Comparative Metabolic Profiling in Drosophila suzukii by Combined Treatment of Fumigant Phosphine and Low Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Phosphine and Thermal Treatment
2.3. Metabolite Extraction
2.4. Lipid Extraction
2.5. LC-QTOF/MS
2.6. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Metabolite Changes according to Stress Conditions
3.2. Pathway Impact of Altered Metabolites
3.3. Treatment-Specific Metabolites as Biomarkers
3.4. Comparative Lipidomic Profiling by Stress
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atallah, J.; Teixeira, L.; Salazar, R.; Zaragoza, G.; Kopp, A. The making of a pest: The evolution of a fruit-enetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B-Biol. Sci. 2014, 281, 20132840. [Google Scholar]
- Jeon, J.-C.; Kim, H.-K.; Koo, H.-N.; Kim, B.-S.; Yang, J.-O.; Kim, G.-H. Synergistic effect of cold treatment combined with ethyl formate fumigation against Drosophila suzukii (Diptera: Drosophilidae). Insects 2022, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Karageorgi, M.; Bräcker, L.B.; Lebreton, S.; Minervino, C.; Cavey, M.; Siju, K.; Grunwald Kadow, T.C.; Gompel, C.; Prud’homme, B. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 2017, 27, 847–853. [Google Scholar] [CrossRef]
- Muto, L.; Kamimura, Y.; Tanaka, K.M.; Takahashi, A. An innovative ovipositor for niche exploitation impacts genital coevolution between sexes in a fruit-damaging Drosophila. Proc. R. Soc. B-Biol. Sci. 2018, 285, 20181635. [Google Scholar] [CrossRef]
- Seok, S.-J.; Kim, H.-K.; Koo, H.-N.; Kim, G.-H. Combined Effects of Cold Treatment and Phosphine in Drosophila suzukii (Diptera: Drosophilidae). Appl. Sci. 2022, 12, 12531. [Google Scholar] [CrossRef]
- Biondi, A.; Traugott, M.; Desneux, N. Special issue on Drosophila suzukii: From global invasion to sustainable control. J. Pest Sci. 2016, 89, 603–604. [Google Scholar] [CrossRef]
- Goodhue, R.E.; Bolda, M.; Farnsworth, D.; Williams, J.C.; Zalom, F.G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest Manag. Sci. 2011, 67, 1396–1402. [Google Scholar] [CrossRef]
- Walsh, D.B.; Bolda, M.P.; Goodhue, R.E.; Dreves, A.J.; Lee, J.; Bruck, D.J.; Walton, V.M.; O’Neal, S.D.; Zalom, F.G. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag. 2011, 2, G1–G7. [Google Scholar] [CrossRef]
- Woltz, J.M.; Lee, J.C. Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field. Biol. Control. 2017, 110, 62–69. [Google Scholar] [CrossRef]
- Adrion, J.R.; Kousathanas, A.; Pascual, M.; Burrack, H.J.; Haddad, N.M.; Bergland, A.O.; Machado, H.; Sackton, T.B.; Schlenke, T.A.; Watada, M.; et al. Drosophila suzukii: The genetic footprint of a recent, worldwide invasion. Mol. Biol. Evol. 2014, 31, 3148–3163. [Google Scholar] [CrossRef]
- Berry, J.A. Drosophila suzukii: Pathways and pathway management by regulation. In Drosophila suzukii Management; Springer: Cham, Switzerland, 2020; pp. 29–39. [Google Scholar]
- Calabria, G.; Máca, J.; Bächli, G.; Serra, L.; Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 2012, 136, 139–147. [Google Scholar] [CrossRef]
- Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 2011, 67, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.M.; Ebert, P.R. Pesticidal toxicity of phosphine and its interaction with other pest control treatments. Curr. Issues Mol. Biol. 2023, 45, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Athié, I.; Gomes, R.A.; Bolonhezi, S.; Valentini, S.R.; De Castro, M.F.P.M. Effects of carbon dioxide and phosphine mixtures on resistant populations of stored-grain insects. J. Stored Prod. Res. 1998, 34, 27–32. [Google Scholar] [CrossRef]
- Constantin, M.; Jagadeesan, R.; Chandra, K.; Ebert, P.; Nayak, M.K. Synergism between phosphine (PH3) and carbon dioxide (CO2): Implications for managing PH3 resistance in rusty grain beetle (Laemophloeidae: Coleoptera). J. Econ. Entomol. 2020, 113, 1999–2006. [Google Scholar] [CrossRef]
- Manivannan, S.; Koshy, G.E.; Patil, S.A. Response of phosphine-resistant mixed-age cultures of lesser grain borer, Rhyzopertha dominica (F.) to different phosphine-carbon dioxide mixtures. J. Stored Prod. Res. 2016, 69, 175–178. [Google Scholar] [CrossRef]
- Nath, N.S.; Bhattacharya, I.; Tuck, A.G.; Schlipalius, D.I.; Ebert, P.R. Mechanisms of phosphine toxicity. J. Toxicol. 2011, 2011, 494168. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Athanassiou, C.G. A review of insect cold hardiness and its potential in stored product insect control. Crop Prot. 2017, 91, 93–99. [Google Scholar] [CrossRef]
- Chaudhry, M. Review a review of the mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in stored-product insects. Pestic. Sci. 1997, 49, 213–228. [Google Scholar] [CrossRef]
- Chaudhry, M. Phosphine resistance. Pestic. Outlook 2000, 11, 88–91. [Google Scholar] [CrossRef]
- Dohino, T.; Masaki, S.; Matsuoka, I.; Tanno, M.; Takano, T. Low temperature as an alternative to fumigation for disinfesting stored products. Res. Bull. Plant Prot. Serv. 1999, 35, 5–14. [Google Scholar]
- Fields, P.G. The control of stored-product insects and mites with extreme temperatures. J. Stored Prod. Res. 1992, 28, 89–118. [Google Scholar] [CrossRef]
- Mason, L.J.; Strait, C.A. Stored product integrated pest management with extreme temperatures. In Temperature Sensitivity in Insects and Application in Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2019; pp. 141–177. [Google Scholar]
- De Lima, C.P.; Jessup, A.; Mansfield, E.; Daniels, D. Cold treatment of table grapes infested with Mediterranean fruit fly Ceratitis capitata (Wiedemann) and Queensland fruit fly Bactrocera tryoni (Froggatt) Diptera: Tephritidae. N. Z. J. Crop Hortic. Sci. 2011, 39, 95–105. [Google Scholar] [CrossRef]
- Benschoter, C. Low-temperature storage as a quarantine treatment for the Caribbean fruit fly (Diptera: Tephritidae) in Florida citrus. J. Econ. Entomol. 1984, 77, 1233–1235. [Google Scholar] [CrossRef]
- Saeed, N.; Tonina, L.; Battisti, A.; Mori, N. Postharvest short cold temperature treatment to preserve fruit quality after Drosophila suzukii damage. Int. J. Pest Manag. 2020, 66, 23–30. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Abdalla, N.A.; Taha, H.S.; Fári, M. Postharvest management of fruits and vegetables storage. Sustain. Agric. Rev. 2015, 15, 65–152. [Google Scholar]
- Kwon, T.H.; Park, C.G.; Lee, B.-H.; Zarders, D.R.; Roh, G.H.; Kendra, P.E.; Cham, D.H. Ethyl formate fumigation and ethyl formate plus cold treatment combination as potential phytosanitary quarantine treatments of Drosophila suzukii in blueberries. J. Asia-Pac. Entomol. 2021, 24, 129–135. [Google Scholar] [CrossRef]
- Burikam, I.; Sarnthoy, O.; Charernsom, K.; Kanno, T.; Homma, H. Cold temperature treatment for mangosteens infested with the oriental fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 1992, 85, 2298–2301. [Google Scholar] [CrossRef]
- Bo, L.; Fanhua, Z.; Yuejin, W. Toxicity of phosphine to Carposina niponensis (Lepidoptera: Carposinadae) at low temperature. J. Econ. Entomol. 2010, 103, 1988–1993. [Google Scholar] [CrossRef]
- Lee, S.; Moon, H.H.; Kim, H.-K.; Koo, H.-N.; Kim, G.-H. Proteomic Analysis of Drosophila suzukii (Diptera: Drosophilidae) by Fumigant and Low-temperature Combination Treatment. Korean J. Appl. Entomol. 2024, 63, 109–117. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-C.; Lee, J.; Lee, D.-W.; Jeong, B.-H. Large-scale lipidomic profiling identifies novel potential biomarkers for prion diseases and highlights lipid raft-related pathways. Vet. Res. 2021, 52, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fulton, T.L.; Mirth, C.K.; Piper, M.D. Restricting a single amino acid cross-protects Drosophila melanogaster from nicotine poisoning through mTORC1 and GCN2 signalling. Open Biol. 2022, 12, 220319. [Google Scholar] [CrossRef]
- Chandel, N.S. Amino acid metabolism. Cold Spring Harbor Perspect. Biol. 2021, 13, a040584. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef]
- Storey, K.B.; Storey, J.M. Insect cold hardiness: Metabolic, gene, and protein adaptation. Can. J. Zool. 2012, 90, 456–475. [Google Scholar] [CrossRef]
- Colinet, H.; Larvor, V.; Laparie, M.; Renault, D. Exploring the plastic response to cold acclimation through metabolomics. Funct. Ecol. 2012, 26, 711–722. [Google Scholar] [CrossRef]
- Koštál, V.; Korbelová, J.; Rozsypal, J.; Zahradníčková, H.; Cimlová, J.; Tomčala, A.; Šimek, P. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS ONE. 2011, 6, e25025. [Google Scholar] [CrossRef] [PubMed]
- Koštál, V.; Zahradníčková, H.; Šimek, P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. USA 2011, 108, 13041–13046. [Google Scholar] [CrossRef]
- Chefurka, W.; Kashi, K.; Bond, E. The effect of phosphine on electron transport in mitochondria. Pest. Biochem. Physiol. 1976, 6, 65–84. [Google Scholar] [CrossRef]
- Price, N. The effect of phosphine on respiration and mitochondrial oxidation in susceptible and resistant strains of Rhyzopertha dominica. Insect Biochem. 1980, 10, 65–71. [Google Scholar] [CrossRef]
- Bolter, C.J.; Chefurka, W. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch. Biochem. Biophys. 1990, 278, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Schlipalius, D.I.; Valmas, N.; Tuck, A.G.; Jagadeesan, R.; Ma, L.; Kaur, R.; Goldinger, A.; Anderson, C.; Kuang, J.; Zuryn, S. A core metabolic enzyme mediates resistance to phosphine gas. Science 2012, 338, 807–810. [Google Scholar] [CrossRef]
- Borges, A.R.; Link, F.; Engstler, M.; Jones, N.G. The glycosylphosphatidylinositol anchor: A linchpin for cell surface versatility of trypanosomatids. Front. Cell. Dev. Biol. 2021, 9, 720536. [Google Scholar] [CrossRef]
- Kinoshita, T. Glycosylphosphatidylinositol (GPI) anchors: Biochemistry and cell biology: Introduction to a thematic review series. J. Lipid Res. 2016, 57, 4–5. [Google Scholar] [CrossRef]
- Alnajim, I.; Aldosary, N.; Agarwal, M.; Liu, T.; Du, X.; Ren, Y. Role of lipids in phosphine resistant stored-grain insect pests Tribolium castaneum and Rhyzopertha dominica. Insects 2022, 13, 798. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, T.; Colinet, H. Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila Drosophila suzukii (Matsumara). Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2019, 316, R751–R763. [Google Scholar] [CrossRef]
- Bieberich, E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem. Phys. Lipids. 2018, 216, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, L.; Simons, K. Lipid rafts and membrane dynamics. J. Cell Sci. 2005, 118, 1099–1102. [Google Scholar] [CrossRef]
- van Meer, G.; Lisman, Q. Sphingolipid transport: Rafts and translocators. J. Biol. Chem. 2002, 277, 25855–25858. [Google Scholar] [CrossRef]
- Koštál, V. Cell structural modifications in insects at low temperature. In Low Temperature Biology of Insects; Cambridge University Press: Cambridge, MA, USA, 2010; pp. 116–140. [Google Scholar]
- Hosler, J.S.; Burns, J.E.; Esch, H.E. Flight muscle resting potential and species-specific differences in chill-coma. J. Insect Physiol. 2000, 46, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.E. A primer on insect cold-tolerance. In Low Temperature Biology of Insects; Cambridge University Press: Cambridge, MA, USA, 2010; pp. 3–34. [Google Scholar]
- MacMillan, H.A.; Sinclair, B.J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 2011, 57, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Yocum, G.D.; Žďárek, J.; Joplin, K.H.; Lee, R.E., Jr.; Smith, D.C.; Manter, K.D.; Denlinger, D.L. Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress. J. Insect Physiol. 1994, 40, 13–21. [Google Scholar] [CrossRef]
- Ad, M.; Van der Horst, D.J.; Van Marrewijk, W.J. Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid Res. 1985, 24, 19–67. [Google Scholar]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef]
- Jutsum, A.; Goldsworthy, G. Fuels for flight in Locusta. J. Insect Physiol. 1976, 22, 243–249. [Google Scholar] [CrossRef]
KEGG ID (PubChem CID) | Compound | Fold Change (log2) | ||||
---|---|---|---|---|---|---|
[Mock] | [Cold] | [PH3] | [PH3 + Cold] | Related Pathways | ||
C15675 | Myxothiazol Z | - | 5.25 | - | 15.82 | Lipids: Polyketides |
C05954 | 19-Hydroxy-PGB2 | - | - | 15.65 | 17.28 | dme00590 Arachidonic acid metabolism |
C00350 | PE(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) | - | 5.09 | 15.62 | 15.81 | dme00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis dme00564 Glycerophospholipid metabolism |
C03232 | Phosphohydroxypyruvic acid (=3P-hydroxypyruvate) | - | 18.40 | 18.63 | 18.38 | dme00260 Glycine, serine, and threonine metabolism |
C01092 | 8-Amino-7-oxononanoic acid | 11.43 | - | 17.68 | 17.33 | dme00780 Biotin metabolism |
52924812 | PE(22:4(7Z,10Z,13Z,16Z)/17:1(9Z)) | 5.98 | - | 17.91 | 17.59 | Lipids: Glycerophospholipids |
C00417 | Aconitic acid (=cis-Aconitate) | 19.89 | 19.94 | 6.43 | - | dme00020 Citrate cycle (TCA cycle) |
(614) | D-Proline | 23.07 | 15.37 | - | - | map00470 D-Amino acid metabolism |
C00407 | L-Isoleucine | 24.81 | 7.50 | - | - | dme00280 Isoleucine degradation dme00290 Isoleucine biosynthesis |
C04778 | N1-(5-Phospho-a-D-ribosyl)-5,6-dimethylbenzimidazole | 15.93 | 10.50 | - | - | dme00860 Porphyrin metabolism |
C03794 | N6-(1,2-dicarboxyethyl)-AMP | 9.85 | 15.31 | - | - | dme00230 Purine metabolism |
(52924712) | PE(21:0/20:5(5Z,8Z,11Z,14Z,17Z)) | 16.66 | 10.06 | - | - | Lipids: Glycerophospholipids |
C00156 | 4-Hydroxybenzoic acid (=p-Salicylic acid) | 17.06 | 11.37 | - | - | dme00130 Ubiquinone biosynthesis |
(135398700) | Xanthopterin | 16.22 | 10.74 | - | - | dme00790 Folate biosynthesis |
(5312441) | 13Z-Octadecenoic acid | 4.61 | - | - | - | dme00061 Fatty acid biosynthesis |
(53480926) | LysoPE(0:0/18:2(9Z,12Z)) | 21.28 | - | - | - | Lipids: Glycerophospholipids |
(42607464) | PE(17:1(9Z)/0:0) | 18.14 | - | - | - | Lipids: Glycerophospholipids |
C00366 | Uric acid | 22.22 | - | - | - | dme00230 Purine metabolism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, H.-K.; Jeon, J.-C.; Seok, S.-J.; Kim, G.-H.; Koo, H.-N.; Lee, D.-W. Comparative Metabolic Profiling in Drosophila suzukii by Combined Treatment of Fumigant Phosphine and Low Temperature. Metabolites 2024, 14, 526. https://doi.org/10.3390/metabo14100526
Lee J, Kim H-K, Jeon J-C, Seok S-J, Kim G-H, Koo H-N, Lee D-W. Comparative Metabolic Profiling in Drosophila suzukii by Combined Treatment of Fumigant Phosphine and Low Temperature. Metabolites. 2024; 14(10):526. https://doi.org/10.3390/metabo14100526
Chicago/Turabian StyleLee, Junbeom, Hyun-Kyung Kim, Jong-Chan Jeon, Seung-Ju Seok, Gil-Hah Kim, Hyun-Na Koo, and Dae-Weon Lee. 2024. "Comparative Metabolic Profiling in Drosophila suzukii by Combined Treatment of Fumigant Phosphine and Low Temperature" Metabolites 14, no. 10: 526. https://doi.org/10.3390/metabo14100526
APA StyleLee, J., Kim, H. -K., Jeon, J. -C., Seok, S. -J., Kim, G. -H., Koo, H. -N., & Lee, D. -W. (2024). Comparative Metabolic Profiling in Drosophila suzukii by Combined Treatment of Fumigant Phosphine and Low Temperature. Metabolites, 14(10), 526. https://doi.org/10.3390/metabo14100526