Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages
Abstract
1. Introduction
- (i)
- (ii)
- Fluorescence stability—CNDs can exhibit excitation-dependent fluorescence with stable emission over a wide pH range (3–11), ionic strengths (0.1–1.0 mol L−1 NaCl), and incubation periods up to 60 min. These features ensure consistent performance across various environmental and sample conditions [41,42].
- (iii)
2. Materials and Methods
2.1. Chemicals
2.2. Characterisation
2.3. Synthesising of CNDs
2.4. CNDs Stability Analysis
2.5. Selectivity and Validation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterisation of CNDs
3.2. Stability of CNDs
3.3. Calibration and Validation of CNDs for the Measurement of Se0
Method | LOD (μmol L−1) | Linear Range (μmol L−1) | Green Synthesis and Biocompatibility | Sample Matrix | Ref. |
---|---|---|---|---|---|
Hydride generation (HG-AFS) | 0.00152 | >0.4052 | No | Biological samples | [79] |
Hydride generation with AuNPs and absorption with AgNPs | 0.05 | 0.4–4.0 | No | Biological and environmental sample | [80] |
Electrochemical sensor with AuNPs | 0.00152 | 0.1267–0.6334 | No | Seawater samples | [86] |
Fluorescence quenching with CNDs | 381 | 0–12,665 | yes | Water, tap water, and soft drink | This study |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Avnee; Sood, S.; Chaudhary, D.R.; Jhorar, P.; Rana, R.S. Biofortification: An Approach to Eradicate Micronutrient Deficiency. Front. Nutr. 2023, 10, 1233070. [Google Scholar] [CrossRef]
- Doaei, S.; Mardi, A.; Zare, M. Role of Micronutrients in the Modulation of Immune System and Platelet Activating Factor in Patients with COVID-19; a Narrative Review. Front. Nutr. 2023, 10, 1207237. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Chen, L.; Zhou, Y.; Huang, J.; Wu, F.; Hu, Q.; Chang, N.; Qiu, T.; Zeng, Y.; He, H.; et al. Exogenous Selenium Promotes Cadmium Reduction and Selenium Enrichment in Rice: Evidence, Mechanisms, and Perspectives. J. Hazard. Mater. 2024, 476, 135043. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, P.B.; Frenkel, G.D. Selenium Compounds Prevent the Induction of Drug Resistance by Cisplatin in Human Ovarian Tumor Xenografts in Vivo. Cancer Chemother. Pharmacol. 2000, 46, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Chen, Y.; Gandahi, J.A.; Qazi, I.H.; Sun, J.; Wang, T.; Liu, Z.; Zou, H. Cross-Talk Between Selenium Nanoparticles and Cancer Treatment Through Autophagy. Biol. Trace Elem. Res. 2024, 202, 2931–2940. [Google Scholar] [CrossRef]
- Bisht, N.; Phalswal, P.; Khanna, P.K. Selenium Nanoparticles: A Review on Synthesis and Biomedical Applications. Mater. Adv. 2022, 3, 1415–1431. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Johnson, C.C.; Fordyce, F.M.; Rayman, M.P. Symposium on ‘Geographical and Geological Influences on Nutrition’ Factors Controlling the Distribution of Selenium in the Environment and Their Impact on Health and Nutrition: Conference on ‘Over- and Undernutrition: Challenges and Approaches’. Proc. Nutr. Soc. 2010, 69, 119–132. [Google Scholar] [CrossRef]
- Benko, I.; Nagy, G.; Tanczos, B.; Ungvari, E.; Sztrik, A.; Eszenyi, P.; Prokisch, J.; Banfalvi, G. Subacute Toxicity of Nano-Selenium Compared to Other Selenium Species in Mice. Environ. Toxicol. Chem. 2012, 31, 2812–2820. [Google Scholar] [CrossRef]
- Pedrero, Z.; Madrid, Y. Novel Approaches for Selenium Speciation in Foodstuffs and Biological Specimens: A Review. Anal. Chim. Acta 2009, 634, 135–152. [Google Scholar] [CrossRef]
- Gómez-Ariza, J.L.; Pozas, J.A.; Giráldez, I.; Morales, E. Speciation of Volatile Forms of Selenium and Inorganic Selenium in Sediments by Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 1998, 823, 259–277. [Google Scholar] [CrossRef]
- Narasaki, H. Hydride Generation Sample Introduction for Spectroscopic Analysis in Environmental Samples. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 978-0-470-02731-8. [Google Scholar]
- Moreno-Martin, G.; Sanz-Landaluze, J.; León-González, M.E.; Madrid, Y. In Vivo Quantification of Volatile Organoselenium Compounds Released by Bacteria Exposed to Selenium with HS-SPME-GC-MS. Effect of Selenite and Selenium Nanoparticles. Talanta 2021, 224, 121907. [Google Scholar] [CrossRef]
- Irizarry, R.; Moore, J.; Cai, Y. Atomic Fluorescence Determination of Selenium Using Hydride Generation Technique. Int. J. Environ. Anal. Chem. 2001, 79, 97–109. [Google Scholar] [CrossRef]
- Sánchez-Rodas, D.; Corns, W.T.; Chen, B.; Stockwell, P.B. Atomic Fluorescence Spectrometry: A Suitable Detection Technique in Speciation Studies for Arsenic, Selenium, Antimony and Mercury. J. Anal. At. Spectrom. 2010, 25, 933. [Google Scholar] [CrossRef]
- Pinto, F.G.; Junior, R.E.; Saint’Pierre, T.D. Sample Preparation for Determination of Rare Earth Elements in Geological Samples by ICP-MS: A Critical Review. Anal. Lett. 2012, 45, 1537–1556. [Google Scholar] [CrossRef]
- Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S.X.-A. Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing. Chem. Mater. 2014, 26, 3104–3112. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Belal, F.; Mabrouk, M.; Hammad, S.; Ahmed, H.; Barseem, A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J. Fluoresc. 2024, 34, 119–138. [Google Scholar] [CrossRef]
- Zahed, Z.; Hadi, R.; Imanzadeh, G.; Ahmadian, Z.; Shafiei, S.; Zadeh, A.Z.; Karimi, H.; Akbarzadeh, A.; Abbaszadeh, M.; Ghadimi, L.S.; et al. Recent Advances in Fluorescence Nanoparticles “Quantum Dots” as Gene Delivery System: A Review. Int. J. Biol. Macromol. 2024, 254, 127802. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Guo, W. Carbon Dots-Based Fluorescent Probe for the Detection of Imidacloprid Residue in Leafy Vegetables. Food Chem. 2024, 435, 137578. [Google Scholar] [CrossRef] [PubMed]
- Vadia, F.Y.; Ghosh, S.; Mehta, V.N.; Jha, S.; Malek, N.I.; Park, T.J.; Kailasa, S.K. Fluorescence “Turn OFF-ON” Detection of Fe3+ and Propiconazole Pesticide Using Blue Emissive Carbon Dots from Lemon Peel. Food Chem. 2023, 428, 136796. [Google Scholar] [CrossRef]
- Albalawi, M.A.; Gomaa, H.; El Hamd, M.A.; Abourehab, M.A.S.; Abdel-Lateef, M.A. Detection of Indigo Carmine Dye in Juices via Application of Photoluminescent Europium-doped Carbon Dots from Tannic Acid. Luminescence 2023, 38, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.J.; Xu, Z.Y.; Sun, Z.; Li, Z.Q.; Luo, Y.H.; Luo, H.Q.; Li, N.B. A Wide-Range Ratiometric Sensor Mediating Fluorescence and Scattering Based on Carbon Dots/Metal–Organic Framework Composites for the Detection of Bisulfite/Sulfite in Sugar. Anal. Bioanal. Chem. 2023, 415, 4639–4647. [Google Scholar] [CrossRef]
- Pajewska-Szmyt, M.; Buszewski, B.; Gadzała-Kopciuch, R. Carbon Dots as Rapid Assays for Detection of Mercury(II) Ions Based on Turn-off Mode and Breast Milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 236, 118320. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Fartyal, D.; Agarwal, A.; Shukla, T.; James, D.; Kaul, T.; Negi, Y.K.; Arora, S.; Reddy, M.K. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase. Front. Plant Sci. 2017, 8, 581. [Google Scholar] [CrossRef]
- Khan, A. Chitosan/Gelatin-Based Multifunctional Films Integrated with Sulfur-Functionalized Chitin for Active Packaging Applications. Food Hydrocoll. 2024, 49, 109537. [Google Scholar] [CrossRef]
- Khan, A.; Riahi, Z.; Tae Kim, J.; Rhim, J.-W. Carrageenan-Based Multifunctional Packaging Films Containing Zn-Carbon Dots/Anthocyanin Derived from Kohlrabi Peel for Monitoring Quality and Extending the Shelf Life of Shrimps. Food Chem. 2024, 432, 137215. [Google Scholar] [CrossRef]
- Tammina, S.K.; Rhim, J.-W. Carboxymethylcellulose/Agar-Based Functional Film Incorporated with Nitrogen-Doped Polyethylene Glycol-Derived Carbon Dots for Active Packaging Applications. Chemosphere 2023, 313, 137627. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, X.; Jiang, Y.; Wang, P. A Highly Sensitive and Selective Probe for the Colorimetric Detection of Mn(II) Based on the Antioxidative Selenium and Nitrogen Co-Doped Carbon Quantum Dots and ABTS•+. Front. Chem. 2021, 9, 658105. [Google Scholar] [CrossRef]
- Xu, Q.; Su, R.; Chen, Y.; Theruvakkattil Sreenivasan, S.; Li, N.; Zheng, X.; Zhu, J.; Pan, H.; Li, W.; Xu, C.; et al. Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. ACS Appl. Nano Mater. 2018, 1, 1886–1893. [Google Scholar] [CrossRef]
- Devi, S.; Kaur, A.; Sarkar, S.; Vohra, S.; Tyagi, S. Synthesis and Characterization of Highly Luminescent N-Doped Carbon Quantum Dots for Metal Ion Sensing. Integr. Ferroelectr. 2018, 186, 32–39. [Google Scholar] [CrossRef]
- Qu, S.; Chen, H.; Zheng, X.; Cao, J.; Liu, X. Ratiometric Fluorescent Nanosensor Based on Water Soluble Carbon Nanodots with Multiple Sensing Capacities. Nanoscale 2013, 5, 5514. [Google Scholar] [CrossRef]
- Pandey, S.C.; Kumar, A.; Sahu, S.K. Single Step Green Synthesis of Carbon Dots from Murraya Koenigii Leaves; A Unique Turn-off Fluorescent Contrivance for Selective Sensing of Cd (II) Ion. J. Photochem. Photobiol. A Chem. 2020, 400, 112620. [Google Scholar] [CrossRef]
- Shen, C.-L.; Su, L.-X.; Zang, J.-H.; Li, X.-J.; Lou, Q.; Shan, C.-X. Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide. Nanoscale Res. Lett. 2017, 12, 447. [Google Scholar] [CrossRef]
- Qu, F.; Guo, X.; Liu, D.; Chen, G.; You, J. Dual-Emission Carbon Nanodots as a Ratiometric Nanosensor for the Detection of Glucose and Glucose Oxidase. Sens. Actuators B Chem. 2016, 233, 320–327. [Google Scholar] [CrossRef]
- Chauhan, P.; Chaudhary, S. One Step Production of Se Doped Carbon Dots for Rapid Sensing of Tetracycline in Real Water Sample. Opt. Mater. 2021, 121, 111638. [Google Scholar] [CrossRef]
- Lamba, R.; Yukta, Y.; Mondal, J.; Kumar, R.; Pani, B.; Singh, B. Carbon Dots: Synthesis, Characterizations, and Recent Advancements in Biomedical, Optoelectronics, Sensing, and Catalysis Applications. ACS Appl. Bio Mater. 2024, 7, 2086–2127. [Google Scholar] [CrossRef]
- Manikandan, V.; Lee, N.Y. Green Synthesis of Carbon Quantum Dots and Their Environmental Applications. Environ. Res. 2022, 212, 113283. [Google Scholar] [CrossRef]
- Nguyen, D.H.H.; El-Ramady, H.; Prokisch, J. Food Safety Aspects of Carbon Dots: A Review. Environ. Chem. Lett. 2025, 23, 337–360. [Google Scholar] [CrossRef]
- Barati, A.; Shamsipur, M.; Abdollahi, H. Carbon Dots with Strong Excitation-Dependent Fluorescence Changes towards pH. Application as Nanosensors for a Broad Range of pH. Anal. Chim. Acta 2016, 931, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Arvapalli, D.M.; Sheardy, A.T.; Alapati, K.C.; Wei, J. High Quantum Yield Fluorescent Carbon Nanodots for Detection of Fe (III) Ions and Electrochemical Study of Quenching Mechanism. Talanta 2020, 209, 120538. [Google Scholar] [CrossRef]
- Aseri, V.; Kumari, P.; Nagar, V.; Godara, V.; Kumar Verma, R.; Awasthi, G.; Awasthi, K.K.; Sankhla, M.S. Synthetization and Functionalization of Natural, Polymer, and Quantum-Based Carbon Nanodots and Their Application in Biomedicine. Macromol. Symp. 2024, 413, 2300052. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Bhandari, B.; Yang, C. Recent Development of Carbon Quantum Dots: Biological Toxicity, Antibacterial Properties and Application in Foods. Food Rev. Int. 2022, 38, 1513–1532. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Muthu, A.; El-Ramady, H.; Daróczi, L.; Nagy, L.; Kéki, S.; Béni, Á.; Csarnovics, I.; Prokisch, J. Optimization of Extraction Conditions to Synthesize Green Carbon Nanodots Using the Maillard Reaction. Mater. Adv. 2024, 5, 3499–3505. [Google Scholar] [CrossRef]
- Badgar, K.; Prokisch, J. Simple Method for Preparing Elemental Selenium Nano- Coating inside a Silicone Surface. Acta Agrar. Debreceniensis 2021, 1, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xie, Y.; Na, X.; Li, Y.; Dai, C.; Li, Y.; Tan, M. Insights into Melanoidin Conversion into Fluorescent Nanoparticles in the Maillard Reaction. Food Funct. 2019, 10, 4414–4422. [Google Scholar] [CrossRef]
- Li, D.; Na, X.; Wang, H.; Xie, Y.; Cong, S.; Song, Y.; Xu, X.; Zhu, B.-W.; Tan, M. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity. J. Agric. Food Chem. 2018, 66, 1569–1575. [Google Scholar] [CrossRef]
- Wei, S.; Li, T.; Zhang, X.; Zhang, H.; Jiang, C.; Sun, G. An “on–off–on” Selective Fluorescent Probe Based on Nitrogen and Sulfur Co-Doped Carbon Dots for Detecting Cu2+ and GSH in Living Cells. Anal. Methods 2020, 12, 5110–5119. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, H.-Y.; Huang, Z.-Y.; Liu, Y.-Z.; Liu, Y.-H.; Chen, Y.; Gao, J.; Hu, Y.; Huang, C. Solvothermal Synthesis of Bifunctional Carbon Dots for Tartrazine and Fe(III) Detection from Chamomile Residue by Ternary DES Pretreatment. Food Chem. 2023, 426, 136604. [Google Scholar] [CrossRef]
- Wang, Q.; He, L.; Labuza, T.P.; Ismail, B. Structural Characterisation of Partially Glycosylated Whey Protein as Influenced by pH and Heat Using Surface-Enhanced Raman Spectroscopy. Food Chem. 2013, 139, 313–319. [Google Scholar] [CrossRef]
- Reich, S.; Thomsen, C. Raman Spectroscopy of Graphite. Philos. Trans. R. Soc. London Ser. A Math. Phys. Eng. Sci. 2004, 362, 2271–2288. [Google Scholar] [CrossRef]
- Vidano, R.; Fischbach, D.B. New Lines in the Raman Spectra of Carbons and Graphite. J. Am. Ceram. Soc. 1978, 61, 13–17. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Sanjuán, M.L.; Ansón, A.; Martínez, M.T. Double Resonance Features in the Raman Spectrum of Carbon Nanotubes. Phys. Rev. B 2004, 70, 201404. [Google Scholar] [CrossRef]
- Graupner, R. Raman Spectroscopy of Covalently Functionalized Single-Wall Carbon Nanotubes. J. Raman Spectrosc. 2007, 38, 673–683. [Google Scholar] [CrossRef]
- Debes, P.P.; Langer, M.; Pagel, M.; Menna, E.; Smarsly, B.; Osella, S.; Gallego, J.; Gatti, T. Functional Groups Accessibility and the Origin of Photoluminescence in N/O-Containing Bottom-up Carbon Nanodots. ChemNanoMat 2024, 10, e202300471. [Google Scholar] [CrossRef]
- Ji, Z.; Sheardy, A.; Zeng, Z.; Zhang, W.; Chevva, H.; Allado, K.; Yin, Z.; Wei, J. Tuning the Functional Groups on Carbon Nanodots and Antioxidant Studies. Molecules 2019, 24, 152. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Wu, F.-G. Carbon Nanodots for Cell Imaging. In Fluorescent Materials for Cell Imaging; Wu, F.-G., Ed.; Springer: Singapore, 2020; pp. 49–75. ISBN 978-981-15-5062-1. [Google Scholar]
- Dua, S.; Kumar, P.; Pani, B.; Kaur, A.; Khanna, M.; Bhatt, G. Stability of Carbon Quantum Dots: A Critical Review. RSC Adv. 2023, 13, 13845–13861. [Google Scholar] [CrossRef] [PubMed]
- Ehtesabi, H.; Hallaji, Z.; Najafi Nobar, S.; Bagheri, Z. Carbon Dots with pH-Responsive Fluorescence: A Review on Synthesis and Cell Biological Applications. Microchim. Acta 2020, 187, 150. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Zhang, W.; Arvapalli, D.M.; Bloom, B.; Sheardy, A.; Mabe, T.; Liu, Y.; Ji, Z.; Chevva, H.; Waldeck, D.H.; et al. A Fluorescence-Electrochemical Study of Carbon Nanodots (CNDs) in Bio- and Photoelectronic Applications and Energy Gap Investigation. Phys. Chem. Chem. Phys. 2017, 19, 20101–20109. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, X.; Wang, Q.; Zeng, Y.; Ding, L.; Jiang, W. Effects of Ionic Strength and Temperature on the Aggregation and Deposition of Multi-Walled Carbon Nanotubes. J. Environ. Sci. 2017, 51, 248–255. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Y.; Lakowicz, J.R. Enhanced Förster Resonance Energy Transfer (FRET) on a Single Metal Particle. J. Phys. Chem. C 2007, 111, 50–56. [Google Scholar] [CrossRef]
- Michenzi, C.; Proietti, A.; Rossi, M.; Espro, C.; Bressi, V.; Vetica, F.; Simonis, B.; Chiarotto, I. Carbon Nanodots from Orange Peel Waste as Fluorescent Probes for Detecting Nitrobenzene. RSC Sustain. 2024, 2, 933–942. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, H.; Li, J.; Liu, G.; Xiao, Y.; Dai, Z.; Zhen, H. One-Step Hydrothermal Method for Preparing Carbon Dots and Its Determination of Lead (II). J. Phys. Conf. Ser. 2021, 2011, 012101. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Cao, F.; Leng, Y. Thermal Treatment of Hair for the Synthesis of Sustainable Carbon Quantum Dots and the Applications for Sensing Hg2+. Sci. Rep. 2016, 6, 35795. [Google Scholar] [CrossRef]
- Setianto, S.; Men, L.K.; Bahtiar, A.; Panatarani, C.; Joni, I.M. Carbon Quantum Dots with Honeycomb Structure: A Novel Synthesis Approach Utilizing Cigarette Smoke Precursors. Sci. Rep. 2024, 14, 1996. [Google Scholar] [CrossRef]
- Li, C.; Huang, J.; Yuan, L.; Xie, W.; Ying, Y.; Li, C.; Yu, Y.; Pan, Y.; Qu, W.; Hao, H.; et al. Recent Progress of Emitting Long-Wavelength Carbon Dots and Their Merits for Visualization Tracking, Target Delivery and Theranostics. Theranostics 2023, 13, 3064–3102. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhang, M.; Bhandari, B.; Yang, C. Food Waste as a Carbon Source in Carbon Quantum Dots Technology and Their Applications in Food Safety Detection. Trends Food Sci. Technol. 2020, 95, 86–96. [Google Scholar] [CrossRef]
- Szapoczka, W.K.; Truskewycz, A.L.; Skodvin, T.; Holst, B.; Thomas, P.J. Fluorescence Intensity and Fluorescence Lifetime Measurements of Various Carbon Dots as a Function of pH. Sci. Rep. 2023, 13, 10660. [Google Scholar] [CrossRef]
- Liang, L.; Veksha, A.; Mohamed Amrad, M.Z.B.; Snyder, S.A.; Lisak, G. Upcycling of Exhausted Reverse Osmosis Membranes into Value-Added Pyrolysis Products and Carbon Dots. J. Hazard. Mater. 2021, 419, 126472. [Google Scholar] [CrossRef]
- AOAC International Official Methods of Analysis of AOAC International; Benjamin Franklin Station: Washington, DC, USA, 2016.
- ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology; European Medicines Agency: Amsterdam, The Netherlands, 1995.
- Devi, P.; Thakur, A.; Chopra, S.; Kaur, N.; Kumar, P.; Singh, N.; Kumar, M.; Shivaprasad, S.M.; Nayak, M.K. Ultrasensitive and Selective Sensing of Selenium Using Nitrogen-Rich Ligand Interfaced Carbon Quantum Dots. ACS Appl. Mater. Interfaces 2017, 9, 13448–13456. [Google Scholar] [CrossRef]
- Dutta, A.; Trolles-Cavalcante, S.T.Y.; Cleetus, A.; Marks, V.; Schechter, A.; Webster, R.D.; Borenstein, A. Surface Modifications of Carbon Nanodots Reveal the Chemical Source of Their Bright Fluorescence. Nanoscale Adv. 2021, 3, 716–724. [Google Scholar] [CrossRef] [PubMed]
- XU, X.-J.; GE, S.; LI, D.-Q.; XU, Z.-Q.; WANG, E.-J.; WANG, S.-M. Fluorescent Carbon Dots for Sensing Metal Ions and Small Molecules. Chin. J. Anal. Chem. 2022, 50, 103–111. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z.; Wu, W.; Li, L.; Shi, H. Simultaneous Determination of Arsenic and Selenium in Biological Samples by HG-AFS. Anal. Bioanal. Chem. 2005, 382, 1060–1065. [Google Scholar] [CrossRef]
- Cao, G.; Xu, F.; Wang, S.; Xu, K.; Hou, X.; Wu, P. Gold Nanoparticle-Based Colorimetric Assay for Selenium Detection via Hydride Generation. Anal. Chem. 2017, 89, 4695–4700. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Crespi, C.M.; Bonvicini, F.; Malagoli, C.; Ferrante, M.; Marmiroli, S.; Stranges, S. The Need for a Reassessment of the Safe Upper Limit of Selenium in Drinking Water. Sci. Total Environ. 2013, 443, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Arimori, S.; Bosch, L.I.; Ward, C.J.; James, T.D. Fluorescent Internal Charge Transfer (ICT) Saccharide Sensor. Tetrahedron Lett. 2001, 42, 4553–4555. [Google Scholar] [CrossRef]
- Mahajan, P.G.; Bhopate, D.P.; Kolekar, G.B.; Patil, S.R. N-Methyl Isatin Nanoparticles as a Novel Probe for Selective Detection of Cd2+ Ion in Aqueous Medium Based on Chelation Enhanced Fluorescence and Application to Environmental Sample. Sens. Actuators B Chem. 2015, 220, 864–872. [Google Scholar] [CrossRef]
- Su, J.; Liu, W.; Chen, S.; Deng, W.; Dou, Y.; Zhao, Z.; Li, J.; Li, Z.; Yin, H.; Ding, X.; et al. A Carbon-Based DNA Framework Nano–Bio Interface for Biosensing with High Sensitivity and a High Signal-to-Noise Ratio. ACS Sens. 2020, 5, 3979–3987. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef]
- Segura, R.; Pizarro, J.; Díaz, K.; Placencio, A.; Godoy, F.; Pino, E.; Recio, F. Development of Electrochemical Sensors for the Determination of Selenium Using Gold Nanoparticles Modified Electrodes. Sens. Actuators B Chem. 2015, 220, 263–269. [Google Scholar] [CrossRef]
Sample | Spiked Concentration of Se0 (µmol L−1) | Recovery (%) | RSD (%) |
---|---|---|---|
S1 Ultra-pure H2O | 126.6 | 103.8 ± 3.5 a,b | 3.4 |
S2 Ultra-pure H2O | 633.3 | 98.60 ± 0.7 b | 0.7 |
S3 Tap H2O | 126.6 | 102.9 ± 0.2 a,b | 0.2 |
S4 Tap H2O | 633.3 | 108.1 ± 0.4 a | 0.3 |
S5 soft drink | 126.6 | 99.40 ± 0.1 b | 1.1 |
S6 soft drink | 633.3 | 100.7 ± 0.6 b | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthu, A.; Nguyen, D.H.H.; Ferroudj, A.; Prokisch, J.; El-Ramady, H.; Neji, C.; Béni, Á. Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages. Nanomaterials 2025, 15, 1161. https://doi.org/10.3390/nano15151161
Muthu A, Nguyen DHH, Ferroudj A, Prokisch J, El-Ramady H, Neji C, Béni Á. Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages. Nanomaterials. 2025; 15(15):1161. https://doi.org/10.3390/nano15151161
Chicago/Turabian StyleMuthu, Arjun, Duyen H. H. Nguyen, Aya Ferroudj, József Prokisch, Hassan El-Ramady, Chaima Neji, and Áron Béni. 2025. "Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages" Nanomaterials 15, no. 15: 1161. https://doi.org/10.3390/nano15151161
APA StyleMuthu, A., Nguyen, D. H. H., Ferroudj, A., Prokisch, J., El-Ramady, H., Neji, C., & Béni, Á. (2025). Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages. Nanomaterials, 15(15), 1161. https://doi.org/10.3390/nano15151161