Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (274)

Search Parameters:
Keywords = flexible transistor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2734 KB  
Article
Dynamically Tunable Pseudo-Enhancement-Load Inverters Based on High-Performance InAlZnO Thin-Film Transistors
by Hao Gu, Jingye Xie, Chuanlin Sun, Tingchen Yi, Yi Zhuo, Junchen Dong, Yudi Zhao and Kai Zhao
Nanomaterials 2026, 16(3), 153; https://doi.org/10.3390/nano16030153 - 23 Jan 2026
Viewed by 154
Abstract
Oxide transistors have attracted significant interest in the field of integrated circuits (ICs). Among various oxide semiconductors, InAlZnO (IAZO) stands out as a promising candidate due to its potential for high mobility and excellent stability. In this work, we fabricate high-performance IAZO transistors [...] Read more.
Oxide transistors have attracted significant interest in the field of integrated circuits (ICs). Among various oxide semiconductors, InAlZnO (IAZO) stands out as a promising candidate due to its potential for high mobility and excellent stability. In this work, we fabricate high-performance IAZO transistors with a field-effect mobility of 56.60 cm2/V·s, a subthreshold swing of 82.59 mV/decade, an on-to-off current ratio over 107, and a small threshold voltage shift of 0.09 V and −0.03 V under positive and negative bias stress, respectively. Based on these transistors, Pseudo-Enhancement-Load (PEL) inverters were constructed. An adjustable bias voltage (VBIAS) was also introduced as an additional control parameter, which allows for flexible control of the trade-off between circuit performance and power consumption. The resulting inverters achieve a balance between static and dynamic performance, exhibiting a voltage gain of 1.83 V/V and a relatively low power consumption of 2.58 × 10−6 W (VBIAS = 1.0 V). Our work demonstrates the potential of IAZO transistor-based PEL inverters for high-performance, low-power oxide IC applications. Full article
(This article belongs to the Special Issue Nanomaterials-Based Memristors for Neuromorphic Systems)
Show Figures

Figure 1

10 pages, 2901 KB  
Article
Inverters with Different Load Configurations and a Two-Input Multiplexer Based on IGZO NMOS TFTs
by Isai S. Hernandez-Luna, Jimena Quintero, Arturo Torres-Sanchez, Rodolfo García, Miguel Aleman and Norberto Hernandez-Como
Nanomaterials 2026, 16(2), 78; https://doi.org/10.3390/nano16020078 - 6 Jan 2026
Viewed by 307
Abstract
Amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) have emerged as promising candidates for next-generation large-area and low-power electronics due to their high mobility, low leakage current, and compatibility with low-temperature fabrication on flexible or transparent substrates. In this work, we report the fabrication of [...] Read more.
Amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) have emerged as promising candidates for next-generation large-area and low-power electronics due to their high mobility, low leakage current, and compatibility with low-temperature fabrication on flexible or transparent substrates. In this work, we report the fabrication of bottom-gate a-IGZO NMOS TFTs using HfO2 as high-k gate dielectric and Mo top contacts. The devices were electrically characterized through capacitance–voltage (C–V) and current–voltage (I–V) measurements, from which key parameters were extracted. Based on these transistors, we designed, fabricated, and characterized inverters employing four different load configurations: resistive, diode, depletion, and pseudo-CMOS. A comparative analysis was performed in terms of voltage transfer characteristics (VTCs), gain, and noise margins, highlighting that depletion-load inverters offer the highest gain and robust noise margins. Finally, a two-channel multiplexer was designed and fabricated. The multiplexer was characterized under both square and sinusoidal input signals up to 1 kHz, demonstrating correct channel selection and robust switching behavior. These results confirm the potential of a-IGZO TFT-based circuits as building blocks for low-power and high-reliability digital and mixed-signal electronics. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Material, Device and System Integration)
Show Figures

Figure 1

16 pages, 3097 KB  
Article
Enhancing the Photoresponsivity and External Quantum Efficiency of ReSe2 Photodetectors Through the Insertion of a Graphene Auxiliary Layer
by Qiutong Liu, Beiyang Jin, Yutong Li, Peishuo Li, Jingyu Zhang, Yankun Chen, Chenkai Hu and Wei Li
Sensors 2026, 26(1), 115; https://doi.org/10.3390/s26010115 - 24 Dec 2025
Viewed by 479
Abstract
Two-dimensional (2D) materials demonstrate significant potential in photodetector technology. They offer high sensitivity, wide spectral range, flexibility and transparency, especially in infrared detection, promising advancements in wearable and flexible electronics. This study explores the application of 2D materials in high-performance photodetectors. Rhenium diselenide [...] Read more.
Two-dimensional (2D) materials demonstrate significant potential in photodetector technology. They offer high sensitivity, wide spectral range, flexibility and transparency, especially in infrared detection, promising advancements in wearable and flexible electronics. This study explores the application of 2D materials in high-performance photodetectors. Rhenium diselenide (ReSe2) was used as the channel, and graphene (Gr) was inserted between ReSe2 and SiO2 as the gate electrode to enhance device performance. A ReSe2/Gr heterostructure field-effect transistor (FET) was fabricated to investigate the role of Gr in improving the optoelectronic properties of ReSe2 phototransistors. Specifically, the ReSe2 FET without Gr auxiliary layer demonstrates a responsivity (R) of 294 mA/W, an external quantum efficiency (EQE) of 68.75%, and response times as brief as 40/62 ms. Compared with the ReSe2 phototransistor, the ReSe2/Gr phototransistor exhibits significantly improved photoresponsivity and EQE, with the photoresponsivity enhanced by a factor of ap-proximately 3.58 and the EQE enhanced by a factor of approximately 3.59. These enhancements are mainly attributed to optimization of interfacial band alignment and the strengthened photogating effect by Gr auxiliary layer. This research not only underscores the pivotal role of Gr in boosting the capabilities of 2D photodetectors but also offers a viable strategy for developing high-performance photodetectors with 2D materials. Full article
Show Figures

Figure 1

13 pages, 1910 KB  
Article
High-Resolution Photolithographic Patterning of Conjugated Polymers via Reversible Molecular Doping
by Yeongjin Kim, Seongrok Kim, Songyeon Han, Yerin Sung, Yeonhae Ryu, Yuri Kim and Hyun Ho Choi
Polymers 2025, 17(24), 3341; https://doi.org/10.3390/polym17243341 - 18 Dec 2025
Viewed by 641
Abstract
Organic field-effect transistors (OFETs) require reliable micro- and nanoscale patterning of semiconducting layers, yet conjugated polymers have long been considered incompatible with photolithography due to dissolution and chemical damage from photoresist solvents. Here, we present a photolithography-compatible strategy based on doping-induced solubility conversion [...] Read more.
Organic field-effect transistors (OFETs) require reliable micro- and nanoscale patterning of semiconducting layers, yet conjugated polymers have long been considered incompatible with photolithography due to dissolution and chemical damage from photoresist solvents. Here, we present a photolithography-compatible strategy based on doping-induced solubility conversion (DISC), demonstrated using poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT). AuCl3 doping reversibly modulates the benzoid/quinoid resonance balance, lamellar stacking, and π–π interactions, suppressing solubility during lithographic exposure, while dedoping restores the intrinsic electronic properties. Using this approach, micropatterns with linewidths as small as 2 µm were fabricated in diverse geometries—including line arrays, concentric rings, dot arrays, and curved channels—with high fidelity; quantitative analysis of dot arrays yielded mean absolute errors of 48–66 nm and coefficients of variation of 2.0–3.9%, confirming resolution and reproducibility across large areas. Importantly, OFETs based on patterned PBTTT exhibited charge-carrier mobility, threshold voltage, and on/off ratios comparable to spin-coated devices, despite undergoing multiple photolithography steps, indicating preservation of transport characteristics. Furthermore, the same DISC-assisted lithography was successfully applied to other representative p-type conjugated polymers, including P3HT and PDPP-4T, confirming the universality of the method. This scalable strategy thus combines the precision of established lithography with the functional advantages of organic semiconductors, providing a robust platform for high-density organic electronic integration in flexible circuits, biointerfaces, and active-matrix systems. Full article
(This article belongs to the Special Issue Conjugated Polymers: Synthesis, Processing and Applications)
Show Figures

Graphical abstract

42 pages, 9085 KB  
Review
In2O3: An Oxide Semiconductor for Thin-Film Transistors, a Short Review
by Christophe Avis and Jin Jang
Molecules 2025, 30(24), 4762; https://doi.org/10.3390/molecules30244762 - 12 Dec 2025
Viewed by 1812
Abstract
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on [...] Read more.
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on transparent and flexible substrates. However, mobilities over 30 cm2/Vs have been difficult to reach and other materials have been introduced. Recently, polycrystalline In2O3 has demonstrated breakthroughs in the field. In2O3 TFTs have attracted attention because of their high mobility of over 100 cm2/Vs, which has been achieved multiple times, and because of their use in scaled devices with channel lengths down to 10 nm for high integration in back-end-of-the-line (BEOL) applications and others. The present review focuses first on the material properties with the understanding of the bandgap value, the importance of the position of the charge neutrality level (CNL), the doping effect of various atoms (Zr, Ge, Mo, Ti, Sn, or H) on the carrier concentration, the optical properties, the effective mass, and the mobility. We introduce the effects of the non-parabolicity of the conduction band and how to assess them. We also introduce ways to evaluate the CNL position (usually at ~EC + 0.4 eV). Then, we describe TFTs’ general properties and parameters, like the field effect mobility, the subthreshold swing, the measurements necessary to assess the TFT stability through positive and negative bias temperature stress, and the negative bias illumination stress (NBIS), to finally introduce In2O3 TFTs. Then, we will introduce vacuum and non-vacuum processes like spin-coating and liquid metal printing. We will introduce the various dopants and their applications, from mobility and crystal size improvements with H to NBIS improvements with lanthanides. We will also discuss the importance of device engineering, introducing how to choose the passivation layer, the source and drain, the gate insulator, the substrate, but also the possibility of advanced engineering by introducing the use of dual gate and 2 DEG devices on the mobility improvement. Finally, we will introduce the recent breakthroughs where In2O3 TFTs are integrated in neuromorphic applications and 3D integration. Full article
Show Figures

Figure 1

9 pages, 3420 KB  
Proceeding Paper
Piezoelectric Ultrasonic Transducer with High Performance OTFT for Flow Rate, Occlusion and Bubble Detection Portable Peritoneal Dialysis System
by Azrul Azlan Hamzah, Jumril Yunas, Abdul Halim Abdul Gafor, Ruslinda Mustafar, Reni Silvia Nasution, Yusniza Yunus, Jahariah Sampe, Abdul Hafiz Mat Sulaiman, Arifah Syahirah Abdul Rahman and Ahmad Ghadafi Ismail
Eng. Proc. 2025, 110(1), 5; https://doi.org/10.3390/engproc2025110005 - 12 Dec 2025
Viewed by 1342
Abstract
A piezoelectric ultrasonic transducer has been developed to detect flow rate, occlusion, and bubble formation in a portable peritoneal dialysis system. This transducer works by utilizing the piezoelectric effect to convert electrical energy into ultrasonic waves and detect the reflected waves through the [...] Read more.
A piezoelectric ultrasonic transducer has been developed to detect flow rate, occlusion, and bubble formation in a portable peritoneal dialysis system. This transducer works by utilizing the piezoelectric effect to convert electrical energy into ultrasonic waves and detect the reflected waves through the tube wall. In addition, organic thin film transistors (OTFTs) were tested at annealing temperatures of 75 °C, 100 °C, and 125 °C to evaluate the effect of temperature on mobility and on/off ratio. The best results were obtained at 100 °C with a mobility of 0.816 cm2/Vs and an on/off ratio of 1.4 × 103 correlated with grain size. This study aims to report the fabrication process and initial characterization of the OTFT device as a first step towards the development of a portable biosensor that can be integrated into a point-of-care system. The transducer is designed for use in PeritoCare® (Bangi, Malaysia), a portable peritoneal dialysis system developed by Universiti Kebangsaan Malaysia (UKM). The integration of piezoelectric transducers and OTFTs into the PeritoCare® system enables the development of a more flexible, efficient, and mobile peritoneal dialysis system for young, active end-stage renal disease (ESRD) patients. Full article
(This article belongs to the Proceedings of The 2nd International Conference on AI Sensors and Transducers)
Show Figures

Figure 1

44 pages, 5217 KB  
Review
Advances in Polymeric Semiconductors for Next-Generation Electronic Devices
by Ju Won Lim
Polymers 2025, 17(23), 3174; https://doi.org/10.3390/polym17233174 - 28 Nov 2025
Viewed by 1023
Abstract
Polymeric semiconductors have rapidly evolved from early conductive polymers, such as polyacetylene, to high-performance donor–acceptor copolymers, offering a unique combination of mechanical flexibility, solution processability, and tunable optoelectronic properties. These advancements have positioned polymeric semiconductors as versatile materials for next-generation electronics, including wearable, [...] Read more.
Polymeric semiconductors have rapidly evolved from early conductive polymers, such as polyacetylene, to high-performance donor–acceptor copolymers, offering a unique combination of mechanical flexibility, solution processability, and tunable optoelectronic properties. These advancements have positioned polymeric semiconductors as versatile materials for next-generation electronics, including wearable, stretchable, and bio-integrated devices, IoT systems, and soft robotics. In this review, we systematically present the fundamental principles of polymeric semiconductors, including electronic structure, charge transport mechanisms, molecular packing, and solid-state morphology, and elucidate how these factors collectively govern device performance. We further discuss recent advances in synthesis strategies, thin-film processing techniques, molecular doping, and interface engineering, emphasizing their critical roles in improving operational stability, charge-carrier mobility, and energy efficiency. Key applications—such as organic photovoltaics, field-effect transistors, neuromorphic devices, and memristors—are analyzed, with a focus on the intricate structure–property–performance relationships that dictate functionality. Finally, we highlight emerging directions and scientific innovations, including sustainable and degradable polymers, hybrid and two-dimensional polymer systems, and novel strategies to enhance device stability and performance. By integrating fundamental polymer science with device engineering, this review provides a comprehensive, structured, and forward-looking perspective, identifying knowledge gaps and offering insights to guide future breakthroughs and the rational design of high-performance, multifunctional, and environmentally responsible polymeric electronic devices. Full article
(This article belongs to the Special Issue Polymeric Materials in Optoelectronic Devices and Energy Applications)
Show Figures

Graphical abstract

17 pages, 3187 KB  
Article
Ultrasensitive and Label-Free Detection of Phosphorylated Tau-217 Protein in Alzheimer’s Disease Using Carbon Nanotube Field-Effect Transistor (CNT-FET) Biosensor
by Jiao Wang, Keyu Yao, Jiahua Li, Duo Wai-Chi Wong and James Chung-Wai Cheung
Biosensors 2025, 15(12), 784; https://doi.org/10.3390/bios15120784 - 27 Nov 2025
Viewed by 864
Abstract
Early diagnosis of Alzheimer’s disease (AD) remains challenging due to the extremely low concentration of relevant biomarkers and the limited sensitivity of conventional detection techniques. In this study, we present a carbon nanotube field-effect transistor (CNT-FET) immunosensor for label-free detection of phosphorylated tau [...] Read more.
Early diagnosis of Alzheimer’s disease (AD) remains challenging due to the extremely low concentration of relevant biomarkers and the limited sensitivity of conventional detection techniques. In this study, we present a carbon nanotube field-effect transistor (CNT-FET) immunosensor for label-free detection of phosphorylated tau at threonine 217 (p-tau217). The device employs a Y2O3/HfO2 dielectric layer and gold nanoparticles (AuNPs) to improve biofunctionalization, with anti-p-tau217 antibodies immobilized on the CNT channels. In phosphate-buffered saline (PBS), the sensor exhibited a linear response over a concentration range of 3 fM to 30 pM (R2 = 0.973) and achieved a limit of detection (LOD) of 1.66 fM. The device demonstrated high selectivity, with a normalized signal response (NSR) for p-tau217 that was 5–6 times higher than for human serum albumin (HSA) and p-tau231, even at 1000-fold higher concentrations of these interferents. The sensor exhibited reproducibility with a relative standard deviation (RSD) of 4.8% (n = 9) and storage stability with only a 10% decrease in signal after 7 days at 4 °C. Mechanistic analysis indicated that the net positive charge and structural flexibility of the p-tau217 peptide led to a reduction in drain current upon binding, consistent with electrostatic gating effects in p-type CNT-FETs. Current limitations include the absence of standardized p-tau217 reference materials. Future work will focus on validation with clinical samples. This CNT-FET platform enables rapid, minimally invasive detection of p-tau217 and holds strong potential for integration into clinical workflows to facilitate early AD diagnosis. Full article
Show Figures

Figure 1

22 pages, 17758 KB  
Review
Emerging Implantable Sensor Technologies at the Intersection of Engineering and Brain Science
by Lihong Qi, Yuheng Wang and Xuemei Liang
Biosensors 2025, 15(11), 762; https://doi.org/10.3390/bios15110762 - 17 Nov 2025
Viewed by 1634
Abstract
Advances in implantable sensor technologies are revolutionizing the landscape of brain science by enabling chronic, precise, and multimodal interfacing with neural tissues. With the convergence of material science, electronics, and neurobiology, flexible, wireless, bioresorbable, and multimodal sensors are expanding the frontiers of diagnosis, [...] Read more.
Advances in implantable sensor technologies are revolutionizing the landscape of brain science by enabling chronic, precise, and multimodal interfacing with neural tissues. With the convergence of material science, electronics, and neurobiology, flexible, wireless, bioresorbable, and multimodal sensors are expanding the frontiers of diagnosis, therapy, and brain-machine interfacing. This review presents the latest breakthroughs in implantable neural sensor technologies, emphasizing bio-integration, signal fidelity, and functional adaptability. We highlight innovations such as CMOS-integrated flexible probes, internal ion-gated organic electrochemical transistors (IGTs), multimodal neurotransmitter-electrophysiology sensors, and wireless energy systems. Finally, we discuss the clinical potential, translational challenges, and future directions for brain science and neuroengineering. We further benchmark transduction and analytical performance in physiological media and outline in vivo calibration, antifouling/packaging, and on-node data-efficient processing for long-term stability. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Graphical abstract

30 pages, 5866 KB  
Review
Performance Optimization Strategies for Polymer Organic Field-Effect Transistors as Sensing Platforms
by Yan Wang, Zimin Ye, Tianci Wang, Linxiao Zu and Liwen Chen
Sensors 2025, 25(22), 6891; https://doi.org/10.3390/s25226891 - 11 Nov 2025
Viewed by 1087
Abstract
Organic field-effect transistors (OFETs) have emerged as a transformative platform for high-performance sensing technologies, yet their full potential can be realized only through coordinated performance optimization. This article provides a comprehensive review of recent strategies employed in polymer OFETs to enhance key parameters, [...] Read more.
Organic field-effect transistors (OFETs) have emerged as a transformative platform for high-performance sensing technologies, yet their full potential can be realized only through coordinated performance optimization. This article provides a comprehensive review of recent strategies employed in polymer OFETs to enhance key parameters, including carrier mobility (μ), threshold voltage (Vth), on/off current ratio (Ion/Ioff), and operational stability. These strategies encompass both physical and chemical approaches, such as annealing, self-assembled monolayers (SAMs), modification of main and side polymer chains, dielectric-layer engineering, buffer-layer insertion, and blending or doping techniques. The development of high-performance devices requires precise integration of physical processing and chemical design, alongside the anticipation of processing compatibility during the molecular design phase. This article further highlights the limitations of focusing solely on high mobility and advocates a balanced optimization across multiple dimensions—mobility, mechanical flexibility, environmental stability, and consistent functional performance. Adopting a multi-scale optimization framework spanning molecular, film, and device levels can substantially enhance the adaptability of OFETs for emerging applications such as flexible sensing, bioelectronic interfaces, and neuromorphic computing. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

24 pages, 5862 KB  
Article
Design and Optimization of a RF Mixer for Electromagnetic Sensor Backend
by Xudong Hao, Xiao Wang and Yansheng Li
Eng 2025, 6(11), 286; https://doi.org/10.3390/eng6110286 - 27 Oct 2025
Viewed by 832
Abstract
In radio frequency (RF) systems, the mixer is a critical component for achieving frequency conversion in electromagnetic sensor backends. This paper proposes a mixer design methodology aimed at improving noise figure and conversion gain specifically for sensor signal processing applications. This design employs [...] Read more.
In radio frequency (RF) systems, the mixer is a critical component for achieving frequency conversion in electromagnetic sensor backends. This paper proposes a mixer design methodology aimed at improving noise figure and conversion gain specifically for sensor signal processing applications. This design employs a process incorporating high-quality bipolar junction transistors (BJTs) and adopts a mixer-first architecture instead of a conventional low noise amplifier (LNA). By optimizing the layout and symmetry of the BJTs, the input impedance can be flexibly adjusted, thereby simplifying the receiver front-end while simultaneously improving local oscillator (LO) feedthrough. Design and simulation were completed using Advanced Design System (ADS) 2020 software. Simulation results demonstrate that the proposed mixer exhibits significant advantages in suppressing noise and interference while enhancing conversion gain, making it particularly suitable for electromagnetic sensor backend applications. Full article
Show Figures

Figure 1

13 pages, 2501 KB  
Article
Molecular Design of Benzothiadiazole-Fused Tetrathiafulvalene Derivatives for OFET Gas Sensors: A Computational Study
by Xiuru Xu and Changfa Huang
Sensors 2025, 25(19), 6190; https://doi.org/10.3390/s25196190 - 6 Oct 2025
Viewed by 658
Abstract
Due to their unique advantages—such as small size, easy integration, flexible wearability, low power consumption, high sensitivity, and material designability—organic field-effect transistor (OFET) gas sensors have significant application potential in fields such as environmental detection, smart healthcare, robotics, and artificial intelligence. Benzothiadiazole fused [...] Read more.
Due to their unique advantages—such as small size, easy integration, flexible wearability, low power consumption, high sensitivity, and material designability—organic field-effect transistor (OFET) gas sensors have significant application potential in fields such as environmental detection, smart healthcare, robotics, and artificial intelligence. Benzothiadiazole fused tetrathiafulvalenes (TTF) are promising organic semiconductor candidates due to their abundant S atoms and planar π-π conjugation skeletons. We designed a series of derivatives by side-chain modification, and conducted systematic computations on TTF derivatives, including reported and newly designed materials, to analyze how geometric factors affect the charge transport properties of materials at the PBE0/6-311G(d,p) level. The frontier molecular orbitals (FMOs) and reorganization energy indicate that the designed derivatives are promising candidates for organic semiconductor sensing materials. Furthermore, theoretical calculations reveal that the designed TTF derivatives are sensitive to gases like NH3, H2S, and SO2, indicating organic field-effect transistors (OFETs) with gas-sensing functions. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

10 pages, 1872 KB  
Article
Preparation and Performance Exploration of MoS2/WSe2 Van Der Waals Heterojunction Tunneling Field-Effect Transistor
by Chen Chong, Hongxia Liu, Shulong Wang, Shupeng Chen and Cong Yan
Micromachines 2025, 16(10), 1108; https://doi.org/10.3390/mi16101108 - 29 Sep 2025
Viewed by 1239
Abstract
Due to their high carrier mobility, thermal conductivity, and exceptional foldability, transition metal dichalcogenides (TMDs) present promising prospects in the realm of flexible semiconductor devices. Concurrently, tunneling field-effect transistors (TFETs) have garnered significant attention owing to their low energy consumption. This study investigates [...] Read more.
Due to their high carrier mobility, thermal conductivity, and exceptional foldability, transition metal dichalcogenides (TMDs) present promising prospects in the realm of flexible semiconductor devices. Concurrently, tunneling field-effect transistors (TFETs) have garnered significant attention owing to their low energy consumption. This study investigates a TMD van der Waals heterojunction (VdWH) TFET, specifically by fabricating MoS2 field-effect transistors (FETs), WSe2 FETs, and MoS2/WSe2 VdWH TFETs. The N-type characteristics of the MoS2 and P-type characteristics of WSe2 are established through an analysis of the electrical characteristics of the respective FETs. Finally, we analyze the energy band and electrical characteristics of the MoS2/WSe2 VdWH TFET, which exhibits a drain current switching ratio of 105. This study provides valuable insights for the development of novel low-power devices. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

40 pages, 17089 KB  
Review
Advancing Flexible Optoelectronic Synapses and Neurons with MXene-Integrated Polymeric Platforms
by Hongsheng Xu, Xiangyu Zeng and Akeel Qadir
Nanomaterials 2025, 15(19), 1481; https://doi.org/10.3390/nano15191481 - 27 Sep 2025
Viewed by 1416
Abstract
Neuromorphic computing, inspired by the human brain’s architecture, offers a transformative approach to overcoming the limitations of traditional von Neumann systems by enabling highly parallel, energy-efficient information processing. Among emerging materials, MXenes—a class of two-dimensional transition metal carbides and nitrides—have garnered significant attention [...] Read more.
Neuromorphic computing, inspired by the human brain’s architecture, offers a transformative approach to overcoming the limitations of traditional von Neumann systems by enabling highly parallel, energy-efficient information processing. Among emerging materials, MXenes—a class of two-dimensional transition metal carbides and nitrides—have garnered significant attention due to their exceptional electrical conductivity, tunable surface chemistry, and mechanical flexibility. This review comprehensively examines recent advancements in MXene-based optoelectronic synapses and neurons, focusing on their structural properties, device architectures, and operational mechanisms. We emphasize synergistic electrical–optical modulation in memristive and transistor-based synaptic devices, enabling improved energy efficiency, multilevel plasticity, and fast response times. In parallel, MXene-enabled optoelectronic neurons demonstrate integrate-and-fire dynamics and spatiotemporal information integration crucial for biologically inspired neural computations. Furthermore, this review explores innovative neuromorphic hardware platforms that leverage multifunctional MXene devices to achieve programmable synaptic–neuronal switching, enhancing computational flexibility and scalability. Despite these promising developments, challenges remain in device stability, reproducibility, and large-scale integration. Addressing these gaps through advanced synthesis, defect engineering, and architectural innovation will be pivotal for realizing practical, low-power optoelectronic neuromorphic systems. This review thus provides a critical roadmap for advancing MXene-based materials and devices toward next-generation intelligent computing and adaptive sensory applications. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

16 pages, 2736 KB  
Article
A Novel, Single-Step 3D-Printed Shadow Mask Fabrication Method for TFTs
by Kelsea A. Yarbrough, Makhes K. Behera, Sangram K. Pradhan and Messaoud Bahoura
Processes 2025, 13(9), 2976; https://doi.org/10.3390/pr13092976 - 18 Sep 2025
Viewed by 1338
Abstract
This work presents a low-cost and scalable method for fabricating thin-film transistors (TFTs) using a single-step, 3D-printed shadow mask approach. Room temperature growth of both aluminum-doped zinc oxide (AZO) thin film was used as the semiconductor channel, and zirconium oxide (ZrO2) [...] Read more.
This work presents a low-cost and scalable method for fabricating thin-film transistors (TFTs) using a single-step, 3D-printed shadow mask approach. Room temperature growth of both aluminum-doped zinc oxide (AZO) thin film was used as the semiconductor channel, and zirconium oxide (ZrO2) as the high-k dielectric, and the films were never exposed to any post-annealing treatment. Structural and morphological characterization confirmed smooth, compact films with stable dielectric behavior. Electrical measurements revealed a field-effect mobility of 13.1 cm2/V·s, a threshold voltage of ~4.1 V, and an on/off ratio of ~104, validating effective gate modulation and drain current saturation. The off-state current, estimated from AZO conductivity measurements, was ~10−10 A, while the on-state current reached ~10−6 A. Benchmarking against state-of-the-art devices shows that these transistors rival ALD-processed IGZO TFTs and significantly outperform reported indium-free ZnO/AZO devices, while avoiding scarce indium and costly high-temperature or photolithographic processing. These findings establish 3D-printed shadow masks as a practical alternative to conventional lithography for oxide TFT fabrication. The method offers high device performance with simplified, indium-free, and room-temperature processing, underscoring its potential for scalable, transparent, and flexible electronics. Full article
(This article belongs to the Special Issue Advanced Functionally Graded Materials)
Show Figures

Figure 1

Back to TopTop