MSCR-FuResNet: A Three-Residual Network Fusion Model Based on Multi-Scale Feature Extraction and Enhanced Channel Spatial Features for Close-Range Apple Leaf Diseases Classification under Optimal Conditions
Abstract
:1. Introduction
2. Dataset and Methodology
2.1. Dataset and Data Preprocessing
2.2. Apple Leaf Disease Classification Model
2.2.1. Model Structure
2.2.2. Multi-Scale Feature Fusion Mechanism of SubNetwork A
2.2.3. Channel and Spatial Feature Enhancement and Subsequent Channel Feature En-Hancement Mechanism of SubNetwork B
2.2.4. Optimization of Convolution Kernels and Activation Functions of SubNetwork C
2.2.5. Fusion Model
3. Experimental Results and Analysis
3.1. Environmental Configuration and Experimental Setup
3.2. Sub-Network Fusion Comparison Experiment
3.3. Ablation Study
3.4. Comparison Experiment between Sub-Networks and the Original ResNet-50 Network
3.5. Data Enhancement Experiment on Apple Leaf Disease Images
3.6. Comparison Experiment of Network Methods
4. Conclusions and Future Directions
4.1. Conclusions
4.2. Future Directions
- Model Efficiency: The suitability of the model is closely linked to its size and the number of parameters. Future work will aim to develop lightweight models that maintain high performance while being easily deployable on resource-constrained mobile platforms.
- Dataset Enhancement: Increasing the diversity and complexity of the dataset by incorporating images that depict multiple types of apple leaf diseases within a single image.
- Algorithm Optimization: Enhancing the underlying algorithms to ensure that the model operates with greater speed and lower complexity. This will involve developing more efficient algorithms to improve the model’s computational efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. SubNetwork A
Appendix B. SubNetwork B
Appendix C. SubNetwork C
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 August 2024).
- Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks. Symmetry 2018, 10, 11. [Google Scholar] [CrossRef]
- Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol. Technol. 2013, 85, 45–56. [CrossRef]
- Mahlein, A.-K.; Rumpf, T.; Welke, P.; Dehne, H.-W.; Plümer, L.; Steiner, U.; Oerke, E.-C. Development of Spectral Indices for Detecting and Identifying Plant Diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Prasad, S.; Kumar, P.; Hazra, R.; Kumar, A. Plant Leaf Disease Detection Using Gabor Wavelet Transform. In Proceedings of the Swarm, Evolutionary, and Memetic Computing, Bhubaneswar, India, 20–22 December 2012; Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 372–379. [Google Scholar]
- Jian, Z.; Wei, Z. Support Vector Machine for Recognition of Cucumber Leaf Diseases. In Proceedings of the 2010 2nd International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010; Volume 5, pp. 264–266. [Google Scholar]
- Liu, J.; Lv, F.; Di, P. Identification of Sunflower Leaf Diseases Based on Random Forest Algorithm. In Proceedings of the 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 6–8 December 2019; pp. 459–463. [Google Scholar]
- Vaishnnave, M.P.; Devi, K.S.; Srinivasan, P.; Jothi, G.A.P. Detection and Classification of Groundnut Leaf Diseases Using KNN Classifier. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–5. [Google Scholar]
- Shi, Y.; Huang, W.; Zhang, S. Apple disease recognition based on two-dimensionality subspace learning. Comput. Eng. Appl. 2017, 53, 180–184. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Yang, B.; Wang, W.; Wang, B.; Chen, P.; Zhang, J. Apple Leaf Diseases Recognition Based on An Improved Convolutional Neural Network. Sensors 2020, 20, 3535. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cao, Z.; Cai, W.; Gong, G.; Zhou, G.; Li, L. Apple Leaf Disease Identification in Complex Background Based on BAM-Net. Agronomy 2023, 13, 1240. [Google Scholar] [CrossRef]
- Bi, C.; Wang, J.; Duan, Y.; Fu, B.; Kang, J.-R.; Shi, Y. MobileNet Based Apple Leaf Diseases Identification. Mob. Netw. Appl. 2022, 27, 172–180. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3156–3164. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Park, J. BAM: Bottleneck Attention Module. arXiv 2018, arXiv:1807.06514. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Ling, X.; Deng, W.; Gu, C.; Zhou, H.; Li, C.; Sun, F. Model Ensemble for Click Prediction in Bing Search Ads. In Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Australia, 3–7 April 2017; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2017; pp. 689–698. [Google Scholar]
- Li, H. Channel Locality Block: A Variant of Squeeze-and-Excitation. arXiv 2019, arXiv:1901.01493. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Pinheiro, P.O.; Lin, T.-Y.; Collobert, R.; Dollár, P. Learning to Refine Object Segments. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 75–91. [Google Scholar]
- Newell, A.; Yang, K.; Deng, J. Stacked Hourglass Networks for Human Pose Estimation. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 483–499. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–7 and 12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Tariq, Z.; Shah, S.K.; Lee, Y. Feature-Based Fusion Using CNN for Lung and Heart Sound Classification. Sensors 2022, 22, 1521. [Google Scholar] [CrossRef] [PubMed]
- New Plant Diseases Dataset. Available online: https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset (accessed on 15 August 2024).
- Apple Leaf Pathology Images_Dataset-Flying Paddle AI Studio Star River Community. Available online: https://aistudio.baidu.com/datasetdetail/11591/0 (accessed on 15 August 2024).
- Apple Leaf Diseases Dataset.Zip. Available online: https://drive.google.com/file/d/1KudYvGcAwnwHX6_ioeyPKrFjRVldHF-7/view (accessed on 15 August 2024).
- Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080. [Google Scholar] [CrossRef]
- Xiao, K.; Engstrom, L.; Ilyas, A.; Madry, A. Noise or Signal: The Role of Image Backgrounds in Object Recognition. arXiv 2020, arXiv:2006.09994. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- ConvPatchTrans: A Script Identification Network with Global and Local Semantics Deeply Integrated—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0952197622001427 (accessed on 16 July 2024).
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; ICML: Lille, France, 2015; pp. 448–456. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Two-Stream Convolutional Networks for Action Recognition in Videos. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar]
- Chen, Y.; Pan, J.; Wu, Q. Apple Leaf Disease Identification via Improved CycleGAN and Convolutional Neural Network. Soft Comput. 2023, 27, 9773–9786. [Google Scholar] [CrossRef]
Number | Name | Description |
---|---|---|
1 | Operating System | Windows 10 22H2 For WorkStation |
2 | Programming Language | Python 3.10 |
3 | PyTorch Version | 1.12.1 |
4 | CUDA Version | 12.0.76 |
5 | CPU | Intel Core i9-7960X CPU @ 4.2GHz |
6 | GPU | NVIDIA GeForce RTX 3080 Ti |
7 | Memory | Crucial Ballistix BL16G32C16U4W.16FE 64 GB (Micron Technology, Inc., Boise, ID, USA) |
8 | Solid State Drive | SAMSUNG MZPLL3T2HAJQ-00005 3.2 TB (Samsung Semiconductor, Inc., Yongin, South Korea) |
9 | Motherboard | Asus TUF X299 Mark 2 (Asus Technology Co. Ltd., Shanghai, China) |
Network Name | Comparison with Resnet-50 | Accuracy |
---|---|---|
Subnetwork A | +4.59% | 96.36% |
Subnetwork B | +4.54% | 96.31% |
Subnetwork C | +1.85% | 93.62% |
Resnet-50 | ±0.00% | 91.77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xing, X.; Zhang, Y.; Liu, R.; Li, L.; Zhang, R.; Tang, L.; Shi, Z.; Zhou, H.; Guo, R.; et al. MSCR-FuResNet: A Three-Residual Network Fusion Model Based on Multi-Scale Feature Extraction and Enhanced Channel Spatial Features for Close-Range Apple Leaf Diseases Classification under Optimal Conditions. Horticulturae 2024, 10, 953. https://doi.org/10.3390/horticulturae10090953
Chen X, Xing X, Zhang Y, Liu R, Li L, Zhang R, Tang L, Shi Z, Zhou H, Guo R, et al. MSCR-FuResNet: A Three-Residual Network Fusion Model Based on Multi-Scale Feature Extraction and Enhanced Channel Spatial Features for Close-Range Apple Leaf Diseases Classification under Optimal Conditions. Horticulturae. 2024; 10(9):953. https://doi.org/10.3390/horticulturae10090953
Chicago/Turabian StyleChen, Xili, Xuanzhu Xing, Yongzhong Zhang, Ruifeng Liu, Lin Li, Ruopeng Zhang, Lei Tang, Ziyang Shi, Hao Zhou, Ruitian Guo, and et al. 2024. "MSCR-FuResNet: A Three-Residual Network Fusion Model Based on Multi-Scale Feature Extraction and Enhanced Channel Spatial Features for Close-Range Apple Leaf Diseases Classification under Optimal Conditions" Horticulturae 10, no. 9: 953. https://doi.org/10.3390/horticulturae10090953
APA StyleChen, X., Xing, X., Zhang, Y., Liu, R., Li, L., Zhang, R., Tang, L., Shi, Z., Zhou, H., Guo, R., & Dong, J. (2024). MSCR-FuResNet: A Three-Residual Network Fusion Model Based on Multi-Scale Feature Extraction and Enhanced Channel Spatial Features for Close-Range Apple Leaf Diseases Classification under Optimal Conditions. Horticulturae, 10(9), 953. https://doi.org/10.3390/horticulturae10090953