Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Insect Preparation
2.2.1. Egg Collection
2.2.2. Larvae Rearing
2.2.3. Pupae Development
2.3. Dose–Response Tests
2.3.1. Cold-Treatment Facilities
2.3.2. Experimental Design
2.3.3. Cold-Treatment Tests
2.4. Confirmatory Tests
2.5. Statistical Analysis
3. Results
3.1. ANCOVA on Dose–Response Data at 0 °C
3.2. ANCOVA on Dose–Response Data at 2 °C
3.3. Probit Analysis on Dose–Response Data
3.4. Confirmatory Tests
3.4.1. Confirmatory Tests at 0 °C
3.4.2. Confirmatory Tests at 2 °C
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adrion, J.R.; Kousathanas, A.; Pascual, M.; Burrack, H.J.; Haddad, N.M.; Bergland, A.O.; Machado, H.; Sackton, T.B.; Schlenke, T.A.; Watada, M.; et al. Drosophila suzukii: The Genetic Footprint of a Recent, Worldwide Invasion. Mol. Biol. Evol. 2014, 31, 3148–3163. [Google Scholar] [CrossRef] [PubMed]
- Asplen, M.K.; Anfora, G.; Biondi, A.; Choi, D.-S.; Chu, D.; Daane, K.M.; Gibert, P.; Gutierrez, A.P.; Hoelmer, K.A.; Hutchison, W.D.; et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 2015, 88, 469–494. [Google Scholar] [CrossRef]
- Tait, G.; Mermer, S.; Stockton, D.; Lee, J.; Avosani, S.; Abrieux, A.; Anfora, G.; Beers, E.; Biondi, A.; Burrack, H.; et al. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. J. Econ. Èntomol. 2021, 114, 1950–1974. [Google Scholar] [CrossRef] [PubMed]
- Goodhue, R.E.; Bolda, M.; Farnsworth, D.; Williams, J.C.; Zalom, F.G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest Manag. Sci. 2011, 67, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- CABI Compendium. Drosophila suzukii (Spotted Wing Drosophila) Datasheet (Updated on 2 April 2024). 2024. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.109283 (accessed on 6 May 2024).
- Walse, S.S.; Cha, D.H.; Lee, B.H.; Follett, P.A. Postharvest quarantine treatments for Drosophila suzukii in fresh fruit. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer: Cham, Switzerland, 2020; pp. 255–267. [Google Scholar]
- Li, Z.; Jiang, F.; Ma, X.; Fang, Y.; Sun, Z.; Qin, Y.; Wang, Q. Review on prevention and control techniques of Tephritidae invasion. Plant Quar. 2013, 27, 1–10. (In Chinese) [Google Scholar]
- Fang, Y.; Kang, F.; Zhan, G.; Ma, C.; Li, Y.; Wang, L.; Wei, Y.; Gao, X.; Li, Z.; Wang, Y. The Effects of a Cold Disinfestation on Bactrocera dorsalis Survival and Navel Orange Quality. Insects 2019, 10, 452. [Google Scholar] [CrossRef] [PubMed]
- Kanzawa, T. Studies on Drosophila suzukii Matsumura (Abstract). Rev. Appl. Entomol. 1939, 29, 622. [Google Scholar]
- Aly, M.F.K.; Kraus, D.A.; Burrack, H.J. Effects of Postharvest Cold Storage on the Development and Survival of Immature Drosophila suzukii (Diptera: Drosophilidae) in Artificial Diet and Fruit. J. Econ. Èntomol. 2017, 110, 87–93. [Google Scholar] [CrossRef]
- Jakobs, R.; Ahmadi, B.; Houben, S.; Gariepy, T.D.; Sinclair, B.J. Cold tolerance of third-instar Drosophila suzukii larvae. J. Insect Physiol. 2017, 96, 45–52. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.S.; Jeong, J.S.; Choi, D.S.; Park, J.; Kim, I. Phytosanitary cold treatment of spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophilidae) in ‘Campbell Early’ grape. J. Econ. Entomol. 2018, 111, 1638–1643. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, G.; Ren, L.; Sun, S.; Dang, H.; Zhai, Y.; Yin, H.; Li, Z.; Liu, B. Cold disinfestation for ‘Red Globe’ grape (Rhamnales: Vitaceae) infested with Drosophila suzukii (Diptera: Drosophilidae). J. Insect Sci. 2020, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Walse, S.S.; Jimenez, L.R.; Hall, W.A.; Tebbets, J.S.; Obenland, D.M. Optimizing postharvest methyl bromide treatments to control spotted wing drosophila, Drosophila suzukii, in sweet cherries from Western USA. J. Asia-Pac. Èntomol. 2016, 19, 223–232. [Google Scholar] [CrossRef]
- Follett, P.A.; Swedman, A.; Price, D.K. Postharvest Irradiation Treatment for Quarantine Control of Drosophila suzukii (Diptera: Drosophilidae) in Fresh Commodities. J. Econ. Èntomol. 2014, 107, 964–969. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Park, C.G. X-ray radiation and developmental inhibition of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Int. J. Radiat. Biol. 2016, 92, 849–854. [Google Scholar] [CrossRef]
- Follett, P.A.; Swedman, A.; Mackey, B. Effect of Low-Oxygen Conditions Created by Modified Atmosphere Packaging on Radiation Tolerance in Drosophila suzukii (Diptera: Drosophilidae) in Sweet Cherries. J. Econ. Èntomol. 2018, 111, 141–145. [Google Scholar] [CrossRef]
- Yang, X.B.; Liu, Y.B. Nitric oxide fumigation for control of spotted wing drosophila (Diptera: Drosophilidae) in strawberries. J. Econ. Entomol. 2018, 111, 1180–1184. [Google Scholar] [CrossRef]
- Mostafa, M.; Ibn Amor, A.; Admane, N.; Anfora, G.; Bubici, G.; Verrastro, V.; Scarano, L.; El Moujabber, M.; Baser, N. Reduction of Post-Harvest Injuries Caused by Drosophila suzukii in Some Cultivars of Sweet Cherries Using a High Carbon Dioxide Level and Cold Storage. Insects 2021, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-C.; Kim, H.-K.; Koo, H.-N.; Kim, B.-S.; Yang, J.-O.; Kim, G.-H. Synergistic Effect of Cold Treatment Combined with Ethyl Formate Fumigation against Drosophila suzukii (Diptera: Drosophilidae). Insects 2022, 13, 664. [Google Scholar] [CrossRef]
- Bošković, D.; Vuković, S.; Lazić, S.; Baser, N.; Čulum, D.; Tekić, D.; Žunić, A.; Šušnjar, A.; Šunjka, D. Insecticidal Activity of Selected Essential Oils against Drosophila suzukii (Diptera: Drosophilidae). Plants 2023, 12, 3727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, P. Research progress of postharvest preservation technology on ‘Red Globe’ grape. North. Hortic. 2016, 10, 181–184. (In Chinese) [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Report of the 2022 September Meeting of the Technical Panel on Phytosanitary Treatments, 12–18 September 2022; FAO: Roma, Italy, 2022; pp. 1–23. [Google Scholar]
- IPPC (International Plant Protection Convention). List of Topics for IPPC Standards. (Updated on 15 February 2024) 2024. Available online: https://www.ippc.int/en/core-activities/standards-setting/list-topics-ippc-standards/list (accessed on 6 May 2024).
- Liu, B.; Li, B.; Zhan, G.; Zha, T.; Wang, Y.; Ma, C. Forced hot-air treatment against Bactrocera papayae (Diptera: Tephritidae) in papaya. Appl. Èntomol. Zool. 2017, 52, 531–541. [Google Scholar] [CrossRef]
- TPPT (Technical Panel on Phytosanitary Treatments). Treatment Research Guidelines; Secretariat IPPC: Rome, Italy, 2019. [Google Scholar]
- PMRG (Phytosanitary Measures Research Group). Guidelines for the Development of Cold Disinfestation Treatments for Fruit Fly Host Commodities; Secretariat of IPPC: Rome, Italy, 2019. [Google Scholar]
- Follett, P.A.; Neven, L.G. Current Trends in Quarantine Entomology. Annu. Rev. Èntomol. 2006, 59, 359–385. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Èntomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- DPS (Data Processing System), Version 13.5. User’s Guide. Hangzhou RuiFeng Information Technology Co., Ltd.: Hangzhou, China, 2010.
- Zhan, G.; Zhao, J.; Ma, F.; Liu, B.; Zhong, Y.; Song, Z.; Zhao, Q.; Chen, N.; Ma, C. Radioprotective Effects on Late Third-Instar Bactrocera dorsalis (Diptera: Tephritidae) Larvae in Low-Oxygen Atmospheres. Insects 2020, 11, 526. [Google Scholar] [CrossRef]
- LeOra Software, Version 2.0. User’s Guide: PoloPlus Probit and Logit Analysis. LeOra Software: Berkeley, CA, USA, 2002.
- Wheeler, M.W.; Park, R.M.; Bailer, A.J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. 2006, 25, 1441–1444. [Google Scholar] [CrossRef]
- Couey, H.M.; Chew, V. Confidence Limits and Sample Size in Quarantine Research. J. Econ. Èntomol. 1986, 79, 887–890. [Google Scholar] [CrossRef]
- NAPPO (North American Plant Protection Organization). NAPPO Regional Standards for Phytosanitary Measures (RSPM) 34: Development of Phytosanitary Treatment Protocols for Regulated Arthropod Pests of Fresh Fruits or Vegetables; NAPPO: Ottawa, ON, Canada, 2011; p. 14. [Google Scholar]
- IPPC (International Plant Protection Convention). IPPC Procedure Manual for Standard Setting; Secretariat of IPPC: Rome, Italy, 2012. [Google Scholar]
- West, M.; Hallman, G.J. Estimation of dose requirements for extreme levels of efficacy. In Proceedings of the 25th Conference on Applied Statistics in Agriculture, Manhattan, KS, USA, 28–30 April 2013. [Google Scholar]
- Zhao, Q.Y.; Ma, F.H.; Deng, W.; Li, Z.H.; Song, Z.J.; Ma, C.; Ren, Y.L.; Du, X.; Zhan, G.P. Phytosanitary treatment of the aerial root mealybug, Pseudococcus baliteus (Hemiptera: Pseudococcidae). J. Econ. Entomol. 2023, 116, 1567–1574. [Google Scholar] [CrossRef]
- IPPC. ISPM #28: Phytosanitary Treatments for Regulated Pests; Secretariat of IPPC: Rome, Italy, 2007. [Google Scholar]
- Hallman, G.J.; Mangan, R.L. Concerns with temperature quarantine treatment research. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reduction, San Diego, CA, USA, 3–5 November 1997; Obenauf, G.L., Ed.; Office of Methyl Bromide Alternatives Outreach: Fresno, CA, USA, 1997; pp. 79-1–79-4. [Google Scholar]
- Wang, Y.; Wu, H.; Li, X.; Zhan, G. The progress and application for research protocol on phytosanitary treatment of arthropods. Plant Quar. 2016, 30, 1–5. (In Chinese) [Google Scholar]
- Myers, S.W.; Cancio-Martinez, E.; Hallman, G.J.; Fontenot, E.A.; Vreysen, M.J. Relative Tolerance of Six Bactrocera (Diptera: Tephritidae) Species to Phytosanitary Cold Treatment. J. Econ. Èntomol. 2016, 109, 2341–2347. [Google Scholar] [CrossRef]
- Dias, V.S.; Hallman, G.J.; Araújo, A.S.; Lima, I.V.G.; Galvão-Silva, F.L.; Caravantes, L.A.; Rivera, M.N.G.; Aguilar, J.S. High cold tolerance and differential population response of third instars from the Zeugodacus tau complex to phytosanitary cold treatment in navel oranges. Postharvest Biol. Tec. 2023, 203, 112392. [Google Scholar] [CrossRef]
- IPPC (International Plant Protection Convention). ISPM #18: Requirements for the Use of Irradiation as a Phytosanitary Measure; Food and Agricultural Organization: Rome, Italy, 2003; (Revised in 2023). [Google Scholar]
- Zhan, G.; Ren, L.; Shao, Y.; Wang, Q.; Yu, D.; Wang, Y.; Li, T. Gamma irradiation as a phytosanitary treatment of Bactrocera tau (Diptera: Tephritidae) in pumpkin fruits. J. Econ. Entomol. 2015, 108, 88–94. [Google Scholar]
- Doorenweerd, C.; Leblanc, L.; Norrbom, A.L.; Jose, M.S.; Rubinoff, D. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae). ZooKeys 2018, 730, 19–56. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ma, J.; Wu, M.; Jiao, X.; Wang, Z.; Liang, F.; Zhan, G. Gamma radiation as a phytosanitary treatment against larvae and pupae of Bactrocera dorsalis (Diptera: Tephritidae) in guava fruits. Food Control 2017, 72, 360–366. [Google Scholar] [CrossRef]
- Zhan, G.; Shao, Y.; Yu, Q.; Xu, L.; Liu, B.; Wang, Y.; Wang, Q. Phytosanitary irradiation of Jack Beardsley mealybug (Hemiptera: Pseudococcidae) females on rambutan (Sapindales: Sapindaceae) fruits. Fla. Entomol. 2016, 99 Pt 2, 114–120. [Google Scholar]
- Song, Z.-J.; Zhao, Q.-Y.; Ma, C.; Chen, R.-R.; Ma, T.-B.; Li, Z.-H.; Zhan, G.-P. Quarantine disinfestation of papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae) using Gamma and X-rays irradiation. Insects 2023, 14, 682. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cui, N. Study on the Storage and Preservation of ‘Red Globe’ Grapes in Xinjiang. Agric. Tech. 2015, 35, 112–159. [Google Scholar]
- Wu, S. Different effects of pre-cooling methods on “Red Globe” grape. China Fruit Veg. 2015, 8, 1–3. (In Chinese) [Google Scholar]
- Wuernisha, K.; Che, F.B.; Zhang, T.; Li, P.; Hu, B.W. Effect of different temperature on quality and physiological index of postharvest ‘Red Globe’ grape during storage. Xinjiang Agric. Sci. 2010, 47, 82–86. (In Chinese) [Google Scholar]
Mean and Range of Temperature | Stages | Regression Formula | Coefficient of Determination (R2) | Minimum Time Causing 100% Mortality (h) |
---|---|---|---|---|
Test-1: 0.15 °C (0.02–0.51 °C) | 6 h Egg | y = 0.875x + 5.620 | 0.960 | 96.44 |
2 d Larva | y = 1.264x + 18.803 | 0.935 | 56.33 | |
4 d Larva | y = 1.071x − 9.745 | 0.983 | 93.13 | |
1 d Pupa | y = 1.059x − 31.880 | 0.942 | 115.09 | |
3 d Pupa | y = 0.780x − 17.130 | 0.942 | 137.35 | |
Test-2: 0.01 °C (−0.17–0.27 °C) | 6 h Egg | y = 0.890x + 7.754 | 0.957 | 92.41 |
2 d Larva | y = 0.783x + 1.944 | 0.954 | 45.89 | |
4 d Larva | y = 1.021x − 7.024 | 0.976 | 95.03 | |
1 d Pupa | y = 0.997x − 21.406 | 0.900 | 111.74 | |
3 d Pupa | y = 0.747x − 28.878 | 0.955 | 159.14 |
Mean and Range of Temperature | Stages | Regression Formula | Coefficient of Determination (R2) | Minimum Time Causing 100% Mortality (h) |
---|---|---|---|---|
Test-1: 1.61 °C (1.44–1.85 °C) | 6 h Egg | y = 0.830x + 0.844 | 0.712 | 83.00 |
2 d Larva | y = 1.898x + 7.415 | 0.742 | 43.51 | |
4 d Larva | y = 31.004x + 0.562 | 0.904 | 104.98 | |
1 d Pupa | y = 0.590x − 12.759 | 0.886 | 174.17 | |
3 d Pupa | y = 0.595x − 14.023 | 0.903 | 174.83 | |
Test-2: 1.85 °C (1.48–2.26 °C) | 6 h Egg | y = 0.661x − 0.378 | 0.972 | 136.73 |
2 d Larva | y = 0.973x + 1.095 | 0.918 | 91.37 | |
4 d Larva | y = 0.940x − 22.939 | 0.971 | 120.15 | |
1 d Pupa | y = 1.136x − 71.973 | 0.951 | 142.58 | |
3 d Pupa | y = 0.753x − 48.347 | 0.948 | 183.73 |
Trials | Stages | Slope ± SE | Lethal Time and 95% CI (d) * | ||
---|---|---|---|---|---|
LT50 | LT90 | LT99 | |||
Test-1: 0.15 °C (0.02–0.51 °C) | 6 h Egg | 0.035 ± 0.001 | 1.22 (1.08–1.34) c | 2.74 (2.58–2.91) c | 3.97 (3.72–4.29) b |
2 d Larva | 0.063 ± 0.002 | 0.48 (0.38–0.56) d | 1.33 (1.23–1.45) d | 2.02 (1.85–2.25) c | |
4 d Larva | 1.165 ± 0.041 | 1.69 (1.59–1.78) b | 2.79 (2.66–2.94) c | 3.69 (3.49–3.92) b | |
1 d Pupa | 1.352 ± 0.062 | 2.53 (2.44–2.61) a | 3.47 (3.37–3.60) b | 4.25 (4.08–4.46) b | |
3 d Pupa | 0.910 ± 0.038 | 2.64 (2.47–2.80) a | 4.05 (3.86–4.29) a | 5.20 (4.88–5.62) a | |
Test-2: 0.01 °C (−0.17–0.27 °C) | 6 h Egg | 0.039 ± 0.001 | 1.08 (0.91–1.23) d | 2.44 (2.23–2.71) c | 3.56 (3.22–4.02) c |
2 d Larva | 0.090 ± 0.003 | 0.66 (0.59–0.72) e | 1.26 (1.17–1.35) d | 1.73 (1.61–1.90) d | |
4 d Larva | 1.099 ± 0.036 | 1.61 (1.45–1.77) c | 2.78 (2.55–3.08) c | 3.73 (3.38–4.20) c | |
1 d Pupa | 1.352 ± 0.062 | 2.46 (2.40–2.52) b | 3.24 (3.11–3.41) b | 4.53 (4.33–4.76) b | |
3 d Pupa | 0.924 ± 0.034 | 3.42 (3.27–3.55) a | 4.80 (4.63–5.00) a | 5.93 (5.67–6.27) a |
Trials | Stages | Slope ± SE | Lethal Time and 95% CI (d) ** | ||
---|---|---|---|---|---|
LT50 | LT90 | LT99 | |||
Test-1: 1.61 °C (1.44–1.85 °C) | 6 h Egg | 1.920 ± 0.079 | 0.74 (0.65–0.84) b | 1.30 (1.13–1.61) c | 2.06 (1.66–2.92) c |
2 d Larva | 0.195 ± 0.008 | 0.56 (0.49–0.62) b | 0.88 (0.78–1.04) d | 1.26 (1.06–1.73) d | |
4 d Larva | 0.558 ± 0.034 | 0.05 (−0.45–0.40) * c | 2.34 (2.13–2.60) b | 4.22 (3.78–4.85) b | |
1 d Pupa | 1.092 ± 0.050 | 3.24 (3.00–3.45) a | 4.41 (4.14–4.76) a | 5.37 (4.98–5.93) a | |
3 d Pupa | 0.989 ± 0.044 | 3.29 (3.10–3.47) a | 4.59 (4.35–4.88) a | 5.64 (5.29–6.12) a | |
Test-2: 1.85 °C (1.48–2.26 °C) | 6 h Egg | 0.696 ± 0.022 | 2.01 (1.84–2.17) d | 3.85 (3.65–4.09) c | 5.35 (5.04–5.74) b |
2 d Larva | 1.242 ± 0.044 | 1.27 (1.05–1.47) e | 2.30 (2.04–2.67) d | 3.14 (2.75–3.74) c | |
4 d Larva | 1.066 ± 0.039 | 2.53 (2.39–2.66) c | 3.73 (3.57–3.93) c | 3.73 (3.38–4.20) c | |
1 d Pupa | 1.254 ± 0.060 | 3.84 (3.67–3.98) b | 4.86 (4.69–5.08) b | 5.69 (5.43–6.07) b | |
3 d Pupa | 0.870 ± 0.032 | 4.49 (4.33–4.64) a | 6.00 (5.78–6.19) a | 7.17 (6.88–7.54) a |
Temp. | Probit Model | Trials | Slope ± SE | Probit-9 and 95% CI (d) | Heterogeneity |
---|---|---|---|---|---|
0 °C | Conversion of time | Test-1 | 6.675 ± 0.257 | 10.17 (8.85–12.13) | 2.37 |
Test-2 | 8.013 ± 0.362 | 10.48 (9.18–12.53) | 2.72 | ||
Non-conversion | Test-1 | 0.910 ± 0.038 | 7.04 (6.49–7.79) | 3.12 | |
Test-2 | 0.924 ± 0.034 | 7.75 (7.30–8.31) | 2.49 | ||
2 °C | Conversion of time | Test-1 | 7.474 ± 0.308 | 10.59 (9.62–11.87) | 1.04 |
Test-2 | 9.854 ± 0.474 | 11.28 (9.96–13.51) | 3.51 | ||
Non-conversion | Test-1 | 0.989 ± 0.044 | 7.33 (6.76–8.12) | 2.88 | |
Test-2 | 0.870 ± 0.032 | 9.09 (8.60–9.73) | 2.73 |
Trials | Treatment Conditions | Means and Range of Temperature (°C) | No. Pupae | Adult Emergence (%) |
---|---|---|---|---|
T1 (29 January–7 February) | 0 °C–9 d | 0.09 (−0.04–0.23) | 7985 | 0 |
control | 26 ± 1 | 820 | 95.61 | |
T2 (3–12 February) | 0 °C–9 d | 0.07 (−0.05–0.22) | 6804 | 0 |
control | 26 ± 1 | 1014 | 96.69 | |
T3 (6–16 February) | 0 °C–9 d | 0.05 (−0.06–0.17) | 17,198 | 0 |
control | 26 ± 1 | 1932 | 96.43 | |
T4 (3–13 May) | 0 °C–10 d | 0.00 (−0.09–0.34) | 11,010 | 0 |
control | 26 ± 1 | 1223 | 95.91 | |
T5 (7–17 May) | 0 °C–10 d | 0.00 (−0.09–0.25) | 21,483 | 0 |
control | 26 ± 1 | 2703 | 98.67 | |
T6 (11–21 May) | 0 °C–10 d | 0.00 (−0.07–0.18) | 11,718 | 0 |
control | 26 ± 1 | 1330 | 97.67 |
Trials | Treatment Conditions | Means and Range of Temperature (°C) | No. Pupae | Adult Emergence (%) |
---|---|---|---|---|
T1 (18–28 February) | 2 °C–10 d | 1.67 (1.47–1.85) | 13,905 | 0 |
control | 26 ± 1 | 1602 | 95.43 | |
T2 (22 February–2 March) | 2 °C–10 d | 1.68 (1.47–1.85) | 10,851 | 0.01 * |
control | 26 ± 1 | 1334 | 92.96 | |
T3 (28 February–8 March) | 2 °C–10 d | 1.67 (1.47–1.85) | 8628 | 0 |
control | 26 ± 1 | 973 | 96.43 | |
T4 (4–16 April) | 2 °C–12 d | 1.62 (1.44–1.85) | 16,668 | 0 |
control | 26 ± 1 | 1803 | 96.95 | |
T5 (10–22 April) | 2 °C–12 d | 1.62 (1.44–1.81) | 13,770 | 0 |
control | 26 ± 1 | 1460 | 95.55 | |
T6 (18–30 April) | 2 °C–12 d | 1.66 (1.48–1.86) | 16,524 | 0 |
control | 26 ± 1 | 1990 | 95.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.-B.; Liu, B.; Fang, Y.; Gao, W.-N.; Zhao, Q.-Y.; Li, Z.-H.; Zhan, G.-P. Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes. Horticulturae 2024, 10, 781. https://doi.org/10.3390/horticulturae10080781
Ma T-B, Liu B, Fang Y, Gao W-N, Zhao Q-Y, Li Z-H, Zhan G-P. Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes. Horticulturae. 2024; 10(8):781. https://doi.org/10.3390/horticulturae10080781
Chicago/Turabian StyleMa, Tian-Bi, Bo Liu, Yan Fang, Wen-Na Gao, Qing-Ying Zhao, Zhi-Hong Li, and Guo-Ping Zhan. 2024. "Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes" Horticulturae 10, no. 8: 781. https://doi.org/10.3390/horticulturae10080781
APA StyleMa, T.-B., Liu, B., Fang, Y., Gao, W.-N., Zhao, Q.-Y., Li, Z.-H., & Zhan, G.-P. (2024). Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes. Horticulturae, 10(8), 781. https://doi.org/10.3390/horticulturae10080781