Previous Issue
Volume 109, MMC 2024
 
 
engproc-logo

Journal Browser

Journal Browser

Eng. Proc., 2025, AIS 2025

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Number of Papers: 1
Order results
Result details
Select all
Export citation of selected articles as:

Other

9 pages, 394 KB  
Proceeding Paper
From Human-Computer Interaction to Human-Robot Manipulation
by Shuwei Guo, Cong Yang, Zhizhong Su, Wei Sui, Xun Liu, Minglu Zhu and Tao Chen
Eng. Proc. 2025, 110(1), 1; https://doi.org/10.3390/engproc2025110001 - 25 Sep 2025
Abstract
The evolution of Human–Computer Interaction (HCI) has laid the foundation for more immersive and dynamic forms of communication between humans and machines. Building on this trajectory, this work introduces a significant advancement in the domain of Human–Robot Manipulation (HRM), particularly in the remote [...] Read more.
The evolution of Human–Computer Interaction (HCI) has laid the foundation for more immersive and dynamic forms of communication between humans and machines. Building on this trajectory, this work introduces a significant advancement in the domain of Human–Robot Manipulation (HRM), particularly in the remote operation of humanoid robots in complex scenarios. We propose the Advanced Manipulation Assistant System (AMAS), a novel manipulation method designed to be low cost, low latency, and highly efficient, enabling real-time, precise control of humanoid robots from a distance. This method addresses critical challenges in current teleoperation systems, such as delayed response, expensive hardware requirements, and inefficient data transmission. By leveraging lightweight communication protocols, optimized sensor integration, and intelligent motion mapping, our system ensures minimal lag and accurate reproduction of human movements in the robot counterpart. In addition to these advantages, AMAS integrates multimodal feedback combining visual and haptic cues to enhance situational awareness, close the control loop, and further stabilize teleoperation. This transition from traditional HCI paradigms to advanced HRM reflects a broader shift toward more embodied forms of interaction, where human intent is seamlessly translated into robotic action. The implications are far-reaching, spanning applications in remote caregiving, hazardous environment exploration, and collaborative robotics. AMAS represents a step forward in making humanoid robot manipulation more accessible, scalable, and practical for real-world deployment. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop