Functional Textile Socks in Rheumatoid Arthritis or Psoriatic Arthritis: A Randomized Controlled Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Organization and Participants
2.2. Fiber Composition of the Socks
2.3. Fiber Morphology of the Socks
2.4. Assessment of Baseline Characteristics
2.5. Assessment of Foot Pain and Stiffness Intensity
2.6. Assessment of Physical Function
2.7. Assessment of Health-Related Quality of Life
2.8. Intervention
2.9. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Pain and Stiffness Intensity in the Ankle, Metatarsophalangeal and Toe Joints
3.3. Physical Function
3.4. Health Related Quality of Life
4. Discussion
5. Strengths and Limitations
6. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Karmacharya, P.; Chakradhar, R.; Ogdie, A. The epidemiology of psoriatic arthritis: A literature review. Best. Pract. Res. Clin. Rheumatol. 2021, 35, 101692. [Google Scholar] [CrossRef]
- Mease, P.J.; Gladman, D.D.; Papp, K.A.; Khraishi, M.M.; Thaçi, D.; Behrens, F.; Northington, R.; Fuiman, J.; Bananis, E.; Boggs, R.; et al. Prevalence of rheumatologist-diagnosed psoriatic arthritis in patients with psoriasis in European/North American dermatology clinics. J. Am. Acad. Dermatol. 2013, 69, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef]
- Haroon, M.; Gallagher, P.; FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 2015, 74, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, O.; Ogdie, A.; Chandran, V.; Coates, L.C.; Kavanaugh, A.; Tillett, W.; Leung, Y.Y.; deWit, M.; Scher, J.U.; Mease, P.J. Psoriatic arthritis. Nat. Rev. Dis. Primers 2021, 7, 59. [Google Scholar] [CrossRef]
- Simon, L.S.; Taylor, P.C.; Choy, E.H.; Sebba, A.; Quebe, A.; Knopp, K.L.; Porreca, F. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. Semin. Arthritis Rheum. 2021, 51, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Sinnathurai, P.; Bartlett, S.J.; Halls, S.; Hewlett, S.; Orbai, A.M.; Buchbinder, R.; Henderson, L.; Hill, C.L.; Lassere, M.; March, L. Investigating dimensions of stiffness in rheumatoid and psoriatic arthritis: The Australian Rheumatology Association Database Registry and OMERACT collaboration. J. Rheumatol. 2019, 46, 1462–1469. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khasru, M.R.; Rahman, M.A.; Mohajan, K.; Fuad, S.M.; Haque, F.; Bilkis, F.; Islam, K.A.; Hasan, M.N.; Hosain, M. Quality of life assessment by SF-36 among the patients with rheumatoid arthritis. Mymensingh Med. J. 2022, 31, 586–591. [Google Scholar]
- James, L.; Hailey, L.H.; Suribhatla, R.; McGagh, D.; Amarnani, R.; Bundy, C.E.; Kirtley, S.; O’Sullivan, D.; Steinkoenig, I.; White, J.P.E.; et al. The impact of psoriatic arthritis on quality of life: A systematic review. Ther. Adv. Musculoskelet. Dis. 2024, 16, 1759720X241295920. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Salaffi, F.; Di Franco, M.; Bazzichi, L.; Cassisi, G.; Casale, R.; Cazzola, M.; Stisi, S.; Battellino, M.; Atzeni, F. Pain in rheumatoid arthritis: A critical review. Reumatismo 2014, 66, 18–27. [Google Scholar] [CrossRef]
- Marino, K.; Lee, R.; Lee, P. Effect of germanium-embedded knee sleeve on osteoarthritis of the knee. Orthop. J. Sports Med. 2019, 7, 2325967119879124. [Google Scholar] [CrossRef]
- Paolucci, T.; Porto, D.; Pellegrino, R.; Sina, O.; Fero, A.; D’Astolfo, S.; Franceschelli, S.; Patruno, A.; Fusco, A.; Pesce, M. Combined rehabilitation protocol in the treatment of osteoarthritis of the knee: Comparative study of extremely low-frequency magnetic fields and soft elastic knee brace effect. Healthcare 2023, 11, 1221. [Google Scholar] [CrossRef]
- Ko, G.D.; Berbrayer, D. Effect of ceramic-impregnated “thermoflow” gloves on patients with Raynaud’s syndrome: Randomized, placebo-controlled study. Altern. Med. Rev. 2002, 7, 328–335. [Google Scholar]
- Heichel, T.; Kersten, J.F.; Braumann, A.; Krambeck, K.; Bonness, S.; Schröder-Kraft, C.; Ofenloch, R.; Weisshaar, E.; Strom, K.; Skudlik, C.; et al. Evaluation of comfort gloves made of semipermeable and textile materials in patients with hand dermatoses: Results of a controlled multicenter intervention study (ProTection II). Contact Dermat. 2024, 91, 295–305. [Google Scholar] [CrossRef]
- Renskers, L.; van Uden, R.J.J.C.; Huis, A.M.P.; Rongen, S.A.A.; Teerenstra, S.; van Riel, P.L.C.M. Comparison of the construct validity and reproducibility of four different types of patient-reported outcome measures (PROMs) in patients with rheumatoid arthritis. Clin. Rheumatol. 2018, 37, 3191–3199. [Google Scholar] [CrossRef]
- Juho, Y.C.; Tang, S.H.; Lin, Y.H.; Lin, C.X.; Liang, T.; Cherng, J.H.; Meng, E. Germanium-titanium-π polymer composites as functional textiles for clinical strategy to evaluate blood circulation improvement and sexual satisfaction. Polymers 2021, 13, 4154. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.F.H.; Dittrich, N.; Duffield, R.; Serpa, M.C.; Coelho, T.M.; Martins, D.F.; Guglielmo, L.G.A. Effects of far-infrared emitting ceramic material clothing on recovery after maximal eccentric exercise. J. Hum. Kinet. 2019, 70, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Gáspari, A.; Barbieri, J.; Barroso, R.; Figueiredo, G.; Motta, L.; Moraes, A. Far-infrared-emitting fabric improves neuro-muscular performance of knee extensor. Lasers Med. Sci. 2022, 37, 2527–2536. [Google Scholar] [CrossRef]
- Bau, J.-G.; Yang, C.-P.; Huang, B.-W.; Lin, Y.-S.; Wu, M.-F. Warming effect of blankets with high far-infrared emissivity on skin microcirculation in type 2 diabetic patients. Biomed. Eng. Appl. Basis Commun. 2020, 32, 2150003. [Google Scholar] [CrossRef]
- Haule, L.V.; Nambela, L. Sustainable application of nanomaterial for finishing of textile material. Green Nanomater. Ind. Appl. 2022, 177, 177–206. [Google Scholar]
- Kiekens, P.; Van der Burght, E.; Kny, E.; Uyar, T.; Milašius, R. Functional textiles—From research and development to innovations and industrial uptake. Autex Res. J. 2014, 14, 219–225. [Google Scholar] [CrossRef][Green Version]
- Estonian Health Board. Medical Devices Register. Terviseamet. Available online: https://msa.sm.ee/est/register/ (accessed on 25 May 2025).
- Urbaniak, G.C.; Plous, S. Research Randomizer [Computer Program], Version 4.0. 2013. Available online: https://www.randomizer.org (accessed on 18 June 2021).
- Otter, S.J.; Lucas, K.; Springett, K.; Moore, A.; Davies, K.; Cheek, L.; Young, A.; Walker-Bone, K. Foot pain in rheumatoid arthritis: Prevalence, risk factors and management—An epidemiological study. Clin. Rheumatol. 2010, 29, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Mathura, P.; Li, M.; Sun, X.; Duhn, L.; Kassam, N.; Yacyshyn, E. Patient feedback identifies “Rheum” to improve clinic visit preparedness. Clin. Rheumatol. 2022, 41, 275–279. [Google Scholar]
- Tammaru, M.; Hanson, E.; Põlluste, K.; Maimets, K. Tervisehinnangu küsimustiku HAQ funktsiooniosa eesti versiooni kohandamine ning usaldusväärsuse ja valiidsuse hindamine. Eest. Arst 2025, 84, 700–706. [Google Scholar]
- Hays, R.D.; Sherbourne, C.D.; Mazel, R.M. User’s Manual for the Medical Outcomes Study (MOS) Core Measures of Health-Related Quality of Life; RAND Health; RAND Corporation: Santa Monica, CA, USA, 1995; Available online: https://www.rand.org/pubs/monograph_reports/MR162.html (accessed on 30 July 2025).
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; Sage Publications Ltd.: London, UK, 2009. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Justice, T.E.; Jacob, P.B. Non-compressive sleeves versus compression stockings after total knee arthroplasty: A prospective pilot study. J. Orthop. 2023, 49, 102–106. [Google Scholar] [CrossRef]
- Duranti, C.; Arcangeli, A.; Giusti, B.; Guzzardi, M.; Citti, L.; Stornelli, M.; D’Antongiovanni, V.; Gerlini, G.; Ibba-Manneschi, L.; Magli, A. Effects of germanium-embedded fabric on chondrogenic differentiation and related cellular processes. Tissue Cell 2024, 90, 102507. [Google Scholar] [CrossRef]
- Choi, H.N.; Jee, S.H.; Ko, J.; Kim, D.J.; Kim, S.H. Properties of surface heating textile for functional warm clothing based on a composite heating element with a positive temperature coefficient. Nanomaterials 2021, 11, 904. [Google Scholar] [CrossRef]
- Granger, D.N.; Rodrigues, S.F. Microvascular Responses to Inflammation. In Compendium of Inflammatory Diseases; Parnham, M.J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 942–948. [Google Scholar]
- Godwin, L.; Tariq, M.A.; Crane, J.S. Histology, Capillary. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Leung, T.K.; Lin, J.M.; Chien, H.S.; Day, T.C. Biological effects of melt spinning fabrics composed of 1% bioceramic material. Text. Res. J. 2012, 82, 1121–1130. [Google Scholar] [CrossRef]
- Taheri, M.; Maleknia, L.; Ghamsari, N.A.; Almasian, A.; Fard, G.C. Effect of zirconium dioxide nanoparticles as a mordant on properties of wool with thyme: Dyeing, flammability and antibacterial. Orient. J. Chem. 2015, 31, 85. [Google Scholar] [CrossRef][Green Version]
- Schneider, G.; Vieira, L.G.; de Carvalho, H.E.F.; de Sousa, Á.F.L.; Watanabe, E.; de Andrade, D.; Silveira, R.C.C.P. Textiles impregnated with antimicrobial substances in healthcare services: Systematic review. Front. Public Health 2023, 11, 1130829. [Google Scholar] [CrossRef]
- Zhou, C.-E.; Liu, C.; Kan, C.-W.; Wu, H.; Feng, J.; Li, R.; Li, Z.; Zhang, Q.; Li, H. Antimicrobial finishing of cotton fabric with N-MA based on plasma-induced grafting. Fibers Polym. 2024, 25, 3741–3749. [Google Scholar] [CrossRef]
- Yadesa, D.; Guyasa, J.N.; Beyene, T.T. Functionalization of cotton fabrics with sulfur and nitrogen codoped TiO2 nanoparticles for antibacterial and UV protection applications. Adv. Mater. Sci. Eng. 2024, 2024, 4275035. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Hassabo, A.G.; Mohamed, A.L.; Shaheen, T.I. Surface modification of SiO2-coated ZnO nanoparticles for multi-functional cotton fabrics. J. Colloid Interface Sci. 2017, 498, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, H.; Farhang Dehghan, S.; Montazer, M.; Khaloo, S.S.; Koozekonan, A.G. UV protection properties of workwear fabrics coated with TiO2 nanoparticles. Front. Public Health 2022, 10, 929095. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Rahman, M. A review of nanoparticle usage on textile material against ultraviolet radiation. J. Text. Sci. Technol. 2015, 1, 93–100. [Google Scholar] [CrossRef]
- Salmeia, K.A.; Gaan, S.; Malucelli, G. Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers 2016, 8, 319. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H.; Lv, P.; Jie, G. Flame retardancy and thermal degradation of intumescent flame retardant polypropylene composites based on magnesium hydroxide. Polym. Degrad. Stab. 2011, 96, 1214–1221. [Google Scholar]
- Brinker, C.J.; Scherer, G.W. Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Horrocks, A.R.; Anand, S.C. (Eds.) Handbook of Technical Textiles, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Sibbald, B.; Roland, M. Understanding controlled trials: Why are randomised controlled trials important? BMJ Br. Med. J. 1998, 316, 201. [Google Scholar] [CrossRef]
Chemical Element | Test Sock | Control Sock |
---|---|---|
C | 51.8 | 47.8 |
O | 47.4 | 52.0 |
K | 0.342 | 0.0058 |
Ti | 0.169 | 0.0726 |
Zn | 0.0671 | 0.0005 |
Ca | 0.0425 | 0.0140 |
Mg | 0.0422 | 0.0046 |
Si | 0.0333 | 0.0426 |
Cl | 0.0316 | 0.0022 |
S | 0.0216 | 0.0058 |
P | 0.0203 | 0.0021 |
Zr | 0.0111 | - |
Al | 0.0049 | 0.0027 |
Na | 0.0027 | 0.0218 |
Ge | 0.0021 | - |
Fe | 0.0014 | 0.0016 |
Variable | Experimental Group (n = 23) | Control Group (n = 18) |
---|---|---|
Age (years) | 60 (38) | 66 (11) |
BMI (kg/m2) | 26.6 (5.5) | 26 (7) |
Females (%) | 82.6 | 83.3 |
Employed (%) | 56.5 | 44.4 |
Smoking (%) | ||
Now | 17.4 | 21.7 |
Former smoker | 11.1 | 33.3 |
Diagnosis | ||
RA (%) | 87 | 88.9 |
PA (%) | 13 | 11.1 |
RA or PA was diagnosed (years ago) | 10 (16) * | 20 (20) |
Symptom onset (years ago) | 10 (14) * | 20.5 (18) |
Prescription medications for RA or PA (%) | 60.9 | 83.3 |
Group | Baseline [Median (IQR)] | Week 1 [Median (IQR)] | Week 12 [Median (IQR)] | Change [Median (IQR)] | Effect Size of Change | |
---|---|---|---|---|---|---|
Pain intensity | ||||||
Ankle joint | EG (n = 46) | 4 (4.3) | 2 (3) # | 2 (2.3) ¥ | −1 (3) | 0.21 |
CG (n = 36) | 3 (4) | 2.5 (4) | 3.5 (5) | 0 (3.5) | ||
MTP and toe joints | EG (n = 46) | 2 (5) * | 2 (3) | 1.5 (3) ¥ | 0 (2.5) | 0.15 |
CG (n = 36) | 4 (4) | 3 (4) | 5 (5.8) | 0 (5.5) | ||
Stiffness intensity | ||||||
Ankle joint | EG (n = 46) | 3 (3) | 2 (3) # | 2 (3) ¥ * | 0 (2.3) | 0.18 |
CG (n = 36) | 4 (3) | 3 (5) # | 4 (5.8) | 0 (3) | ||
MTP and toe joints | EG (n = 46) | 2.5 (4) * | 2.5 (4) * | 2 (4) * | 0 (3) | 0.05 |
CG (n = 36) | 4.5 (3.5) | 3.5 (4) | 4 (6) | 0 (4.8) |
Group | Baseline [Median (IQR)] | Week 1 [Median (IQR)] | Week 12 [Median (IQR)] | Change [Median (IQR)] | Effect Size of Change | |
---|---|---|---|---|---|---|
Dressing and grooming | EG (n = 23) | 2 (2) | 2 (2) | 2 (2) | 0 (0) | 0.06 |
CG (n = 18) | 2 (1.3) | 2 (1.3) | 2 (1.3) | 0 (0) | ||
Arising | EG (n = 23) | 2 (1) | 2 (2) | 2 (2) | 0 (0) | 0.03 |
CG (n = 18) | 2 (1.3) | 2 (1.3) | 2 (1.3) | 0 (1) | ||
Eating | EG (n = 23) | 2 (1) | 2 (1) | 2 (1) | 0 (0) | 0.04 |
CG (n = 18) | 2 (1.3) | 2 (1.3) | 2 (1.3) | 0 (0) | ||
Walking | EG (n = 23) | 2 (2) | 2 (2) | 2 (2) | 0 (0) | 0.23 |
CG (n = 18) | 2 (1) | 2 (1.3) | 2 (1.3) | 0 (0.3) | ||
Hygiene | EG (n = 23) | 2 (1) | 2 (2) | 2 (2) | 0 (0) | 0.15 |
CG (n = 18) | 2 (1) | 2 (1.5) | 2 (0.5) ¥ | 0 (1) | ||
Reaching | EG (n = 23) | 2 (1) * | 2 (1) | 2 (1) * | 0 (0) | 0.16 |
CG (n = 18) | 2 (1) | 2 (2) # | 2 (1.3) | 0 (0) | ||
Gripping | EG (n = 23) | 2 (2) | 2 (2) | 1 (2) | 0 (0) | 0.09 |
CG (n = 18) | 2 (0) | 2 (0.5) | 2 (0.5) | 0 (0) | ||
Usual activities | EG (n = 23) | 2 (2) | 2 (2) | 1 (2) * | 0 (0) | 0.18 |
CG (n = 18) | 2 (0.3) | 2 (2) | 2 (1.3) | 0 (0) | ||
Total score | EG (n = 23) | 2 (1) | 2 (1) | 2 (2) | 0 (0) | 0.30 |
CG (n = 18) | 1.7 (1.6) | 1.7 (2) | 1.4 (1.9) ¥ | 0 (0.5) |
Group | Baseline [Median (IQR)] | Week 1 [Median (IQR)] | Week 12 [Median (IQR)] | Change [Median (IQR)] | Effect Size of Change | |
---|---|---|---|---|---|---|
General perception of health | EG (n = 23) | 40 (35) | 40 (25) | 45 (30) | 0 (20) | 0.21 |
CG (n = 18) | 35 (28.8) | 30 (28.8) | 25 (28.8) ¥ | −2.5 (12.5) | ||
Physical functioning | EG (n = 23) | 55 (45) * | 60 (40) * | 50 (50) * | 0 (10) | 0.09 |
CG (n = 18) | 22.5 (50) | 25 (56.3) | 25 (26.3) | 0 (22.5) | ||
Role limitations due to physical problems | EG (n = 23) | 25 (75) | 25 (50) * | 50 (75) ¥ | −25 (50) * | 0.34 |
CG (n = 18) | 25 (50) | 0 (25) | 12.5 (62.5) | 0 (31.3) | ||
Role limitations due to emotional problems | EG (n = 23) | 0 (66.7) | 33.3 (100) | 100 (100) ¥ | 0 (66.7) | 0.28 |
CG (n = 18) | 16.7 (100) | 33.3 (100) | 33.3 (100) | 0 (41.7) | ||
Social functioning | EG (n = 23) | 62.5 (37.5) | 62.5 (25) | 50 (37.5) * | 0 (25) | 0.03 |
CG (n = 18) | 43.8 (65.6) | 56.3 (78.1) | 31.3 (61.3) | 0 (62.5) | ||
Bodily pain | EG (n = 23) | 45 (12.5) * | 45 (22.5) * # | 45 (22.5) * ¥ | 12.5 (22.5) | 0.02 |
CG (n = 18) | 22.5 (37.5) | 22.5 (22.5) # | 27.5 (25.6) | 11.3 (25) | ||
Energy/fatigue | EG (n = 23) | 45 (15) | 50 (15) | 45 (35) | −5 (20) | 0.04 |
CG (n = 18) | 30 (36.3) | 30 (35) | 35 (36.3) | −2.5 (23.8) | ||
Emotional well-being | EG (n = 23) | 68 (24) | 68 (16) | 68 (28) | 0 (20) | 0.004 |
CG (n = 18) | 68 (17) | 76 (17) | 68 (30) | −4 (22) | ||
Perceived change in health over the last year | EG (n = 23) | 50 (25) | 50 (25) | 50 (25) | 0 (25) | 0.13 |
CG (n = 18) | 50 (56.3) | 50 (50) | 50 (25) | 0 (12.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reisberg, K.; Hõrrak, K.; Tamm, A.; Kõrver, M.; Animägi, L.; Visnapuu, J. Functional Textile Socks in Rheumatoid Arthritis or Psoriatic Arthritis: A Randomized Controlled Study. Textiles 2025, 5, 30. https://doi.org/10.3390/textiles5030030
Reisberg K, Hõrrak K, Tamm A, Kõrver M, Animägi L, Visnapuu J. Functional Textile Socks in Rheumatoid Arthritis or Psoriatic Arthritis: A Randomized Controlled Study. Textiles. 2025; 5(3):30. https://doi.org/10.3390/textiles5030030
Chicago/Turabian StyleReisberg, Kirkke, Kristiine Hõrrak, Aile Tamm, Margarita Kõrver, Liina Animägi, and Jonete Visnapuu. 2025. "Functional Textile Socks in Rheumatoid Arthritis or Psoriatic Arthritis: A Randomized Controlled Study" Textiles 5, no. 3: 30. https://doi.org/10.3390/textiles5030030
APA StyleReisberg, K., Hõrrak, K., Tamm, A., Kõrver, M., Animägi, L., & Visnapuu, J. (2025). Functional Textile Socks in Rheumatoid Arthritis or Psoriatic Arthritis: A Randomized Controlled Study. Textiles, 5(3), 30. https://doi.org/10.3390/textiles5030030