Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,046)

Search Parameters:
Keywords = flexible coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 4006 KiB  
Review
Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications
by Chenyao Wang, Heng Zhai, David Lewis, Hugh Gong, Xuqing Liu and Anura Fernando
Coatings 2025, 15(8), 898; https://doi.org/10.3390/coatings15080898 (registering DOI) - 1 Aug 2025
Viewed by 273
Abstract
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and [...] Read more.
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and microstructural control. Critical analysis reveals that bio-inspired activation methods, such as polydopamine (PDA) and tannic acid (TA), significantly enhance coating adhesion and durability compared to traditional chemical etching and plasma treatments. Additionally, solvent engineering, particularly using polar aprotic solvents like dimethyl sulfoxide (DMSO) and ethanol-based systems, emerges as a key strategy for achieving uniform, dense, and flexible coatings, overcoming limitations associated with traditional aqueous baths. The review also highlights that microstructural tailoring, specifically the development of amorphous-nanocrystalline hybrid nickel coatings, effectively balances mechanical robustness (hardness exceeding 800 HV), flexibility, and corrosion resistance, making these coatings particularly suitable for wearable electronic textiles and smart materials. Furthermore, commercial examples demonstrate the real-world applicability and market readiness of nickel-coated synthetic fibres. Despite significant progress, persistent challenges remain, including reliable long-term adhesion, internal stress management, and environmental sustainability. Future research should prioritise environmentally benign plating baths, standardised surface activation protocols, and scalable deposition processes to fully realise the industrial potential of electroless nickel coatings. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

21 pages, 7973 KiB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 291
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

16 pages, 8118 KiB  
Article
The Influence of Long-Term Service on the Mechanical Properties and Energy Dissipation Capacity of Flexible Anti-Collision Rings
by Junhong Zhou, Jia Lu, Wei Jiang, Ang Li, Hancong Shao, Zixiao Huang, Fei Wang and Qiuwei Yang
Coatings 2025, 15(8), 880; https://doi.org/10.3390/coatings15080880 - 27 Jul 2025
Viewed by 276
Abstract
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image [...] Read more.
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image correlation (DIC) technology. The results show that: The mechanical response of the anti-collision ring shows significant asymmetric tension–compression, with the tensile peak force being 6.8 times that of compression. A modified Johnson–Cook model was developed to accurately characterize the tension–compression force–displacement behavior across varying strain rates (0.001–0.1 s−1). The DIC full-field strain analysis reveals that the clamping fixture significantly influences the tensile deformation mode of the anti-collision ring by constraining its inner wall movement, thereby altering strain distribution patterns. Despite exhibiting a corrosion gradient from severe underwater degradation to minimal surface weathering, all tested rings demonstrated consistent mechanical performance, verifying the robust protective capability of the rubber coating in marine service conditions. Full article
Show Figures

Figure 1

26 pages, 8292 KiB  
Review
Progress in the Circular Arc Source Structure and Magnetic Field Arc Control Technology for Arc Ion Plating
by Hao Du, Ke Zhang, Debin Liu and Wenchang Lang
Materials 2025, 18(15), 3498; https://doi.org/10.3390/ma18153498 - 25 Jul 2025
Viewed by 170
Abstract
Aiming at the goal of preparing high-quality coatings, this paper reviews the progress on circular arc source structure and magnetic field arc controlling technology in arc ion plating (AIP), with a focus on design characteristics of the different structures and configuration optimization of [...] Read more.
Aiming at the goal of preparing high-quality coatings, this paper reviews the progress on circular arc source structure and magnetic field arc controlling technology in arc ion plating (AIP), with a focus on design characteristics of the different structures and configuration optimization of the corresponding magnetic fields. The circular arc source, due to its simple structure, convenient installation, flexible target combination, high cooling efficiency, and high ionization rate and deposition rate, has shown significant application potential in AIP technology. In terms of magnetic field arc controlling technology, this paper delves into the design progress of various magnetic field configurations, including fixed magnetic fields generated by permanent magnets, dynamic rotating magnetic fields, axially symmetric magnetic fields, rotating transverse magnetic fields, and multi-mode alternating electromagnetic coupling fields. By designing the magnetic field distribution reasonably, the trajectory and velocity of the arc spot can be controlled precisely, thus reducing the generation of macroparticles, improving target utilization, and enhancing coating uniformity. In particular, the introduction of multi-mode magnetic field coupling technology has broken through the limitations of traditional single magnetic field structures, achieving comprehensive optimization of arc spot motion and plasma transport. Hopefully, these research advances provide an important theoretical basis and technical support for the application of AIP technology in the preparation for high-quality decorative and functional coatings. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

17 pages, 6623 KiB  
Article
Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers
by Lijun Sun, Miao Wang, Peian Chong, Yunhao Shao and Lei Deng
Energies 2025, 18(15), 3947; https://doi.org/10.3390/en18153947 - 24 Jul 2025
Viewed by 165
Abstract
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under [...] Read more.
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under deep peaking, the gas–solid flow characteristics and distributions of flue gas temperature, wall heat flux, and wall wear rate in a 600 MW tangentially fired pulverized coal boiler under variable loads (353 MW, 431 MW, 519 MW, and 600 MW) are investigated in this study employing computational fluid dynamics numerical simulation method. Results demonstrate that increasing the boiler load significantly amplifies gas velocity, wall heat flux, and wall wear rate. The maximum gas velocity in the furnace rises from 20.9 m·s−1 (353 MW) to 37.6 m·s−1 (600 MW), with tangential airflow forming a low-velocity central zone and high-velocity peripheral regions. Meanwhile, the tangential circle diameter expands by ~15% as the load increases. The flue gas temperature distribution exhibits a “low-high-low” profile along the furnace height. As the load increases from 353 MW to 600 MW, the primary combustion zone’s peak temperature rises from 1750 K to 1980 K, accompanied by a ~30% expansion in the coverage area of the high-temperature zone. Wall heat flux correlates strongly with temperature distribution, peaking at 2.29 × 105 W·m−2 (353 MW) and 2.75 × 105 W·m−2 (600 MW) in the primary combustion zone. Wear analysis highlights severe erosion in the economizer due to elevated flue gas velocities, with wall wear rates escalating from 3.29 × 10−7 kg·m−2·s−1 (353 MW) to 1.23 × 10−5 kg·m−2·s−1 (600 MW), representing a 40-fold increase under full-load conditions. Mitigation strategies, including ash removal optimization, anti-wear covers, and thermal spray coatings, are proposed to enhance operational safety. This work provides critical insights into flow field optimization and wear management for large-scale coal-fired boilers under flexible load operation. Full article
Show Figures

Figure 1

13 pages, 3688 KiB  
Article
Layer-by-Layer Engineered Zinc–Tin Oxide/Single-Walled Carbon Nanotube (ZTO/SWNT) Hybrid Films for Thin-Film Transistor Applications
by Yong-Jae Kim, Young-Jik Lee, Yeon-Hee Kim, Byung Seong Bae and Woon-Seop Choi
Micromachines 2025, 16(7), 825; https://doi.org/10.3390/mi16070825 - 20 Jul 2025
Viewed by 507
Abstract
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc–tin oxide (ZTO) is an indium-free oxide semiconductor with [...] Read more.
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc–tin oxide (ZTO) is an indium-free oxide semiconductor with considerable potential, but its relatively low carrier mobility and inherent limitations in thin-film quality demand further performance enhancements. This paper proposes a new approach to overcome these challenges by incorporating single-walled carbon nanotubes (SWNTs) as conductive fillers into the ZTO matrix and using a layer-by-layer multiple coating process to construct nanocomposite thin films. As a result, ZTO/SWNTs (0.07 wt.%) thin-film transistors (TFTs) fabricated with three coating cycles exhibited a high saturation mobility of 18.72 cm2/V·s, a threshold voltage of 0.84 V, and a subthreshold swing of 0.51 V/dec. These values represent an approximately four-fold improvement in mobility compared to ZTO TFT, showing that the multiple-coating-based nanocomposite strategy can effectively overcome the fundamental limitations. This study confirms the feasibility of achieving high-performance oxide semiconductor transistors without indium, providing a sustainable pathway for next-generation flexible electronics and display technologies. Full article
Show Figures

Figure 1

22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 275
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

19 pages, 5642 KiB  
Review
Advances in Conductive Modification of Silk Fibroin for Smart Wearables
by Yuhe Yang, Zengkai Wang, Pu Hu, Liang Yuan, Feiyi Zhang and Lei Liu
Coatings 2025, 15(7), 829; https://doi.org/10.3390/coatings15070829 - 16 Jul 2025
Viewed by 212
Abstract
Silk fibroin (SF)-based intelligent wearable systems represent a frontier research direction in artificial intelligence and precision medicine. Their core efficacy stems from the inherent advantages of silk fibroin, including excellent mechanical properties, interfacial compatibility, and tunable structure. This article systematically reviews conductive modification [...] Read more.
Silk fibroin (SF)-based intelligent wearable systems represent a frontier research direction in artificial intelligence and precision medicine. Their core efficacy stems from the inherent advantages of silk fibroin, including excellent mechanical properties, interfacial compatibility, and tunable structure. This article systematically reviews conductive modification strategies for silk fibroin and its research progress in the smart wearable field. It elaborates on the molecular structural basis of silk fibroin for use in smart wearable devices, critically analyzes five conductive functionalization strategies, compares the advantages, disadvantages, and applicable domains of different modification approaches, and summarizes research achievements in areas such as bioelectrical signal sensing, energy conversion and harvesting, and flexible energy storage. Concurrently, an assessment was conducted focusing on the priority performance characteristics of the materials across diverse application scenarios. Specific emphasis was placed on addressing the long-term functional performance (temporal efficacy) and degradation stability of silk fibroin-based conductive materials exhibiting high biocompatibility in implantable settings. Additionally, the compatibility issues arising between externally applied coatings and the native substrate matrix during conductive modification processes were critically examined. The article also identifies challenges that silk fibroin-based smart wearable devices currently face and suggests potential future development directions, providing theoretical guidance and a technical framework for the functional integration and performance optimization of silk fibroin-based smart wearable devices. Full article
Show Figures

Graphical abstract

14 pages, 4419 KiB  
Article
Slurry Aluminizing Mechanisms of Nickel-Based Superalloy and Applicability for the Manufacturing of Platinum-Modified Aluminide Coatings
by Giulia Pedrizzetti, Virgilio Genova, Erica Scrinzi, Rita Bottacchiari, Marco Conti, Laura Paglia and Cecilia Bartuli
Coatings 2025, 15(7), 822; https://doi.org/10.3390/coatings15070822 - 14 Jul 2025
Viewed by 330
Abstract
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber [...] Read more.
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber and the initial slurry layer thickness on the microstructure, chemical composition, and phase composition of aluminide coatings. Coatings were manufactured on Ni-based superalloy substrates using CrAl powders as an aluminum source and chloride- and fluoride-based activator salts. The effect of the initial thickness of the slurry layer was studied by varying the amount of deposited slurry in terms of mgslurry/cm2sample (with constant mgslurry/cm3chamber). The microstructure and phase composition of the produced aluminide coatings were evaluated by SEM, EDS, and XRD analysis. Slurry thickness can affect concentration gradients during diffusion, and the best results were obtained with an initial slurry amount of 100 mgslurry/cm2sample. The effect of the Al vapor phase in the reaction chamber was then investigated by varying the mgslurry/cm3chamber ratio while keeping the slurry layer thickness constant at 100 mgslurry/cm2sample. This parameter influences the amount of Al at the substrate surface before the onset of solid-state diffusion, and the best results were obtained for a 6.50 mgslurry/cm3chamber ratio with the formation of 80 µm coatings (excluding the interdiffusion zone) with a β-NiAl phase throughout the thickness. To validate process flexibility, the same parameters were successfully applied to produce platinum-modified aluminides with a bi-phasic ζ-PtAl2 and β-(Ni,Pt)Al microstructure. Full article
Show Figures

Figure 1

22 pages, 5849 KiB  
Article
A Semi-Automated Image-Based Method for Interfacial Roughness Measurement Applied to Metal/Oxide Interfaces
by João Gabriel da Cruz Passos, Luis Fernando Pedrosa Rabelo, Carlos Alberto Della Rovere and Artur Mariano de Sousa Malafaia
Corros. Mater. Degrad. 2025, 6(3), 31; https://doi.org/10.3390/cmd6030031 - 14 Jul 2025
Viewed by 244
Abstract
Measuring interfacial roughness is essential in evaluating the adhesion of coatings and thermally grown oxides. Conventional contact methods are often impractical for such analyses, especially when the interface lies beneath a nonremovable layer. This study proposes a semi-automated method combining an ImageJ macro [...] Read more.
Measuring interfacial roughness is essential in evaluating the adhesion of coatings and thermally grown oxides. Conventional contact methods are often impractical for such analyses, especially when the interface lies beneath a nonremovable layer. This study proposes a semi-automated method combining an ImageJ macro and an R-language script to assess interfacial roughness from images obtained through scanning electron microscopy (SEM), leveraging chemical contrast between substrate and oxide. The approach preserves user input where interpretation is critical while standardizing measurement to reduce variability. Applied to 21 images from seven experimental conditions, the algorithm successfully reproduced the roughness ranking obtained from manual measurement while also significantly reducing measurement dispersion. Though it underestimates absolute roughness values compared with the user measurements (which should also happen with conventional contact methods), it offers a robust, flexible, and reproducible alternative for interface characterization. Full article
(This article belongs to the Special Issue Advances in Material Surface Corrosion and Protection)
Show Figures

Figure 1

23 pages, 2941 KiB  
Review
Advancements in Nanotechnology for Spinal Surgery: Innovations in Spinal Fixation Devices for Enhanced Biomechanical Performance and Osteointegration
by Bogdan Costăchescu, Elena-Theodora Moldoveanu, Adelina-Gabriela Niculescu, Alexandru Mihai Grumezescu and Daniel Mihai Teleanu
Nanomaterials 2025, 15(14), 1073; https://doi.org/10.3390/nano15141073 - 10 Jul 2025
Viewed by 359
Abstract
Spinal injuries have a major impact on patients’ quality of life due to the implacable consequences they bring, such as reduced mobility and loss of flexibility, in most cases requiring surgery to restore spinal stability and functionality. In this respect, spinal fixation devices [...] Read more.
Spinal injuries have a major impact on patients’ quality of life due to the implacable consequences they bring, such as reduced mobility and loss of flexibility, in most cases requiring surgery to restore spinal stability and functionality. In this respect, spinal fixation devices represent an important strategy to stabilize the spine after severe injuries or degenerative conditions, providing structural support and preserving spinal function. However, at the moment, the materials used to manufacture spinal implants present numerous disadvantages (e.g., Young’s modulus larger than cortical bone, which can produce bone resorption and implant enlargement) that can lead to implant failure. In this context, nanotechnology can offer promising solutions, bringing improved properties (e.g., biocompatibility, osseointegration, and increased mechanical performance) that increase the potential for obtaining devices customized to patients’ needs. Thus, the present work aims to present an overview of the types of nanocoating surface modification, the impact of rough and porous implant surfaces, and the integration of bioactive nanoparticles that reduce the risk of infection and implant rejection. In addition, incorporating 3D printing technology and the use of biodegradable materials into the discussion provides a valuable perspective for future studies in this field. Although the emerging results are encouraging, further studies to assess the long-term safety of implant coatings are needed. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

41 pages, 6695 KiB  
Review
Design Innovation and Thermal Management Applications of Low-Dimensional Carbon-Based Smart Textiles
by Yating Pan, Shuyuan Lin, Yang Xue, Bingxian Ou, Zhen Li, Junhua Zhao and Ning Wei
Textiles 2025, 5(3), 27; https://doi.org/10.3390/textiles5030027 - 9 Jul 2025
Viewed by 420
Abstract
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for [...] Read more.
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for flexible thermal regulation. This review summarizes recent advances in integrating these materials into textile architectures, mapping the evolution of this emerging field. Key topics include phonon-dominated heat transfer mechanisms, strategies for modulating interfacial thermal resistance, and dimensional effects across scales; beyond these intrinsic factors, hierarchical textile configurations further tailor macroscopic performance. We highlight how one-dimensional fiber bundles, two-dimensional woven fabrics, and three-dimensional porous networks construct multi-directional thermal pathways while enhancing porosity and stress tolerance. As for practical applications, the performance of carbon-based textiles in wearable systems, flexible electronic packaging, and thermal coatings is also critically assessed. Current obstacles—namely limited manufacturing scalability, interfacial mismatches, and thermal performance degradation under repeated deformation—are analyzed. To overcome these challenges, future studies should prioritize the co-design of structural and thermo-mechanical properties, the integration of multiple functionalities, and optimization guided by data-driven approaches. This review thus lays a solid foundation for advancing carbon-based smart textiles toward next-generation flexible thermal management technologies. Full article
Show Figures

Figure 1

45 pages, 1648 KiB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 835
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

21 pages, 5380 KiB  
Communication
Influence of MWCNT Concentration on Performance of Nylon/MWCNT Nanocomposite-Based Triboelectric Nanogenerators Fabricated via Spin Coating Method
by Talia Tene, Orkhan Gulahmadov, Lala Gahramanli, Mustafa Muradov, Jadranka Blazhevska Gilev, Telli Hamzayeva, Shafag Bayramova, Stefano Bellucci and Cristian Vacacela Gomez
Nanoenergy Adv. 2025, 5(3), 9; https://doi.org/10.3390/nanoenergyadv5030009 - 7 Jul 2025
Viewed by 429
Abstract
This work reports the fabrication and optimization of nylon/multi-walled carbon nanotube (MWCNT) nanocomposite-based triboelectric nanogenerators (TENGs) using a spin coating method. By carefully tuning the MWCNT concentration, the device achieved a substantial enhancement in electrical output, with open-circuit voltage and short-circuit current peaking [...] Read more.
This work reports the fabrication and optimization of nylon/multi-walled carbon nanotube (MWCNT) nanocomposite-based triboelectric nanogenerators (TENGs) using a spin coating method. By carefully tuning the MWCNT concentration, the device achieved a substantial enhancement in electrical output, with open-circuit voltage and short-circuit current peaking at 29.7 V and 3.0 μA, respectively, at 0.05 wt% MWCNT loading on the surface of nylon. The corresponding power density reached approximately 13.9 mW/m2, representing a significant improvement over pure nylon-based TENGs. The enhanced performance is attributed to improved charge trapping and dielectric properties due to well-dispersed MWCNTs on the surface of nylon, while excessive loading caused agglomeration, reducing efficiency. This lightweight, flexible nanocomposite TENG offers a promising solution for efficient, sustainable energy harvesting in wearable electronics and self-powered sensor systems, highlighting its potential for practical energy applications. Full article
Show Figures

Figure 1

24 pages, 7263 KiB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 591
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop