You are currently viewing a new version of our website. To view the old version click .
Polymers
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Review
  • Open Access

28 November 2025

Advances in Polymeric Semiconductors for Next-Generation Electronic Devices

Division of Semiconductor and Electronics Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
Polymers2025, 17(23), 3174;https://doi.org/10.3390/polym17233174 
(registering DOI)
This article belongs to the Special Issue Polymeric Materials in Optoelectronic Devices and Energy Applications

Abstract

Polymeric semiconductors have rapidly evolved from early conductive polymers, such as polyacetylene, to high-performance donor–acceptor copolymers, offering a unique combination of mechanical flexibility, solution processability, and tunable optoelectronic properties. These advancements have positioned polymeric semiconductors as versatile materials for next-generation electronics, including wearable, stretchable, and bio-integrated devices, IoT systems, and soft robotics. In this review, we systematically present the fundamental principles of polymeric semiconductors, including electronic structure, charge transport mechanisms, molecular packing, and solid-state morphology, and elucidate how these factors collectively govern device performance. We further discuss recent advances in synthesis strategies, thin-film processing techniques, molecular doping, and interface engineering, emphasizing their critical roles in improving operational stability, charge-carrier mobility, and energy efficiency. Key applications—such as organic photovoltaics, field-effect transistors, neuromorphic devices, and memristors—are analyzed, with a focus on the intricate structure–property–performance relationships that dictate functionality. Finally, we highlight emerging directions and scientific innovations, including sustainable and degradable polymers, hybrid and two-dimensional polymer systems, and novel strategies to enhance device stability and performance. By integrating fundamental polymer science with device engineering, this review provides a comprehensive, structured, and forward-looking perspective, identifying knowledge gaps and offering insights to guide future breakthroughs and the rational design of high-performance, multifunctional, and environmentally responsible polymeric electronic devices.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.