Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers
Abstract
1. Introduction
2. Models and Methods
2.1. Research Object
2.2. Computational Model and Verification
2.2.1. Physical Model and Grid Division
2.2.2. Boundary Conditions
2.2.3. Mathematical Model
2.2.4. Grid Independence Verification
2.2.5. Model Verification
3. Results and Discussion
3.1. Velocity Analysis
3.2. Internal Temperature Distribution
3.3. Heat Flux Distribution
3.4. Wear Analysis
4. Conclusions
- (1)
- Under different load conditions, the air flow in the furnace is well filled. Due to the impact of the jet, the airflow in the furnace displays obvious rotational flow characteristics. The velocity distribution exhibits that in the boiler center exist a low-velocity region exists, the velocity in the surrounding area is high, and the velocity in the near-wall area decreases again. This flow field structure effectively improves the adherent phenomenon of the primary air jet and significantly minimizes the risk of slagging. The research confirms that with the load’s escalation, the overall flow velocity and near-wall flow velocity demonstrate a proportional growth. The maximum flow rate reaches 33.2 m∙s−1 at 600 MW load.
- (2)
- The furnace temperature field presents the distribution characteristics of “low-high-low” along the height direction. In the principal burning section, the coal-air mixing is sufficient, and the burning is violent, forming a temperature peak area, and the temperature distribution in the main burning zone’s upper part displays a “hump-shaped” temperature distribution, that is, the central area is hotter than the surrounding regions. Temperatures in the center area can reach over 1600 K. As the load increases, the primary zone expands, the burning intensity increases, and the overall temperature level increases significantly.
- (3)
- The heat flux distribution of the water wall is significantly correlated with temperature patterns. In the high-temperature combustion-intensive region, the water-cooled wall’s heat absorption reaches its peak. As the rise of boiler load, the area with higher heat absorption expands, and its maximum value also increases accordingly. An increase in load from 353 MW to 600 MW resulted in an enhancement of maximum heat absorption from 2.29 × 105 W∙m−5 to 2.75 × 105 W∙m−2. The water-cooled wall heat flow uniformity can be improved by real-time monitoring of furnace combustion and reducing load changes.
- (4)
- The study on the dynamics of fly ash particles illustrates that the velocity and kinetic energy of solid particles escalate with the escalation of the load, which leads to the growth of the wear degree of the boiler’s internal parts and water wall. Where the maximum wear rate of the coal economizer increases with load, its maximum wear rate increases nearly 40 times. The wear rate can be effectively reduced by adding dust removal equipment, regular cleaning, anti-wear equipment, and thermal spraying surface treatment technology to optimize the boiler’s operational reliability and stability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, G.; Liu, K.; Hu, Z.; Liu, N.; Xiao, X. Optimal scheduling of deep peak regulation for thermal power units in power grid with large-scale new energy. Electr. Power Eng. Technol. 2023, 42, 243–250. [Google Scholar]
- Xin, S.W.; Wang, H.; Li, J.B.; Wang, G.; Wang, Q.H.; Cao, P.Q.; Zhang, P.; Lu, X.F. Discussion on the Feasibility of Deep Peak Regulation for Ultra-Supercritical Circulating Fluidized Bed Boiler. Energies 2022, 15, 7720. [Google Scholar] [CrossRef]
- Ding, Y. Research on Deep Peak Shaving Performance of 1000 MW Ultra-Supercritical Coal-Fired Boiler. Power Gener. Technol. 2024, 45, 382–391. [Google Scholar]
- Belosevic, S.; Tomanovic, I.; Crnomarkovic, N.; Milicevic, A. Full-scale CFD investigation of gas-particle flow, interactions and combustion in tangentially fired pulverized coal furnace. Energy 2019, 179, 1036–1053. [Google Scholar] [CrossRef]
- Yin, C.; Caillat, S.; Harion, J.L.; Baudoin, B.; Perez, E. Investigation of the flow, combustion, heat-transfer and emissions from a 609 MW utility tangentially fired pulverized-coal boiler. Fuel 2002, 81, 997–1006. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.; Fan, H.; Qin, T.; Huang, Y.; Wang, Y.; Wang, H. Novel Technologies of Flexible Coal-fired Power Generation to Support China Energy Transition: Boiler System and Turbine Generator System. Proc. Chin. Soc. Electr. Eng. 2024, 44, 7136–7166. [Google Scholar]
- Al-Abbas, A.H.; Naser, J.; Hussein, E.K. Numerical simulation of brown coal combustion in a 550 MW tangentially-fired furnace under different operating conditions. Fuel 2013, 107, 688–698. [Google Scholar] [CrossRef]
- Jiang, Y.; Lee, B.H.; Oh, D.H.; Jeon, C.H. Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition. Energy 2022, 244, 123167. [Google Scholar] [CrossRef]
- Zhu, M.X.; Lu, H.; Zhao, W.J.; Huang, S.W.; Chang, X.Q.; Dong, L.J.; Kong, D.; Jing, X.H. A Numerical Study of Ash Deposition Characteristics in a 660 MW Supercritical Tangential Boiler. Adv. Theory Simul. 2023, 6, 2300133. [Google Scholar] [CrossRef]
- Drosatos, P.; Nikolopoulos, N.; Agraniotis, M.; Kakaras, E. Numerical investigation of firing concepts for a flexible Greek lignite-fired power plant. Fuel Process. Technol. 2016, 142, 370–395. [Google Scholar] [CrossRef]
- Li, M.J.; Tang, S.Z.; Wang, F.L.; Zhao, Q.X.; Tao, W.Q. Gas-side fouling, erosion and corrosion of heat exchangers for middle/low temperature waste heat utilization: A review on simulation and experiment. Appl. Therm. Eng. 2017, 126, 737–761. [Google Scholar] [CrossRef]
- Díez, L.I.; Cortés, C.; Pallarés, J. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation. Fuel 2008, 87, 1259–1269. [Google Scholar] [CrossRef]
- Yan, L.B.; He, B.S.; Yao, F.; Yang, R.; Pei, X.H.; Wang, C.J.; Song, J.G. Numerical Simulation of a 600 MW Utility Boiler with Different Tangential Arrangements of Burners. Energy Fuels 2012, 26, 5491–5502. [Google Scholar] [CrossRef]
- Bhuiyan, A.A.; Naser, J. CFD modelling of co-firing of biomass with coal under oxy-fuel combustion in a large scale power plant. Fuel 2015, 159, 150–168. [Google Scholar] [CrossRef]
- Coringa, J.; Colaço, M.; Leiroz, A.J.K.; Oliveira, E. Numerical investigation for steam tubes temperature reduction in a four fuels tangentially fired boiler. Appl. Therm. Eng. 2020, 179, 115656. [Google Scholar] [CrossRef]
- Belosevic, S.; Sijercic, M.; Crnomarkovic, N.; Stankovic, B.; Tucakovic, D. Numerical Prediction of Pulverized Coal Flame in Utility Boiler Furnaces. Energy Fuels 2009, 23, 5401–5412. [Google Scholar] [CrossRef]
- Belosevic, S.; Sijercic, M.; Oka, S.; Tucakovic, D. Three-dimensional modeling of utility boiler pulverized coal tangentially fired furnace. Int. J. Heat Mass Transf. 2006, 49, 3371–3378. [Google Scholar] [CrossRef]
- Fang, Q.Y.; Musa, A.A.B.; Wei, Y.; Luo, Z.X.; Zhou, H.C. Numerical Simulation of Multifuel Combustion in a 200 MW Tangentially Fired Utility Boiler. Energy Fuels 2012, 26, 313–323. [Google Scholar] [CrossRef]
- Modlinski, N.; Janda, T. Mathematical procedure for predicting tube metal temperature in the radiant superheaters of a tangentially and front fired utility boilers. Therm. Sci. Eng. Prog. 2023, 40, 101763. [Google Scholar] [CrossRef]
- Liu, Y.C.; Fan, W.D.; Li, Y. Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler. Appl. Energy 2016, 177, 323–334. [Google Scholar] [CrossRef]
- Madejski, P.; Taler, D.; Taler, J. Numerical model of a steam superheater with a complex shape of the tube cross section using Control Volume based Finite Element Method. Energy Convers. Manag. 2016, 118, 179–192. [Google Scholar] [CrossRef]
- An, J.X.; Luo, X.J. Numerical simulation of ash erosion in the selective catalytic reduction catalyst of power plant boiler. Energy Rep. 2022, 8, 1313–1321. [Google Scholar] [CrossRef]
- Gandhi, M.B.; Vuthaluru, R.; Vuthaluru, H.; French, D.; Shah, K. CFD based prediction of erosion rate in large scale wall-fired boiler. Appl. Therm. Eng. 2012, 42, 90–100. [Google Scholar] [CrossRef]
- Grochowalski, J.; Widuch, A.; Sladek, S.; Melka, B.; Nowak, M.; Klimanek, A.; Andrzejczyk, M.; Klajny, M.; Czarnowska, L.; Hernik, B.; et al. Technique for reducing erosion in large-scale circulating fluidized bed units. Powder Technol. 2023, 426, 118651. [Google Scholar] [CrossRef]
- Waclawiak, K.; Kalisz, S. A practical numerical approach for prediction of particulate fouling in PC boilers. Fuel 2012, 97, 38–48. [Google Scholar] [CrossRef]
- Liu, X.; Xue, X.; Li, H.; Jin, K.L.; Zhang, L.; Zhou, H. Numerical simulation and mathematical models of ash deposition behavior considering particle properties and operating conditions. Fuel Process. Technol. 2023, 245, 107743. [Google Scholar] [CrossRef]
- Mbabazi, J.G.; Sheer, T.J.; Shandu, R. A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles. Wear 2004, 257, 612–624. [Google Scholar] [CrossRef]
- Fan, J.R.; Sun, P.; Chen, L.H.; Cen, K. Numerical investigation of a new protection method of the tube erosion by particles impingement. Wear 1998, 223, 50–57. [Google Scholar] [CrossRef]
- Jin, T.; Luo, K.; Fan, J.R.; Yang, J.S. Immersed boundary method for simulations of erosion on staggered tube bank by coal ash particles. Powder Technol. 2012, 225, 196–205. [Google Scholar] [CrossRef]
- Lin, N.; Lan, H.-Q.; Xu, Y.-G.; Cui, Y.; Barber, G. Coupled Effects between Solid Particles and Gas Velocities on Erosion of Elbows in Natural Gas Pipelines. Procedia Eng. 2015, 102, 893–903. [Google Scholar] [CrossRef]
- Shah, K.V.; Cieplik, M.K.; Betrand, C.I.; van de Kamp, W.L.; Vuthaluru, H.B. A kinetic-empirical model for particle size distribution evolution during pulverised fuel combustion. Fuel 2010, 89, 2438–2447. [Google Scholar] [CrossRef]
- Sciubba, E.; Zeoli, N. A study of sootblower erosion in waste-incinerating heat boilers. J. Energy Resour. Technol. Trans. ASME 2007, 129, 50–53. [Google Scholar] [CrossRef]
- Xu, L.J.; Cheng, L.M.; Ji, J.Q.; Wang, Q.H. Effect of anti-wear beams on waterwall heat transfer in a CFB boiler. Int. J. Heat Mass Transf. 2017, 115, 1092–1098. [Google Scholar] [CrossRef]
- Peng, W.S.; Cao, X.W. Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow. J. Nat. Gas Sci. Eng. 2016, 30, 455–470. [Google Scholar] [CrossRef]
- Sedrez, T.A.; Decker, R.K.; da Silva, M.K.; Noriler, D.; Meier, H.F. Experiments and CFD-based erosion modeling for gas-solids flow in cyclones. Powder Technol. 2017, 311, 120–131. [Google Scholar] [CrossRef]
- Parvaz, F.; Hosseini, S.H.; Elsayed, K.; Ahmadi, G. Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators. Sep. Purif. Technol. 2018, 201, 223–237. [Google Scholar] [CrossRef]
- Bech, J.I.; Johansen, N.F.J.; Madsen, M.B.; Hannesdóttir, A.; Hasager, C.B. Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades. Renew. Energy 2022, 197, 776–789. [Google Scholar] [CrossRef]
- Oka, Y.I.; Okamura, K.; Yoshida, T. Practical estimation of erosion damage caused by solid particle impact—Part 1: Effects of impact parameters on a predictive equation. Wear 2005, 259, 95–101. [Google Scholar] [CrossRef]
- Oka, Y.I.; Yoshida, T. Practical estimation of erosion damage caused by solid particle impact—Part 2: Mechanical properties of materials directly associated with erosion damage. Wear 2005, 259, 102–109. [Google Scholar] [CrossRef]
- Wang, W.Q.; Sun, Y.H.; Wang, B.; Dong, M.; Chen, Y.M. CFD-Based Erosion and Corrosion Modeling of a Pipeline with CO2 Containing Gas-Water Two-Phase Flow. Energies 2022, 15, 1694. [Google Scholar] [CrossRef]
- Cao, X.-l.; Pi, Z.-r.; Peng, H.-y.; Jiang, S.-j. Numerical simulation on combustion process of 600 MW W-flame boiler. J. Cent. South Univ. Sci. Technol. 2012, 43, 1185–1191. [Google Scholar]
- Xia, Y.; Cheng, L.; Zhang, J.; Wang, Q.; Fang, M. Numerical Study of Gas-Solid Flow Field in a 600 MW CFB Boiler with Anti-wear Beams. J. Power Eng. 2013, 33, 81–87. [Google Scholar]
- Li, P.; Bao, T.; Guan, J.; Shi, Z.F.; Xie, Z.X.; Zhou, Y.G.; Zhong, W. Computational Analysis of Tube Wall Temperature of Superheater in 1000 MW Ultra-Supercritical Boiler Based on the Inlet Thermal Deviation. Energies 2023, 16, 1539. [Google Scholar] [CrossRef]
- Xiao, G.Z.; Ye, Q.H.; Zhong, Z.P.; Jin, B.S. Numerical investigation on co-combustion of sludge and coal in a 660 MW pulverized coal boiler. Waste Manag. 2025, 202, 114814. [Google Scholar] [CrossRef]
- Chu, K.W.; Wang, B.; Yu, A.B.; Vince, A. Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of vortex finder outlet pressure. Miner. Eng. 2012, 31, 46–58. [Google Scholar] [CrossRef]
- Al-Abbas, A.H.; Naser, J. Numerical Study of One Air-Fired and Two Oxy-Fuel Combustion Cases of Propane in a 100 kW Furnace. Energy Fuels 2012, 26, 952–967. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Weng, W.B.; Wang, Z.H. Numerical simulation of ammonia combustion with coal in a 135 MW tangentially fired boiler. Fuel 2024, 370, 131831. [Google Scholar] [CrossRef]
- Jamaluddin, A.S.; Smith, P.J. Predicting radiative-transfer in axisymmetric cylindrical enclosures using the discrete ordinates method. Combust. Sci. Technol. 1988, 62, 173–186. [Google Scholar] [CrossRef]
- Yang, C.-x.; Zhu, X. Numerical simulation of trimming of double-suction impeller in high-head and high-speed boiler feed water pump. J. Lanzhou Univ. Technol. 2016, 42, 61–65. [Google Scholar]
- Arabnejad, H.; Mansouri, A.; Shirazi, S.A.; McLaury, B.S. Development of mechanistic erosion equation for solid particles. Wear 2015, 332, 1044–1050. [Google Scholar] [CrossRef]
Parameter | BMCR | ECR |
---|---|---|
Superheated steam flow rate (t·h−1) | 2023.00 | 1760.00 |
Superheater outlet steam pressure (MPa) | 17.50 | 17.29 |
Superheater outlet steam temperature (°C) | 541.0 | 541.0 |
Reheat steam flow rate (t·h−1) | 1689.2 | 1482.0 |
Reheater inlet/Outlet steam pressure (MPa) | 3.95/3.75 | 3.46/3.28 |
Reheater inlet/Outlet steam temperature (°C) | 328.0/541.0 | 315.0/541.0 |
Economizer inlet feedwater temperature (°C) | 281.0 | 272.0 |
Economizer inlet feedwater pressure (MPa) | 19.26 | 18.70 |
Boiler pressure (MPa) | 18.27 | 18.35 |
Parameter | Ultimate Analysis (%) | Proximate Analysis (%) | Qnet, ar (kJ∙kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Var | Aar | Mar | FCar | Car | Har | Oar * | Nar | Sar | ||
Design coal | 27.84 | 10.39 | 14.80 | 46.46 | 52.20 | 2.47 | 0.98 | 8.42 | 0.73 | 18.852 |
Check coal | 28.17 | 9.12 | 19.89 | 42.82 | 50.90 | 2.70 | 0.50 | 10.83 | 0.82 | 18.160 |
Unit Load (MW) | 353 | 431 | 519 | 600 |
---|---|---|---|---|
Coal feed rate (t·h−1) | 206.92 | 268.22 | 309.32 | 304.69 |
Primary air flow rate (t·h−1) | 481.63 | 585.31 | 561.46 | 559.20 |
Secondary air flow rate (t·h−1) | 842.18 | 959.19 | 1288.16 | 1512.86 |
Primary air temperature (K) | 373 | 373 | 373 | 373 |
Secondary air temperature (K) | 625 | 625 | 625 | 625 |
Main steam flow rate (t·h−1) | 1898 | 1760 | 1275 | 871 |
Steam temperature (K) | 814 | 814 | 814 | 807 |
Unit Load (MW) | 353 | 431 | 519 | 600 | |
---|---|---|---|---|---|
Burner inlet velocity (m·s−1) | AA | 11.67 | 13.29 | 17.85 | 20.96 |
A | 14.77 | 14.78 | 13.32 | 14.65 | |
AB | 20.93 | 23.84 | 32.02 | 37.61 | |
B | 17.30 | 17.56 | 15.96 | 16.66 | |
BC | 20.93 | 23.84 | 32.02 | 37.61 | |
C | 17.31 | 17.96 | 15.78 | 17.58 | |
CD | 20.93 | 23.84 | 32.02 | 37.61 | |
D | 15.65 | 15.61 | 14.02 | 15.23 | |
DE | 20.93 | 23.84 | 32.02 | 37.61 | |
E | 3.64 | 18.97 | 15.39 | 16.71 | |
EF | 20.93 | 23.84 | 32.02 | 37.61 | |
F | 6.18 | 6.06 | 12.76 | 6.06 | |
FF | 21.28 | 24.23 | 32.55 | 38.22 | |
OFA | 21.28 | 24.23 | 32.55 | 38.22 |
Parameter | Value |
---|---|
Density (kg·m−1) | 1400 |
Specific heat (J·kg−1·K−1) | 1680 |
Vaporization temperature (K) | 400 |
Volatile component fraction (%) | 24.92 |
Binary diffusivity (m2·s−1) | 4 × 10−5 |
Swelling coefficient | 1.4 |
Burnout stoichiometric ratio | 2.67 |
Combustible fraction (%) | 59.43 |
Parameter | E90 | k1 | k2 | k3 | n1 | n2 |
---|---|---|---|---|---|---|
Value | 6.057 | 0.12 | 2.35 | 0.19 | 0.8 | 1.3 |
Parameter | CFD Result | Design Value | Deviation (%) |
---|---|---|---|
Furnace outlet temperature (K) | 1344 | 1340 | 0.29 |
Rear platen superheater outlet temperature (K) | 1751 | 1760 | 0.51 |
Furnace Outlet Gas Temperature (K) | 1344 | 1340 | 0.29 |
Lower Furnace Outlet Temperature (K) | 1751 | 1760 | 0.51 |
Working Fluid Temperature of Separator (°C) | 325.05 | 328.00 | 0.90 |
Oxygen Content of the Flue Gas at Economizer Outlet (%) | 2.85 | 2.90 | 1.72 |
CO Content of the Flue Gas at Economizer Outlet (%) | 0.92 | 0.90 | 2.22 |
NOx Content of the Flue Gas at Economizer Outlet (mg∙m−3) | 331.4 | 337.1 | 1.69 |
Load (MW) | Maximum Wear Rate (×10−5 kg·m−2·s−1) | |||
---|---|---|---|---|
Low-Temperature Superheater | Final Superheater | Flame Angle | Economizer | |
353 | 0.00123 | 0.00272 | 0.00127 | 0.0329 |
383 | 0.00369 | 0.00411 | 0.00243 | 0.0892 |
407 | 0.00205 | 0.00179 | 0.00923 | 0.0823 |
431 | 0.0126 | 0.0139 | 0.0122 | 0.138 |
463 | 0.0741 | 0.0129 | 0.0860 | 0.154 |
492 | 0.0118 | 0.0348 | 0.152 | 0.104 |
519 | 0.0308 | 0.0559 | 0.185 | 0.740 |
546 | 0.0507 | 0.268 | 0.241 | 0.270 |
574 | 0.0979 | 0.223 | 0.357 | 1.21 |
600 | 0.112 | 0.216 | 0.382 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Wang, M.; Chong, P.; Shao, Y.; Deng, L. Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers. Energies 2025, 18, 3947. https://doi.org/10.3390/en18153947
Sun L, Wang M, Chong P, Shao Y, Deng L. Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers. Energies. 2025; 18(15):3947. https://doi.org/10.3390/en18153947
Chicago/Turabian StyleSun, Lijun, Miao Wang, Peian Chong, Yunhao Shao, and Lei Deng. 2025. "Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers" Energies 18, no. 15: 3947. https://doi.org/10.3390/en18153947
APA StyleSun, L., Wang, M., Chong, P., Shao, Y., & Deng, L. (2025). Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers. Energies, 18(15), 3947. https://doi.org/10.3390/en18153947