being lost. The solution to this problem is a new methodology based on the principle of differential flatness, allowing the separation of altitude control from the other variables. The system first detects the target at high altitude, then plots a trajectory in the image coordinate system between the acquired image and the desired image. It is crucial to emphasize that this step is performed offline, ensuring that the image processing time does not affect the control frequency. Through the proposed trajectory planning, complying with the constraints of differential flatness, the quadrotor can follow the imposed dynamics. To ensure the tracking of the target while following the generated trajectory, the proposed control law takes the form of an Image Based Visual Servoing (IBVS) scheme. We validated this method using the RVCTOOLS environment in MATLAB. The DJI Phantom 1 quadrotor served as a testbed to evaluate, under real conditions, the effectiveness of the proposed control law. We specifically designed an electronic card to transfer calculated commands to the DJI Phantom 1 control joystick via Bluetooth. This card integrates a PIC18F2520 microcontroller, a DAC8564 digital-to-analogue converter, and an RN42 Bluetooth module. The experimental results demonstrate the effectiveness of this method, ensuring the precise tracking of the target as well as the accurate tracking of the path generated in the image coordinate system. Full article
(This article belongs to the Special Issue Advances in Path Planning and Autonomous Navigation)
Show Figures

Figure 1

12 pages, 4941 KiB  
Communication
Impact of Motion Characteristics of Airborne Platforms on the Performance of Space Laser Communication Links
by Xin Zhang, Shiming Gao, Zhi Liu, Qingfang Jiang, Lixin Meng, Helong Wang and Keyan Dong
Photonics 2024, 11(4), 378; https://doi.org/10.3390/photonics11040378 - 17 Apr 2024
Cited by 1 | Viewed by 1487
Abstract
When a platform carrying a space laser communication system moves through the atmosphere, the relative motion of the turret and the air produces fluctuations in the air density, which affects the beam propagation, and, hence, the laser communication performance. In this paper, we [...] Read more.
When a platform carrying a space laser communication system moves through the atmosphere, the relative motion of the turret and the air produces fluctuations in the air density, which affects the beam propagation, and, hence, the laser communication performance. In this paper, we propose a performance analysis method for the space laser communication link to the airborne platform. By employing this method, which is based on a flow field simulation, we are able to determine the laser link’s communication performance curves for various flying situations. At an altitude of 5 km and a signal-to-noise ratio (SNR) of 10 dB for the laser communication link, the bit error rate (BER) under a flight speed of 0.4 Mach is 5.1×104. With each 0.1 Mach increase in speed, the BER decreases by approximately 6×105. If the flight speed is 0.8 Mach and the flight altitude increases from 5 km to 10 km, the BER decreases from 7.26×104 to 1.89×104, but the system becomes more sensitive to changes in flight speed. Under the same flight altitude conditions, the beam spot on the downwind side is more affected by airflow, resulting in a general increase in the BER by approximately one order of magnitude, compared to the upwind side. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

Back to TopTop