Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,406)

Search Parameters:
Keywords = fluorescence measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 (registering DOI) - 4 Aug 2025
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 (registering DOI) - 1 Aug 2025
Viewed by 139
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

21 pages, 3648 KiB  
Article
Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
by Maria Karayianni, Emi Haladjova, Stanislav Rangelov and Stergios Pispas
Polysaccharides 2025, 6(3), 67; https://doi.org/10.3390/polysaccharides6030067 (registering DOI) - 1 Aug 2025
Viewed by 171
Abstract
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its [...] Read more.
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its potential use in agriculture for pathogen control is a promising alternative to traditional chemical fertilisers and pesticides, which raise concerns regarding public health, environmental protection, and pesticide resistance. This study focused on the preparation of chitosan nanoparticles (CS-NPs) through cross-linking with organic molecules, such as tannic acid (TA). Various formulations were explored for the development of stable nanoscale particles having encapsulation capabilities towards low compounds of varying polarity and with potential agricultural applications relevant to plant health and growth. The solution properties of the NPs were assessed using dynamic and electrophoretic light scattering (DLS and ELS); their morphology was observed through atomic force microscopy (AFM), while analytical ultracentrifugation (AUC) measurements provided insights into their molar mass. Their properties proved to be primarily influenced by the concentration of CS, which significantly affected its intrinsic conformation. Additional structural insights were obtained via infrared and UV–Vis spectroscopic measurements, while detailed fluorescence analysis with the use of three different probes, as model cargo molecules, provided information regarding the hydrophobic and hydrophilic microdomains within the particles. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Figure 1

13 pages, 1573 KiB  
Review
Recent Progress of Carbon Dots in Fluorescence Sensing
by Xiao-Tian Lou, Lei Zhan and Bin-Bin Chen
Inorganics 2025, 13(8), 256; https://doi.org/10.3390/inorganics13080256 - 31 Jul 2025
Viewed by 165
Abstract
Carbon dots (CDs) have attracted much attention as new types of luminescent carbon nanomaterials in recent years because of their tunable fluorescence, good biocompatibility, high stability, and low cost. In this review, the classification of CDs is overviewed based on their differences in [...] Read more.
Carbon dots (CDs) have attracted much attention as new types of luminescent carbon nanomaterials in recent years because of their tunable fluorescence, good biocompatibility, high stability, and low cost. In this review, the classification of CDs is overviewed based on their differences in structure. Subsequently, the latest research progress of CDs in fluorescence sensing is systematically summarized and various sensing principles are elucidated in detail, including fluorescence resonance energy transfer, aggregation-induced emission, aggregation-caused quenching, electron transfer, and the inner filter effect. Finally, the challenges and future direction of CD fluorescent probes are discussed in detail. The purpose of this review is to stimulate the design of advanced CD fluorescent probes and achieve the accurate and reliable measurement of analytes in complex samples. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 4431 KiB  
Article
Application of Hybrid Platelet Technology for Platelet Count Improves Accuracy of PLT Measurement in Samples from Patients with Different Types of Anemia
by Małgorzata Wituska and Olga Ciepiela
J. Clin. Med. 2025, 14(15), 5401; https://doi.org/10.3390/jcm14155401 (registering DOI) - 31 Jul 2025
Viewed by 120
Abstract
Background: Reliable platelet (PLT) measurement is crucial for the accurate diagnosis of thrombocytopenia. Several methods exist for automated PLT counting, including the impedance method (PLT-I), as well as optical and fluorescence methods (PLT-F). The impedance method is cost-effective but susceptible to interference from [...] Read more.
Background: Reliable platelet (PLT) measurement is crucial for the accurate diagnosis of thrombocytopenia. Several methods exist for automated PLT counting, including the impedance method (PLT-I), as well as optical and fluorescence methods (PLT-F). The impedance method is cost-effective but susceptible to interference from small red blood cells and schistocytes. In contrast, fluorescent assessment offers higher specificity but is more expensive, as it requires additional dyes and detectors. Hybrid platelet counting (PLT-H) combines impedance with measurements from the leukocyte differentiation channel and is available without additional cost. Aim: The aim of this study was to evaluate the accuracy of hybrid PLT counting in anemic samples. Methods: In this retrospective study, PLT counts from 583 unselected anemic samples were analyzed using two different analyzers: the Sysmex XN3500, equipped with fluorescent PLT-F technology, and the Mindray BC6200, which uses both impedance (PLT-I) and hybrid (PLT-H) technologies. Agreement between PLT-I and PLT-F, as well as between PLT-H and PLT-F, was assessed using Bland–Altman plots. Correlation between the methods was evaluated using the Pearson correlation coefficient. Results: The hybrid method demonstrated better accuracy in PLT counting compared to the impedance method. Correlation between PLT-H and PLT-F was excellent, ranging from 0.991 to 0.999. In thrombocytopenic samples (PLT < 50 G/L), the hybrid method also provided more reliable PLT counts than the impedance method, reducing the number of falsely elevated PLT results by nearly fivefold. Conclusions: Hybrid platelet counting yields more accurate results than the impedance method in anemic samples and shows excellent correlation with the fluorescence method. Full article
(This article belongs to the Special Issue Clinical Trends and Prospects in Laboratory Hematology)
Show Figures

Figure 1

15 pages, 1226 KiB  
Article
Functional Textile Socks in Rheumatoid Arthritis or Psoriatic Arthritis: A Randomized Controlled Study
by Kirkke Reisberg, Kristiine Hõrrak, Aile Tamm, Margarita Kõrver, Liina Animägi and Jonete Visnapuu
Textiles 2025, 5(3), 30; https://doi.org/10.3390/textiles5030030 - 31 Jul 2025
Viewed by 95
Abstract
There is limited knowledge about the benefits of functional textile in arthritis management. This study aimed to evaluate the effect of wearing functional socks in patients with rheumatoid or psoriatic arthritis. Patients were randomized into an experimental group (n = 23) and [...] Read more.
There is limited knowledge about the benefits of functional textile in arthritis management. This study aimed to evaluate the effect of wearing functional socks in patients with rheumatoid or psoriatic arthritis. Patients were randomized into an experimental group (n = 23) and control group (n = 18). The intervention involved wearing functional textile socks for 12 weeks. Sock composition was analyzed using X-ray fluorescence spectrometry and scanning electron microscopy. Outcome measures included the Numeric Rating Scale, Health Assessment Questionnaire–Disability Index (HAQ-DI), and RAND-36 (Estonian version). At week 12, the experimental group showed significantly lower metatarsophalangeal and toe joint pain (p = 0.001), stiffness (p = 0.005), and ankle stiffness (p = 0.017) scores than the control group. Improvements were also observed in HAQ-DI reaching (p = 0.035) and activity (p = 0.028) scores. RAND-36 scores were higher in physical functioning (p = 0.013), social functioning (p = 0.024), and bodily pain (p = 0.006). Role limitations due to physical problems improved in the experimental group but worsened in the control group (p = 0.029). In conclusion, wearing functional socks led to some statistically significant improvements in foot and ankle pain and stiffness, physical function, and health-related quality of life. However, the effect sizes were small, and the clinical relevance of these findings should be interpreted with caution. Full article
(This article belongs to the Special Issue Advances of Medical Textiles: 2nd Edition)
Show Figures

Figure 1

20 pages, 1573 KiB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 - 30 Jul 2025
Viewed by 204
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
Low-Frequency rTMS and Diazepam Exert Synergistic Effects on the Excitability of an SH-SY5Y Model of Epileptiform Activity
by Ioannis Dardalas, Efstratios K. Kosmidis, Roza Lagoudaki, Vasilios K. Kimiskidis, Theodoros Samaras, Theodoros Moysiadis, Dimitrios Kouvelas and Chryssa Pourzitaki
Biomedicines 2025, 13(8), 1857; https://doi.org/10.3390/biomedicines13081857 - 30 Jul 2025
Viewed by 284
Abstract
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address [...] Read more.
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address this issue. In this in vitro study, we elucidated and characterized the alterations in intracellular Ca2+ levels in cell cultures where diazepam and repetitive transcranial magnetic stimulation were implemented, alone or in combination. Methods: Using the differentiated human-derived neuroblastoma cell line SH-SY5Y, we measured the alterations in intracellular Ca2+ levels under the impact of either low-frequency repetitive transcranial magnetic stimulation (1 Hz), diazepam (14 μM), or their combination. We used the Ca2+-sensitive fluorescent indicator Fluo-4 acetoxymethyl ester for calcium imaging, while neuronal excitation was achieved with 50 mM KCl. Results: The highest median fluorescence intensity increase (%ΔF/F = 24.80) was observed in control cell cultures, followed by rTMS cultures (%ΔF/F = 16.96) and diazepam cultures (%ΔF/F = 11.46). The lowest median fluorescence intensity value (%ΔF/F =−0.44) was observed when diazepam was used concomitantly with repetitive transcranial magnetic stimulation. Post hoc analysis assessed pairwise differences, showing statistically significant differentiation between the control group and all other groups. Additionally, statistically significant results were observed between repetitive transcranial magnetic stimulation or diazepam and their combination, but not between them. Conclusions: The combination of diazepam and repetitive transcranial magnetic stimulation resulted in the most significant reduction in intracellular Ca2+ levels, as indicated by the lowest fluorescence values compared with the control group. Individually, each treatment produced a notable but less pronounced effect. We conclude that both diazepam and low-frequency repetitive transcranial magnetic stimulation can control epileptiform activity in vitro, while their combination is the most effective treatment. Full article
(This article belongs to the Special Issue Epilepsy: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

9 pages, 2757 KiB  
Article
Externally Triggered Activation of Nanostructure-Masked Cell-Penetrating Peptides
by Gayong Shim
Molecules 2025, 30(15), 3205; https://doi.org/10.3390/molecules30153205 - 30 Jul 2025
Viewed by 268
Abstract
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon [...] Read more.
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon complexation with a DNA-based nanostructure. Upon localized plasma exposure, DNA masking was disrupted, restoring the biological functions of the peptides. Transmission electron microscopy revealed that the synthesized DNA nanoflower structures were approximately 150–250 nm in size. Structural and functional analyses confirmed that the system remained inert under physiological conditions and was rapidly activated by plasma treatment. Fluorescence recovery, cellular uptake assays, and cytotoxicity measurements demonstrated that the peptide activity could be precisely controlled in both monolayer and three-dimensional spheroid models. This externally activatable nanomaterial-based system enables the spatial and temporal regulation of peptide function without requiring biochemical triggers or permanent chemical modifications. This platform provides a modular strategy for the development of potential peptide therapeutics that require precise control of activation in complex biological environments. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

19 pages, 2722 KiB  
Article
Fluorene-Containing β-Diketonato Ligands and Their Rhodium(I) Complexes—A Characterization and Crystallographic Study
by Frederick Jacobus Francois Jacobs, Siyanda Khoza and Eleanor Fourie
Inorganics 2025, 13(8), 255; https://doi.org/10.3390/inorganics13080255 - 30 Jul 2025
Viewed by 178
Abstract
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized [...] Read more.
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized containing the fluorene-functional group, where the varying substituent on the β-diketone was CF3 (1), PhCF3 (2), Ph (3) and PhCH3 (4). The corresponding cyclooctadiene rhodium(I) complexes of the type [Rh(cod)((fluorene)COCHCOR)], with R = CF3 (5), PhCF3 (6), Ph (7) and PhCH3 (8) were also synthesized. A crystal structure determination of 2 and 6 was performed, highlighting important changes in the ligand structure as a result of metal complexation. The structure of 2 also showed a hydrogen interaction between the hydroxy and carboxyl groups, forming a pseudo six-membered ring that stabilizes the enol form of the compound. Cyclic voltammetry (CV) of the β-diketones 14 showed a reduction wave for the reduction of the β-diketonato backbone between −1500 mV and −2100 mV as measured against ferrocene (FcH). CVs of rhodium(I) complexes 58 showed a reduction of the β-diketonato backbone between −1800 and −2000 mV, as well as an oxidation wave for the oxidation of the rhodium(I) metal centre at approximately 300 mV. Full article
Show Figures

Graphical abstract

15 pages, 1375 KiB  
Article
Photodegradation of Turmeric Oleoresin Under Fluorescent Light and White LED: Impacts on the Chemical Stability, Bioactivity, and Photosensitizing Property of Curcuminoids
by Heejeong Kim, Juyeon Oh and Jungil Hong
Molecules 2025, 30(15), 3187; https://doi.org/10.3390/molecules30153187 - 30 Jul 2025
Viewed by 200
Abstract
Turmeric oleoresin (TO), a natural pigment derived from Curcuma longa rhizomes, is valued for its health benefits, which are primarily attributed to its rich curcuminoid content (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Despite these benefits, curcuminoids are known to be light-sensitive and possess photosensitizing properties. [...] Read more.
Turmeric oleoresin (TO), a natural pigment derived from Curcuma longa rhizomes, is valued for its health benefits, which are primarily attributed to its rich curcuminoid content (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Despite these benefits, curcuminoids are known to be light-sensitive and possess photosensitizing properties. This study investigated the impact of common light sources, fluorescent light and white LED (both at 10 W/m2), on the chemical stability, antioxidant activity, cytotoxicity, and photosensitizing properties of TO. Exposure to both light sources significantly reduced TO’s color and fluorescence intensity, with white LED causing greater instability. HPLC analysis confirmed a decrease in individual curcuminoid levels, with curcumin degrading most rapidly under both conditions. The DPPH radical scavenging activity of irradiated TO decreased compared to fresh or dark-stored turmeric, whereas its ABTS radical scavenging activity increased upon light exposure. Photosensitizing potency, measured by formazan decolorization and lipid peroxide formation, declined as TO decomposed under light. Conversely, the cytotoxicity of TO against B16F10 melanoma cells was significantly enhanced under light exposure, though this effect was diminished significantly after 24 h of pre-irradiation. These findings underscore the instability of turmeric pigment under common lighting conditions, which should be a crucial consideration when processing, storing, and distributing turmeric-containing products. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

16 pages, 3203 KiB  
Article
Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages
by Arjun Muthu, Duyen H. H. Nguyen, Aya Ferroudj, József Prokisch, Hassan El-Ramady, Chaima Neji and Áron Béni
Nanomaterials 2025, 15(15), 1161; https://doi.org/10.3390/nano15151161 - 28 Jul 2025
Viewed by 165
Abstract
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to [...] Read more.
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to its lower toxicity and higher bioavailability compared to inorganic selenium species. However, the detection of Se0 in real samples remains challenging as current analytical methods are time-consuming, labour-intensive, and often unsuitable for rapid analysis. In this study, we developed a method for rapidly measuring Se0 using carbon nanodots (CNDs) produced from the Maillard reaction between glucose and glycine. The fabricated CNDs were water-dispersible and strongly fluorescent, with an average particle size of 3.90 ± 1.36 nm. Comprehensive characterisation by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, and Raman spectroscopy confirmed their structural and optical properties. The CNDs were employed as fluorescent probes for the selective detection of Se0. The sensor showed a wide linear detection range (0–12.665 mmol L−1), with a low detection limit (LOD) of 0.381 mmol L−1 and a quantification limit (LOQ) of 0.465 mmol L−1. Validation with spiked real samples—including ultra-pure water, tap water, and soft drinks—yielded high recoveries (98.6–108.1%) and low relative standard deviations (<3.4%). These results highlight the potential of CNDs as a simple, reliable, and environmentally friendly sensing platform for trace-level Se0 detection in complex food and beverage matrices. Full article
Show Figures

Graphical abstract

19 pages, 1849 KiB  
Article
A Simultaneous Determination of the B1 and B6 Vitamers Reveals Their Loss During a Single Peritoneal Dialysis Session: Chromatographic and Chemometric Approach
by Paweł Rudnicki-Velasquez, Karol Krzymiński, Magdalena Jankowska, Anna Baraniak and Paulina Czaplewska
Int. J. Mol. Sci. 2025, 26(15), 7177; https://doi.org/10.3390/ijms26157177 - 25 Jul 2025
Viewed by 193
Abstract
This study aimed to assess the extent of vitamin B1 and B6 vitamer loss during a single peritoneal dialysis (PD) session using a combination of chromatographic techniques and chemometric analysis. Dialysis effluent samples were collected from 41 PD patients (22 on [...] Read more.
This study aimed to assess the extent of vitamin B1 and B6 vitamer loss during a single peritoneal dialysis (PD) session using a combination of chromatographic techniques and chemometric analysis. Dialysis effluent samples were collected from 41 PD patients (22 on continuous ambulatory peritoneal dialysis (CAPD) and 19 on automated peritoneal dialysis (APD)) during a standardised peritoneal equilibration test. Concentrations of thiamine monophosphate, thiamine diphosphate (ThDP), pyridoxine, pyridoxal (PL), and pyridoxamine were determined using high-performance liquid chromatography with a fluorescence detector. The analytical method was validated in terms of sensitivity, linearity, accuracy, and recovery. Multiple regression analysis was employed to identify potential clinical and demographic predictors of vitamin washout. All vitamers except pyridoxal 5-phosphate (PLP) were detectable in dialysis effluents. ThDP exhibited the greatest loss among the B1 forms (ca. 0.05–0.57 mg/24 h), while PL exhibited the most significant loss among the B6 forms (ca. 0.01–0.19 mg/24 h). Vitamin losses varied depending on the dialysis modality (continuous ambulatory peritoneal dialysis, or CAPD, versus automated peritoneal dialysis, or APD) and the peritoneal transport category. Regression analysis identified body weight, haemoglobin, and haematocrit as independent predictors of ThDP washout (R2 = 0.58). No statistically robust models were established for the other vitamers. Even short medical procedures (such as single PD) can result in measurable losses of water-soluble vitamins, particularly ThDP and PL. The results emphasise the importance of personalised vitamin supplementation for PD patients and suggest that body composition and haematological parameters significantly influence the loss of thiamine. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Nintedanib Induces Mesenchymal-to-Epithelial Transition and Reduces Subretinal Fibrosis Through Metabolic Reprogramming
by David Hughes, Jüergen Prestle, Nina Zippel, Sarah McFetridge, Manon Szczepan, Heike Neubauer, Heping Xu and Mei Chen
Int. J. Mol. Sci. 2025, 26(15), 7131; https://doi.org/10.3390/ijms26157131 - 24 Jul 2025
Viewed by 324
Abstract
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of [...] Read more.
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of subretinal fibrosis. We hypothesized that the blockade of angiogenesis promoting and fibrosis inducing signaling using the receptor tyrosine kinase inhibitor Nintedanib (OfevTM) can prevent or reverse EMT both in vitro and in our in vivo model of subretinal fibrosis. Primary human retinal pigment epithelial cells (phRPE) and adult retinal pigment epithelial cell line (ARPE-19) cells were treated with TGF-β210 ng/mL for two days followed by four days of Nintedanib (1 µM) incubation. Epithelial and mesenchymal phenotypes were assessed by morphological examination, quantitative real-time polymerase chain reaction(qPCR) (ZO-1, Acta2, FN, and Vim), and immunocytochemistry (ZO-1, vimentin, fibronectin, and αSMA). Metabolites were measured using luciferase-based assays. Extracellular acidification and oxygen consumption rates were measured using the Seahorse XF system. Metabolic-related genes (GLUT1, HK2, PFKFB3, CS, LDHA, LDHB) were evaluated by qPCR. A model of subretinal fibrosis using the two-stage laser-induced method in C57BL/6J mice assessed Nintedanib’s therapeutic potential. Fibro-vascular lesions were examined 10 days later via fluorescence angiography and immunohistochemistry. Both primary and ARPE-19 RPE stimulated with TGF-β2 upregulated expression of fibronectin, αSMA, and vimentin, and downregulation of ZO-1, consistent with morphological changes (i.e., elongation). Glucose consumption, lactate production, and glycolytic reserve were significantly increased in TGF-β2-treated cells, with upregulation of glycolysis-related genes (GLUT1, HK2, PFKFB3, CS). Nintedanib treatment reversed TGF-β2-induced EMT signatures, down-regulated glycolytic-related genes, and normalized glycolysis. Nintedanib intravitreal injection significantly reduced collagen-1+ fibrotic lesion size and Isolectin B4+ neovascularization and reduced vascular leakage in the two-stage laser-induced model of subretinal fibrosis. Nintedanib can induce Mesenchymal-to-Epithelial Transition (MET) in RPE cells and reduce subretinal fibrosis through metabolic reprogramming. Nintedanib can therefore potentially be repurposed to treat retinal fibrosis. Full article
Show Figures

Figure 1

Back to TopTop