Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Insect Preparation
2.2.1. Egg Collection
2.2.2. Larvae Rearing
2.2.3. Pupae Development
2.3. Dose–Response Tests
2.3.1. Cold-Treatment Facilities
2.3.2. Experimental Design
2.3.3. Cold-Treatment Tests
2.4. Confirmatory Tests
2.5. Statistical Analysis
3. Results
3.1. ANCOVA on Dose–Response Data at 0 °C
3.2. ANCOVA on Dose–Response Data at 2 °C
3.3. Probit Analysis on Dose–Response Data
3.4. Confirmatory Tests
3.4.1. Confirmatory Tests at 0 °C
3.4.2. Confirmatory Tests at 2 °C
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adrion, J.R.; Kousathanas, A.; Pascual, M.; Burrack, H.J.; Haddad, N.M.; Bergland, A.O.; Machado, H.; Sackton, T.B.; Schlenke, T.A.; Watada, M.; et al. Drosophila suzukii: The Genetic Footprint of a Recent, Worldwide Invasion. Mol. Biol. Evol. 2014, 31, 3148–3163. [Google Scholar] [CrossRef] [PubMed]
- Asplen, M.K.; Anfora, G.; Biondi, A.; Choi, D.-S.; Chu, D.; Daane, K.M.; Gibert, P.; Gutierrez, A.P.; Hoelmer, K.A.; Hutchison, W.D.; et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 2015, 88, 469–494. [Google Scholar] [CrossRef]
- Tait, G.; Mermer, S.; Stockton, D.; Lee, J.; Avosani, S.; Abrieux, A.; Anfora, G.; Beers, E.; Biondi, A.; Burrack, H.; et al. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. J. Econ. Èntomol. 2021, 114, 1950–1974. [Google Scholar] [CrossRef] [PubMed]
- Goodhue, R.E.; Bolda, M.; Farnsworth, D.; Williams, J.C.; Zalom, F.G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest Manag. Sci. 2011, 67, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- CABI Compendium. Drosophila suzukii (Spotted Wing Drosophila) Datasheet (Updated on 2 April 2024). 2024. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.109283 (accessed on 6 May 2024).
- Walse, S.S.; Cha, D.H.; Lee, B.H.; Follett, P.A. Postharvest quarantine treatments for Drosophila suzukii in fresh fruit. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer: Cham, Switzerland, 2020; pp. 255–267. [Google Scholar]
- Li, Z.; Jiang, F.; Ma, X.; Fang, Y.; Sun, Z.; Qin, Y.; Wang, Q. Review on prevention and control techniques of Tephritidae invasion. Plant Quar. 2013, 27, 1–10. (In Chinese) [Google Scholar]
- Fang, Y.; Kang, F.; Zhan, G.; Ma, C.; Li, Y.; Wang, L.; Wei, Y.; Gao, X.; Li, Z.; Wang, Y. The Effects of a Cold Disinfestation on Bactrocera dorsalis Survival and Navel Orange Quality. Insects 2019, 10, 452. [Google Scholar] [CrossRef] [PubMed]
- Kanzawa, T. Studies on Drosophila suzukii Matsumura (Abstract). Rev. Appl. Entomol. 1939, 29, 622. [Google Scholar]
- Aly, M.F.K.; Kraus, D.A.; Burrack, H.J. Effects of Postharvest Cold Storage on the Development and Survival of Immature Drosophila suzukii (Diptera: Drosophilidae) in Artificial Diet and Fruit. J. Econ. Èntomol. 2017, 110, 87–93. [Google Scholar] [CrossRef]
- Jakobs, R.; Ahmadi, B.; Houben, S.; Gariepy, T.D.; Sinclair, B.J. Cold tolerance of third-instar Drosophila suzukii larvae. J. Insect Physiol. 2017, 96, 45–52. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.S.; Jeong, J.S.; Choi, D.S.; Park, J.; Kim, I. Phytosanitary cold treatment of spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophilidae) in ‘Campbell Early’ grape. J. Econ. Entomol. 2018, 111, 1638–1643. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, G.; Ren, L.; Sun, S.; Dang, H.; Zhai, Y.; Yin, H.; Li, Z.; Liu, B. Cold disinfestation for ‘Red Globe’ grape (Rhamnales: Vitaceae) infested with Drosophila suzukii (Diptera: Drosophilidae). J. Insect Sci. 2020, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Walse, S.S.; Jimenez, L.R.; Hall, W.A.; Tebbets, J.S.; Obenland, D.M. Optimizing postharvest methyl bromide treatments to control spotted wing drosophila, Drosophila suzukii, in sweet cherries from Western USA. J. Asia-Pac. Èntomol. 2016, 19, 223–232. [Google Scholar] [CrossRef]
- Follett, P.A.; Swedman, A.; Price, D.K. Postharvest Irradiation Treatment for Quarantine Control of Drosophila suzukii (Diptera: Drosophilidae) in Fresh Commodities. J. Econ. Èntomol. 2014, 107, 964–969. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Park, C.G. X-ray radiation and developmental inhibition of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Int. J. Radiat. Biol. 2016, 92, 849–854. [Google Scholar] [CrossRef]
- Follett, P.A.; Swedman, A.; Mackey, B. Effect of Low-Oxygen Conditions Created by Modified Atmosphere Packaging on Radiation Tolerance in Drosophila suzukii (Diptera: Drosophilidae) in Sweet Cherries. J. Econ. Èntomol. 2018, 111, 141–145. [Google Scholar] [CrossRef]
- Yang, X.B.; Liu, Y.B. Nitric oxide fumigation for control of spotted wing drosophila (Diptera: Drosophilidae) in strawberries. J. Econ. Entomol. 2018, 111, 1180–1184. [Google Scholar] [CrossRef]
- Mostafa, M.; Ibn Amor, A.; Admane, N.; Anfora, G.; Bubici, G.; Verrastro, V.; Scarano, L.; El Moujabber, M.; Baser, N. Reduction of Post-Harvest Injuries Caused by Drosophila suzukii in Some Cultivars of Sweet Cherries Using a High Carbon Dioxide Level and Cold Storage. Insects 2021, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-C.; Kim, H.-K.; Koo, H.-N.; Kim, B.-S.; Yang, J.-O.; Kim, G.-H. Synergistic Effect of Cold Treatment Combined with Ethyl Formate Fumigation against Drosophila suzukii (Diptera: Drosophilidae). Insects 2022, 13, 664. [Google Scholar] [CrossRef]
- Bošković, D.; Vuković, S.; Lazić, S.; Baser, N.; Čulum, D.; Tekić, D.; Žunić, A.; Šušnjar, A.; Šunjka, D. Insecticidal Activity of Selected Essential Oils against Drosophila suzukii (Diptera: Drosophilidae). Plants 2023, 12, 3727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, P. Research progress of postharvest preservation technology on ‘Red Globe’ grape. North. Hortic. 2016, 10, 181–184. (In Chinese) [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Report of the 2022 September Meeting of the Technical Panel on Phytosanitary Treatments, 12–18 September 2022; FAO: Roma, Italy, 2022; pp. 1–23. [Google Scholar]
- IPPC (International Plant Protection Convention). List of Topics for IPPC Standards. (Updated on 15 February 2024) 2024. Available online: https://www.ippc.int/en/core-activities/standards-setting/list-topics-ippc-standards/list (accessed on 6 May 2024).
- Liu, B.; Li, B.; Zhan, G.; Zha, T.; Wang, Y.; Ma, C. Forced hot-air treatment against Bactrocera papayae (Diptera: Tephritidae) in papaya. Appl. Èntomol. Zool. 2017, 52, 531–541. [Google Scholar] [CrossRef]
- TPPT (Technical Panel on Phytosanitary Treatments). Treatment Research Guidelines; Secretariat IPPC: Rome, Italy, 2019. [Google Scholar]
- PMRG (Phytosanitary Measures Research Group). Guidelines for the Development of Cold Disinfestation Treatments for Fruit Fly Host Commodities; Secretariat of IPPC: Rome, Italy, 2019. [Google Scholar]
- Follett, P.A.; Neven, L.G. Current Trends in Quarantine Entomology. Annu. Rev. Èntomol. 2006, 59, 359–385. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Èntomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- DPS (Data Processing System), Version 13.5. User’s Guide. Hangzhou RuiFeng Information Technology Co., Ltd.: Hangzhou, China, 2010.
- Zhan, G.; Zhao, J.; Ma, F.; Liu, B.; Zhong, Y.; Song, Z.; Zhao, Q.; Chen, N.; Ma, C. Radioprotective Effects on Late Third-Instar Bactrocera dorsalis (Diptera: Tephritidae) Larvae in Low-Oxygen Atmospheres. Insects 2020, 11, 526. [Google Scholar] [CrossRef]
- LeOra Software, Version 2.0. User’s Guide: PoloPlus Probit and Logit Analysis. LeOra Software: Berkeley, CA, USA, 2002.
- Wheeler, M.W.; Park, R.M.; Bailer, A.J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. 2006, 25, 1441–1444. [Google Scholar] [CrossRef]
- Couey, H.M.; Chew, V. Confidence Limits and Sample Size in Quarantine Research. J. Econ. Èntomol. 1986, 79, 887–890. [Google Scholar] [CrossRef]
- NAPPO (North American Plant Protection Organization). NAPPO Regional Standards for Phytosanitary Measures (RSPM) 34: Development of Phytosanitary Treatment Protocols for Regulated Arthropod Pests of Fresh Fruits or Vegetables; NAPPO: Ottawa, ON, Canada, 2011; p. 14. [Google Scholar]
- IPPC (International Plant Protection Convention). IPPC Procedure Manual for Standard Setting; Secretariat of IPPC: Rome, Italy, 2012. [Google Scholar]
- West, M.; Hallman, G.J. Estimation of dose requirements for extreme levels of efficacy. In Proceedings of the 25th Conference on Applied Statistics in Agriculture, Manhattan, KS, USA, 28–30 April 2013. [Google Scholar]
- Zhao, Q.Y.; Ma, F.H.; Deng, W.; Li, Z.H.; Song, Z.J.; Ma, C.; Ren, Y.L.; Du, X.; Zhan, G.P. Phytosanitary treatment of the aerial root mealybug, Pseudococcus baliteus (Hemiptera: Pseudococcidae). J. Econ. Entomol. 2023, 116, 1567–1574. [Google Scholar] [CrossRef]
- IPPC. ISPM #28: Phytosanitary Treatments for Regulated Pests; Secretariat of IPPC: Rome, Italy, 2007. [Google Scholar]
- Hallman, G.J.; Mangan, R.L. Concerns with temperature quarantine treatment research. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reduction, San Diego, CA, USA, 3–5 November 1997; Obenauf, G.L., Ed.; Office of Methyl Bromide Alternatives Outreach: Fresno, CA, USA, 1997; pp. 79-1–79-4. [Google Scholar]
- Wang, Y.; Wu, H.; Li, X.; Zhan, G. The progress and application for research protocol on phytosanitary treatment of arthropods. Plant Quar. 2016, 30, 1–5. (In Chinese) [Google Scholar]
- Myers, S.W.; Cancio-Martinez, E.; Hallman, G.J.; Fontenot, E.A.; Vreysen, M.J. Relative Tolerance of Six Bactrocera (Diptera: Tephritidae) Species to Phytosanitary Cold Treatment. J. Econ. Èntomol. 2016, 109, 2341–2347. [Google Scholar] [CrossRef]
- Dias, V.S.; Hallman, G.J.; Araújo, A.S.; Lima, I.V.G.; Galvão-Silva, F.L.; Caravantes, L.A.; Rivera, M.N.G.; Aguilar, J.S. High cold tolerance and differential population response of third instars from the Zeugodacus tau complex to phytosanitary cold treatment in navel oranges. Postharvest Biol. Tec. 2023, 203, 112392. [Google Scholar] [CrossRef]
- IPPC (International Plant Protection Convention). ISPM #18: Requirements for the Use of Irradiation as a Phytosanitary Measure; Food and Agricultural Organization: Rome, Italy, 2003; (Revised in 2023). [Google Scholar]
- Zhan, G.; Ren, L.; Shao, Y.; Wang, Q.; Yu, D.; Wang, Y.; Li, T. Gamma irradiation as a phytosanitary treatment of Bactrocera tau (Diptera: Tephritidae) in pumpkin fruits. J. Econ. Entomol. 2015, 108, 88–94. [Google Scholar]
- Doorenweerd, C.; Leblanc, L.; Norrbom, A.L.; Jose, M.S.; Rubinoff, D. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae). ZooKeys 2018, 730, 19–56. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ma, J.; Wu, M.; Jiao, X.; Wang, Z.; Liang, F.; Zhan, G. Gamma radiation as a phytosanitary treatment against larvae and pupae of Bactrocera dorsalis (Diptera: Tephritidae) in guava fruits. Food Control 2017, 72, 360–366. [Google Scholar] [CrossRef]
- Zhan, G.; Shao, Y.; Yu, Q.; Xu, L.; Liu, B.; Wang, Y.; Wang, Q. Phytosanitary irradiation of Jack Beardsley mealybug (Hemiptera: Pseudococcidae) females on rambutan (Sapindales: Sapindaceae) fruits. Fla. Entomol. 2016, 99 Pt 2, 114–120. [Google Scholar]
- Song, Z.-J.; Zhao, Q.-Y.; Ma, C.; Chen, R.-R.; Ma, T.-B.; Li, Z.-H.; Zhan, G.-P. Quarantine disinfestation of papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae) using Gamma and X-rays irradiation. Insects 2023, 14, 682. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cui, N. Study on the Storage and Preservation of ‘Red Globe’ Grapes in Xinjiang. Agric. Tech. 2015, 35, 112–159. [Google Scholar]
- Wu, S. Different effects of pre-cooling methods on “Red Globe” grape. China Fruit Veg. 2015, 8, 1–3. (In Chinese) [Google Scholar]
- Wuernisha, K.; Che, F.B.; Zhang, T.; Li, P.; Hu, B.W. Effect of different temperature on quality and physiological index of postharvest ‘Red Globe’ grape during storage. Xinjiang Agric. Sci. 2010, 47, 82–86. (In Chinese) [Google Scholar]
Mean and Range of Temperature | Stages | Regression Formula | Coefficient of Determination (R2) | Minimum Time Causing 100% Mortality (h) |
---|---|---|---|---|
Test-1: 0.15 °C (0.02–0.51 °C) | 6 h Egg | y = 0.875x + 5.620 | 0.960 | 96.44 |
2 d Larva | y = 1.264x + 18.803 | 0.935 | 56.33 | |
4 d Larva | y = 1.071x − 9.745 | 0.983 | 93.13 | |
1 d Pupa | y = 1.059x − 31.880 | 0.942 | 115.09 | |
3 d Pupa | y = 0.780x − 17.130 | 0.942 | 137.35 | |
Test-2: 0.01 °C (−0.17–0.27 °C) | 6 h Egg | y = 0.890x + 7.754 | 0.957 | 92.41 |
2 d Larva | y = 0.783x + 1.944 | 0.954 | 45.89 | |
4 d Larva | y = 1.021x − 7.024 | 0.976 | 95.03 | |
1 d Pupa | y = 0.997x − 21.406 | 0.900 | 111.74 | |
3 d Pupa | y = 0.747x − 28.878 | 0.955 | 159.14 |
Mean and Range of Temperature | Stages | Regression Formula | Coefficient of Determination (R2) | Minimum Time Causing 100% Mortality (h) |
---|---|---|---|---|
Test-1: 1.61 °C (1.44–1.85 °C) | 6 h Egg | y = 0.830x + 0.844 | 0.712 | 83.00 |
2 d Larva | y = 1.898x + 7.415 | 0.742 | 43.51 | |
4 d Larva | y = 31.004x + 0.562 | 0.904 | 104.98 | |
1 d Pupa | y = 0.590x − 12.759 | 0.886 | 174.17 | |
3 d Pupa | y = 0.595x − 14.023 | 0.903 | 174.83 | |
Test-2: 1.85 °C (1.48–2.26 °C) | 6 h Egg | y = 0.661x − 0.378 | 0.972 | 136.73 |
2 d Larva | y = 0.973x + 1.095 | 0.918 | 91.37 | |
4 d Larva | y = 0.940x − 22.939 | 0.971 | 120.15 | |
1 d Pupa | y = 1.136x − 71.973 | 0.951 | 142.58 | |
3 d Pupa | y = 0.753x − 48.347 | 0.948 | 183.73 |
Trials | Stages | Slope ± SE | Lethal Time and 95% CI (d) * | ||
---|---|---|---|---|---|
LT50 | LT90 | LT99 | |||
Test-1: 0.15 °C (0.02–0.51 °C) | 6 h Egg | 0.035 ± 0.001 | 1.22 (1.08–1.34) c | 2.74 (2.58–2.91) c | 3.97 (3.72–4.29) b |
2 d Larva | 0.063 ± 0.002 | 0.48 (0.38–0.56) d | 1.33 (1.23–1.45) d | 2.02 (1.85–2.25) c | |
4 d Larva | 1.165 ± 0.041 | 1.69 (1.59–1.78) b | 2.79 (2.66–2.94) c | 3.69 (3.49–3.92) b | |
1 d Pupa | 1.352 ± 0.062 | 2.53 (2.44–2.61) a | 3.47 (3.37–3.60) b | 4.25 (4.08–4.46) b | |
3 d Pupa | 0.910 ± 0.038 | 2.64 (2.47–2.80) a | 4.05 (3.86–4.29) a | 5.20 (4.88–5.62) a | |
Test-2: 0.01 °C (−0.17–0.27 °C) | 6 h Egg | 0.039 ± 0.001 | 1.08 (0.91–1.23) d | 2.44 (2.23–2.71) c | 3.56 (3.22–4.02) c |
2 d Larva | 0.090 ± 0.003 | 0.66 (0.59–0.72) e | 1.26 (1.17–1.35) d | 1.73 (1.61–1.90) d | |
4 d Larva | 1.099 ± 0.036 | 1.61 (1.45–1.77) c | 2.78 (2.55–3.08) c | 3.73 (3.38–4.20) c | |
1 d Pupa | 1.352 ± 0.062 | 2.46 (2.40–2.52) b | 3.24 (3.11–3.41) b | 4.53 (4.33–4.76) b | |
3 d Pupa | 0.924 ± 0.034 | 3.42 (3.27–3.55) a | 4.80 (4.63–5.00) a | 5.93 (5.67–6.27) a |
Trials | Stages | Slope ± SE | Lethal Time and 95% CI (d) ** | ||
---|---|---|---|---|---|
LT50 | LT90 | LT99 | |||
Test-1: 1.61 °C (1.44–1.85 °C) | 6 h Egg | 1.920 ± 0.079 | 0.74 (0.65–0.84) b | 1.30 (1.13–1.61) c | 2.06 (1.66–2.92) c |
2 d Larva | 0.195 ± 0.008 | 0.56 (0.49–0.62) b | 0.88 (0.78–1.04) d | 1.26 (1.06–1.73) d | |
4 d Larva | 0.558 ± 0.034 | 0.05 (−0.45–0.40) * c | 2.34 (2.13–2.60) b | 4.22 (3.78–4.85) b | |
1 d Pupa | 1.092 ± 0.050 | 3.24 (3.00–3.45) a | 4.41 (4.14–4.76) a | 5.37 (4.98–5.93) a | |
3 d Pupa | 0.989 ± 0.044 | 3.29 (3.10–3.47) a | 4.59 (4.35–4.88) a | 5.64 (5.29–6.12) a | |
Test-2: 1.85 °C (1.48–2.26 °C) | 6 h Egg | 0.696 ± 0.022 | 2.01 (1.84–2.17) d | 3.85 (3.65–4.09) c | 5.35 (5.04–5.74) b |
2 d Larva | 1.242 ± 0.044 | 1.27 (1.05–1.47) e | 2.30 (2.04–2.67) d | 3.14 (2.75–3.74) c | |
4 d Larva | 1.066 ± 0.039 | 2.53 (2.39–2.66) c | 3.73 (3.57–3.93) c | 3.73 (3.38–4.20) c | |
1 d Pupa | 1.254 ± 0.060 | 3.84 (3.67–3.98) b | 4.86 (4.69–5.08) b | 5.69 (5.43–6.07) b | |
3 d Pupa | 0.870 ± 0.032 | 4.49 (4.33–4.64) a | 6.00 (5.78–6.19) a | 7.17 (6.88–7.54) a |
Temp. | Probit Model | Trials | Slope ± SE | Probit-9 and 95% CI (d) | Heterogeneity |
---|---|---|---|---|---|
0 °C | Conversion of time | Test-1 | 6.675 ± 0.257 | 10.17 (8.85–12.13) | 2.37 |
Test-2 | 8.013 ± 0.362 | 10.48 (9.18–12.53) | 2.72 | ||
Non-conversion | Test-1 | 0.910 ± 0.038 | 7.04 (6.49–7.79) | 3.12 | |
Test-2 | 0.924 ± 0.034 | 7.75 (7.30–8.31) | 2.49 | ||
2 °C | Conversion of time | Test-1 | 7.474 ± 0.308 | 10.59 (9.62–11.87) | 1.04 |
Test-2 | 9.854 ± 0.474 | 11.28 (9.96–13.51) | 3.51 | ||
Non-conversion | Test-1 | 0.989 ± 0.044 | 7.33 (6.76–8.12) | 2.88 | |
Test-2 | 0.870 ± 0.032 | 9.09 (8.60–9.73) | 2.73 |
Trials | Treatment Conditions | Means and Range of Temperature (°C) | No. Pupae | Adult Emergence (%) |
---|---|---|---|---|
T1 (29 January–7 February) | 0 °C–9 d | 0.09 (−0.04–0.23) | 7985 | 0 |
control | 26 ± 1 | 820 | 95.61 | |
T2 (3–12 February) | 0 °C–9 d | 0.07 (−0.05–0.22) | 6804 | 0 |
control | 26 ± 1 | 1014 | 96.69 | |
T3 (6–16 February) | 0 °C–9 d | 0.05 (−0.06–0.17) | 17,198 | 0 |
control | 26 ± 1 | 1932 | 96.43 | |
T4 (3–13 May) | 0 °C–10 d | 0.00 (−0.09–0.34) | 11,010 | 0 |
control | 26 ± 1 | 1223 | 95.91 | |
T5 (7–17 May) | 0 °C–10 d | 0.00 (−0.09–0.25) | 21,483 | 0 |
control | 26 ± 1 | 2703 | 98.67 | |
T6 (11–21 May) | 0 °C–10 d | 0.00 (−0.07–0.18) | 11,718 | 0 |
control | 26 ± 1 | 1330 | 97.67 |
Trials | Treatment Conditions | Means and Range of Temperature (°C) | No. Pupae | Adult Emergence (%) |
---|---|---|---|---|
T1 (18–28 February) | 2 °C–10 d | 1.67 (1.47–1.85) | 13,905 | 0 |
control | 26 ± 1 | 1602 | 95.43 | |
T2 (22 February–2 March) | 2 °C–10 d | 1.68 (1.47–1.85) | 10,851 | 0.01 * |
control | 26 ± 1 | 1334 | 92.96 | |
T3 (28 February–8 March) | 2 °C–10 d | 1.67 (1.47–1.85) | 8628 | 0 |
control | 26 ± 1 | 973 | 96.43 | |
T4 (4–16 April) | 2 °C–12 d | 1.62 (1.44–1.85) | 16,668 | 0 |
control | 26 ± 1 | 1803 | 96.95 | |
T5 (10–22 April) | 2 °C–12 d | 1.62 (1.44–1.81) | 13,770 | 0 |
control | 26 ± 1 | 1460 | 95.55 | |
T6 (18–30 April) | 2 °C–12 d | 1.66 (1.48–1.86) | 16,524 | 0 |
control | 26 ± 1 | 1990 | 95.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.-B.; Liu, B.; Fang, Y.; Gao, W.-N.; Zhao, Q.-Y.; Li, Z.-H.; Zhan, G.-P. Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes. Horticulturae 2024, 10, 781. https://doi.org/10.3390/horticulturae10080781
Ma T-B, Liu B, Fang Y, Gao W-N, Zhao Q-Y, Li Z-H, Zhan G-P. Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes. Horticulturae. 2024; 10(8):781. https://doi.org/10.3390/horticulturae10080781
Chicago/Turabian StyleMa, Tian-Bi, Bo Liu, Yan Fang, Wen-Na Gao, Qing-Ying Zhao, Zhi-Hong Li, and Guo-Ping Zhan. 2024. "Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes" Horticulturae 10, no. 8: 781. https://doi.org/10.3390/horticulturae10080781
APA StyleMa, T. -B., Liu, B., Fang, Y., Gao, W. -N., Zhao, Q. -Y., Li, Z. -H., & Zhan, G. -P. (2024). Phytosanitary Cold Treatment of the Spotted Wing Drosophila (Diptera: Drosophilidae) in Postharvest ‘Red Globe’ Grapes. Horticulturae, 10(8), 781. https://doi.org/10.3390/horticulturae10080781