Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (618)

Search Parameters:
Keywords = flame oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 153
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

19 pages, 2633 KiB  
Article
Influence of Mullite and Halloysite Reinforcement on the Ablation Properties of an Epoxy Composite
by Robert Szczepaniak, Michał Piątkiewicz, Dominik Gryc, Paweł Przybyłek, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Materials 2025, 18(15), 3530; https://doi.org/10.3390/ma18153530 - 28 Jul 2025
Viewed by 241
Abstract
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder [...] Read more.
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder additive. The composite samples were exposed to a mixture of combustible gases at a temperature of approximately 1000 °C. The primary parameters analyzed during this study were the temperature on the rear surface of the sample and the ablative mass loss of the tested material. The temperature increase on the rear surface of the sample, which was exposed to the hot stream of flammable gases, was measured for 120 s. Another key parameter considered in the data analysis was the ablative mass loss. The charred layer of the sample played a crucial role in this process, as it helped block oxygen diffusion from the boundary layer of the original material. This charred layer absorbed thermal energy until it reached a temperature at which it either oxidized or was mechanically removed due to the erosive effects of the heating factor. The incorporation of mullite reduced the rear surface temperature from 58.9 °C to 49.2 °C, and for halloysite, it was reduced the rear surface temperature to 49.8 °C. The ablative weight loss dropped from 57% to 18.9% for mullite and to 39.9% for halloysite. The speed of mass ablation was reduced from 77.9 mg/s to 25.2 mg/s (mullite) and 52.4 mg/s (halloysite), while the layer thickness loss decreased from 7.4 mm to 2.8 mm (mullite) and 4.4 mm (halloysite). This research is innovative in its use of halloysite and mullite as functional additives to enhance the ablative resistance of polymer composites under extreme thermal conditions. This novel approach not only contributes to a deeper understanding of composite behavior at high temperatures but also opens up new avenues for the development of advanced thermal protection systems. Potential applications of these materials include aerospace structures, fire-resistant components, and protective coatings in environments exposed to intense heat and flame. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

31 pages, 3729 KiB  
Review
Laminar Burning Velocity in Aviation Fuels: Conventional Kerosene, SAFs, and Key Hydrocarbon Components
by Zehua Song, Xinsai Yan, Ziyu Liu and Xiaoyi Yang
Appl. Sci. 2025, 15(14), 8098; https://doi.org/10.3390/app15148098 - 21 Jul 2025
Viewed by 380
Abstract
Sustainable aviation fuels (SAFs) are vitally important for aviation decarbonization. The laminar burning velocity (LBV), a key parameter reflecting the combustion behavior of fuel/oxidizer mixtures, serves as a fundamental metric for evaluating SAF performance. This paper systematically reviews and evaluates the LBV experiment [...] Read more.
Sustainable aviation fuels (SAFs) are vitally important for aviation decarbonization. The laminar burning velocity (LBV), a key parameter reflecting the combustion behavior of fuel/oxidizer mixtures, serves as a fundamental metric for evaluating SAF performance. This paper systematically reviews and evaluates the LBV experiment method and the performance of traditional aviation fuel, SAFs produced via different pathways, and individual components (n-alkanes, iso-alkanes, cycloalkanes, and aromatic hydrocarbons, as well as the impacts of isomers and homologues) in aviation fuels. It is found that LBV values of different SAFs exhibit significant fluctuations, approaching or slightly deviating from those of conventional aviation fuels. Carbon number, branching degree, substituent types, and testing methods in the components all affect LBV performance. Specifically, increased branching in iso-alkanes reduces LBV, cyclohexane and benzene show higher LBV than their methylated counterparts (methylcyclohexane and toluene), and n-alkylcyclohexanes/benzenes with short (C1–C3) side chains demonstrate minimal LBV variation. Spherical flame methods yield more consistent (and generally lower) LBV values than stagnation flame techniques. These findings provide insights for optimizing SAF–conventional fuel blends and enhancing drop-in compatibility while ensuring operational safety and usability. Full article
Show Figures

Figure 1

16 pages, 1713 KiB  
Article
Mass and Heat Balance Model and Its Engineering Application for the Oxygen Blast Furnace Smelting Process of Vanadium–Titanium Magnetite
by Yun Huang, Mansheng Chu, Xian Gan, Shushi Zhang, Zhenyang Wang and Jianliang Zhang
Metals 2025, 15(7), 805; https://doi.org/10.3390/met15070805 - 18 Jul 2025
Viewed by 282
Abstract
The oxygen blast furnace (OBF) process presents a promising low-carbon pathway for the smelting of vanadium–titanium magnetite (VTM). This study develops an innovative mathematical model based on mass and heat balance principles, specifically tailored to the OBF smelting of VTM. The model systematically [...] Read more.
The oxygen blast furnace (OBF) process presents a promising low-carbon pathway for the smelting of vanadium–titanium magnetite (VTM). This study develops an innovative mathematical model based on mass and heat balance principles, specifically tailored to the OBF smelting of VTM. The model systematically investigates the effects of key parameters—including pulverized coal injection ratio, recycling gas volume, hydrogen content in the recycling gas, and charge composition—on furnace productivity, hearth activity, and the tuyere raceway zone. The results show that increasing the pulverized coal injection ratio slightly reduces productivity and theoretical flame temperature: for every 25 kg/tHM increase in the coal ratio, the theoretical flame temperature decreases by 21.95 °C; moreover, indirect reduction is enhanced and the heat distribution within the furnace is significantly improved. A higher recycling gas volume markedly increases productivity and optimizes hearth thermal conditions, accompanied by enhanced blast kinetic energy and an expanded tuyere raceway zone, albeit with a notable drop in combustion temperature. Increased hydrogen content in the recycling gas promotes productivity, but may weaken blast kinetic energy and reduce the stability of the raceway zone. Furthermore, a higher titanium content in the charge increases the difficulty of iron oxide reduction, resulting in lower CO utilization and reduced productivity. Full article
(This article belongs to the Special Issue Innovation in Efficient and Sustainable Blast Furnace Ironmaking)
Show Figures

Figure 1

13 pages, 1243 KiB  
Article
A Tandem MS Platform for Simultaneous Determination of Urinary Malondialdehyde and Diphenyl Phosphate
by Gabriela Chango, Diego García-Gómez, Carmelo García Pinto, Encarnación Rodríguez-Gonzalo and José Luis Pérez Pavón
Int. J. Environ. Res. Public Health 2025, 22(7), 1130; https://doi.org/10.3390/ijerph22071130 - 17 Jul 2025
Viewed by 252
Abstract
This study presents an advanced analytical method for the simultaneous quantification of malondialdehyde (MDA), a biomarker of oxidative stress, and diphenyl phosphate (DPhP), a metabolite of the organophosphate flame retardant triphenyl phosphate (TPhP), in human urine. The method integrates hydrophilic interaction liquid chromatography [...] Read more.
This study presents an advanced analytical method for the simultaneous quantification of malondialdehyde (MDA), a biomarker of oxidative stress, and diphenyl phosphate (DPhP), a metabolite of the organophosphate flame retardant triphenyl phosphate (TPhP), in human urine. The method integrates hydrophilic interaction liquid chromatography (HILIC), a type of liquid chromatography suitable for polar compounds, for MDA separation, and an online restricted access material (RAM), a preconcentration column, for DPhP isolation, achieving high specificity and sensitivity. Validation with certified urine samples confirmed its robustness across diverse analyte concentrations and complex biological matrices. The optimized clean-up steps effectively minimized carryover, allowing for high-throughput analysis. Application to 72 urine samples revealed a significant positive correlation (ρ = 0.702, p-value = 1.9 × 10−7) between MDA and DPhP levels, supporting a potential link between oxidative stress and TPhP exposure. The subset analysis demonstrated a statistically significant moderate positive correlation in women (ρ = 0.622, p-value = 0.020), although this result should be interpreted with caution because of the limited sample size (N = 14). This method provides a powerful tool for biomonitoring oxidative stress and environmental contaminants, offering valuable insights into exposure-related health risks. Full article
(This article belongs to the Special Issue Research on Environmental Exposure, Pollution, and Epidemiology)
Show Figures

Graphical abstract

18 pages, 4231 KiB  
Article
Effect Mechanism of Phosphorus-Containing Flame Retardants with Different Phosphorus Valence States on the Safety and Electrochemical Performance of Lithium-Ion Batteries
by Peng Xi, Fengling Sun, Xiaoyu Tang, Xiaoping Fan, Guangpei Cong, Ziyang Lu and Qiming Zhuo
Processes 2025, 13(7), 2248; https://doi.org/10.3390/pr13072248 - 14 Jul 2025
Viewed by 296
Abstract
With the widespread application of lithium-ion batteries (LIBs), safety performance has become a critical factor limiting the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolytes of LIBs are extremely flammable. Adding flame retardants to conventional [...] Read more.
With the widespread application of lithium-ion batteries (LIBs), safety performance has become a critical factor limiting the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolytes of LIBs are extremely flammable. Adding flame retardants to conventional electrolytes is an effective method to improve battery safety. In this paper, trimethyl phosphate (TMP) and trimethyl phosphite (TMPi) were used as research objects, and the flame-retardant test and differential scanning calorimetry (DSC) of the electrolytes configured by them were first carried out. The self-extinguishing time of the electrolyte with 5% TMP and TMPi is significantly reduced, achieving a flame-retardant effect. Secondly, the electrochemical performance of LiFePO4|Li half-cells after adding different volume ratios of TMP and TMPi was studied. Compared with TMPi5, the peak potential difference between the oxidation peak and the reduction peak of the LiFePO4|Li half-cell with TMP5 added is reduced, the battery polarization is reduced, the discharge specific capacity after 300 cycles is large, the capacity retention rate is as high as 99.6%, the discharge specific capacity is larger at different current rates, and the electrode resistance is smaller. TMPi5 causes the discharge-specific capacity to attenuate, which is more obvious at high current rates. LiFePO4|Li half-cells with 5% volume ratio of flame retardant have the best electrochemical performance. Finally, the influence mechanism of the phosphorus valence state on battery safety and electrochemical performance was compared and studied. After 300 cycles, the surface of the LiFePO4 electrode with 5% TMP added had a smoother and more uniform CEI film and higher phosphorus (P) and fluorine (F) content, which was beneficial to the improvement of electrochemical performance. The cross-section of the LiFePO4 electrode showed slight collapse and cracks, which slowed down the attenuation of battery capacity. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 412
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

20 pages, 925 KiB  
Review
Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production
by Khalid Al Sadi, Ebrahim Nadimi and Dawei Wu
Energies 2025, 18(13), 3505; https://doi.org/10.3390/en18133505 - 2 Jul 2025
Cited by 1 | Viewed by 383
Abstract
Ammonia is increasingly recognised as a promising carbon-free fuel and hydrogen carrier due to its high hydrogen content, ease of liquefaction, and existing global infrastructure. However, its direct utilisation in combustion systems poses significant challenges, including low flame speed, high ignition temperature, and [...] Read more.
Ammonia is increasingly recognised as a promising carbon-free fuel and hydrogen carrier due to its high hydrogen content, ease of liquefaction, and existing global infrastructure. However, its direct utilisation in combustion systems poses significant challenges, including low flame speed, high ignition temperature, and the formation of nitrogen oxides (NOX). This review explores catalytic ammonia cracking as a viable method to enhance combustion through in situ hydrogen production. It evaluates traditional catalytic burner designs originally developed for hydrocarbon fuels and assesses their adaptability for ammonia-based applications. Special attention is given to ruthenium- and nickel-based catalysts supported on various oxides and nanostructured materials, evaluating their ammonia conversion efficiency, resistance to sintering, and thermal stability. The impact of the main operational parameters, including reaction temperature and gas hourly space velocity (GHSV), is also discussed. Strategies for combining partial ammonia cracking with stable combustion are studied, with practical issues such as catalyst degradation, NOX regulation, and system scalability. The analysis highlights recent advancements in structural catalyst support, which have potential for industrial-scale application. This review aims to provide future development of low-emission, high-efficiency catalytic burner systems and advance ammonia’s role in next-generation hydrogen energy technologies. Full article
Show Figures

Figure 1

15 pages, 1297 KiB  
Article
Thermal and Emission Performance Evaluation of Hydrogen-Enriched Natural Gas-Fired Domestic Condensing Boilers
by Radosław Jankowski, Rafał Ślefarski, Ireneusz Bauma and Giennadii Varlamov
Energies 2025, 18(13), 3240; https://doi.org/10.3390/en18133240 - 20 Jun 2025
Viewed by 338
Abstract
The combustion of gaseous fuels in condensing boilers contributes to the greenhouse gas and toxic compound emissions in exhaust gases. Hydrogen, as a clean energy carrier, could play a key role in decarbonizing the residential heating sector. However, its significantly different combustion behavior [...] Read more.
The combustion of gaseous fuels in condensing boilers contributes to the greenhouse gas and toxic compound emissions in exhaust gases. Hydrogen, as a clean energy carrier, could play a key role in decarbonizing the residential heating sector. However, its significantly different combustion behavior compared to hydrocarbon fuels requires thorough investigation prior to implementation in heating systems. This study presents experimental and theoretical analyses of the co-combustion of natural gas with hydrogen in low-power-output condensing boilers (second and third generation), with hydrogen content of up to 50% by volume. The results show that mixtures of hydrogen and natural gas contribute to increasing heat transfer in boilers through convection and flue gas radiation. They also highlight the benefits of using the heat from the condensation of vapors in the flue gases. Other studies have observed an increase in efficiency of up to 1.6 percentage points compared to natural gas at 50% hydrogen content. Up to a 6% increase in the amount of energy recovered by water vapor condensation was also recorded, while exhaust gas losses did not change significantly. Notably, the addition of hydrogen resulted in a substantial decrease in the emission of nitrogen oxides (NOx) and carbon monoxide (CO). At 50% hydrogen content, NOx emissions decreased several-fold to 2.7 mg/m3, while CO emissions were reduced by a factor of six, reaching 9.9 mg/m3. All measured NOx values remained well below the current regulatory limit for condensing gas boilers, which is 33.5 mg/m3. These results highlight the potential of hydrogen blending as a transitional solution on the path toward cleaner residential heating systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

18 pages, 5503 KiB  
Article
Enhancing Cotton Fabrics Through Grafting of Glycine-Based Polyamidoamine
by Matteo Arioli, Jenny Alongi, Claudia Forte, Silvia Pizzanelli and Elisabetta Ranucci
Polymers 2025, 17(12), 1676; https://doi.org/10.3390/polym17121676 - 17 Jun 2025
Viewed by 385
Abstract
Durable polyamidoamine (PAA) coatings were covalently grafted onto cotton by applying a water-soluble, glycine-based PAA (M-GLY) through a radical polymerization mechanism. M-GLY oligomers of different chain lengths, terminated with bisacrylamide groups, were synthesized via polyaddition of N,N′-methylenebisacrylamide and glycine at molar ratios of [...] Read more.
Durable polyamidoamine (PAA) coatings were covalently grafted onto cotton by applying a water-soluble, glycine-based PAA (M-GLY) through a radical polymerization mechanism. M-GLY oligomers of different chain lengths, terminated with bisacrylamide groups, were synthesized via polyaddition of N,N′-methylenebisacrylamide and glycine at molar ratios of 1:0.9, 1:0.85, and 1:0.8. Cotton strips were then impregnated with differently concentrated (10 and 20 wt.%) aqueous solutions of the M-GLY oligomers in the presence of potassium persulfate, which oxidized cellulose and generated radicals that initiated polymerization of the M-GLY terminals, thereby enabling covalent grafting onto cotton. This process yielded M-GLY-grafted cotton (COT-g-M-GLY) with 2–15% add-on levels. Scanning electron microscopy revealed uniform surface coverage and penetration of the coating into fiber interiors. Grafting did not alter cellulose crystallinity—65% vs. 64% for grafted and virgin cotton. However, thermogravimetric analysis showed that COT-g-M-GLY exhibited lower thermo-oxidative stability than M-GLY-adsorbed cotton (COT/M-GLY) at similar add-ons. Flame-retardancy tests indicated that COT-g-M-GLY reduced the burning rate (by 10% to 30%) but did not achieve self-extinguishing behavior, unlike COT/M-GLY. Despite this, COT-g-M-GLY provided good protection against UV-induced photodegradation. After accelerated UVA–UVB exposure, cotton samples with 10% M-GLY add-on showed a significantly reduced yellowing rate compared to untreated cotton, as confirmed by spectrophotometric analysis. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

32 pages, 5534 KiB  
Review
Applications of Quantum Dots in Photo-Based Advanced Oxidation Processes for the Degradation of Contaminants of Emerging Concern—A Review
by Grzegorz Matyszczak, Albert Yedzikhanau, Christopher Jasiak, Natalia Bojko and Krzysztof Krawczyk
Catalysts 2025, 15(6), 591; https://doi.org/10.3390/catal15060591 - 14 Jun 2025
Viewed by 776
Abstract
Nanomaterials are interesting due to their unexpected and unique properties arising from phenomena occurring at the so-called mesoscale (that is, between single atoms and bulk solids). Among nanomaterials, one may distinguish quantum dots, which are highly crystalline nanocrystals with sizes up to c.a. [...] Read more.
Nanomaterials are interesting due to their unexpected and unique properties arising from phenomena occurring at the so-called mesoscale (that is, between single atoms and bulk solids). Among nanomaterials, one may distinguish quantum dots, which are highly crystalline nanocrystals with sizes up to c.a. 10 nm. Due to the quantum confinement effect, quantum dots exhibit extraordinary electronic and optical properties and may be utilized in photocatalysis. Semiconducting quantum dots may absorb photons, which results in the excitation of electrons from valence to conducting bands. Excited electrons in the conducting band and positive holes in the valence band may interact with chemical molecules (e.g., with water molecules), forming highly reactive radicals. Consequently, quantum dots may be utilized in advanced oxidation processes based on the action of light (i.e., photo-based advanced oxidation processes). Furthermore, quantum dots have advantages, such as having a tunable energy band gap and relative cost-effectiveness. Advanced oxidation processes are very important in the context of the constantly increasing pollution of the natural environment. Contaminants of emerging concern, such as pesticides, endocrine-disrupting compounds, and flame retardants, are still being detected in naturally present water. Such compounds may be degraded using advanced oxidation processes, utilizing quantum dots as photocatalysts. However, many operational parameters (such as quantum dots’ properties, including the means of their preparation) influence the efficiency of such processes; thus, detailed studies are being conducted. Full article
Show Figures

Figure 1

18 pages, 4956 KiB  
Article
Construction of Fire-Retardant PEO Composite Based on Calcium Sulfate Whiskers Fabricated from Phosphogypsum and DOPO Derivatives
by Jie Zhang, Wei Yan, Weijiang Huang, Kui Wang, Qin Tian, Chunyun Tu, Xingyu Guan, Shaoyuan Wu, Xuan Ba, Chunle Wei, Tong Ye, Jingyu Chen and Yi Zhang
Polymers 2025, 17(12), 1588; https://doi.org/10.3390/polym17121588 - 6 Jun 2025
Viewed by 519
Abstract
Incorporating a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-based derivative (1,4-bis(diphenoxyphosphoryl)piperazine, DIDOPO) in combination with modified calcium sulfate whiskers (MCSWs) improved the flame retardancy, thermal stability, and rheological properties of a polyethylene oxide (PEO) composite. The synergistic flame-retardant effect of DIDOPO and MCSW on the PEO system was investigated. [...] Read more.
Incorporating a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-based derivative (1,4-bis(diphenoxyphosphoryl)piperazine, DIDOPO) in combination with modified calcium sulfate whiskers (MCSWs) improved the flame retardancy, thermal stability, and rheological properties of a polyethylene oxide (PEO) composite. The synergistic flame-retardant effect of DIDOPO and MCSW on the PEO system was investigated. After introducing 5 wt.% MCSW and 10 wt.% DIDOPO into PEO, the UL-94 rating of the composite reached V-0, and the limiting oxygen index was increased to 26.5%. Additionally, the peak and average heat release rates and total heat release of the PEO/10% DIDOPO/5% MCSW composite decreased by 38.9%, 22%, and 20.07%, respectively. The results of a thermogravimetric analysis (TGA) revealed that PEO/10% DIDOPO/5% MCSW displayed an improved initial thermal stability and rate of char formation compared to those of the PEO matrix. The results of TGA/Fourier transform infrared analysis indicated that the composites exhibited phosphorus-containing groups during thermal degradation, based on the characteristic absorption peaks, and increased amounts of gas-phase volatiles. The morphologies and structures of the residues indicated that the PEO/10% DIDOPO/5% MCSW blend was less stable than PEO during combustion. The MCSW mixture formed a denser, more continuous carbon layer on the composite surface during combustion. The rheological behavior indicated that the high complex viscosity and moduli of PEO/10% DIDOPO/5% MCSW promoted the cross-linking network structure of the condensed phase during combustion. MCSW exhibited an excellent flame retardancy and improved thermal stability, which are potentially promising for use in fire safety applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 2410 KiB  
Article
Modeling Homogeneous, Stratified, and Diffusion Combustion in Hydrogen SI Engines Using the Wiebe Approach
by Oleksandr Osetrov and Rainer Haas
Energies 2025, 18(12), 3004; https://doi.org/10.3390/en18123004 - 6 Jun 2025
Viewed by 372
Abstract
The use of hydrogen as a fuel for piston engines enables environmentally friendly and efficient operation. However, several challenges arise in the combustion process, limiting the development of hydrogen engines. These challenges include abnormal combustion, the high burning velocity of hydrogen-enriched mixtures, increased [...] Read more.
The use of hydrogen as a fuel for piston engines enables environmentally friendly and efficient operation. However, several challenges arise in the combustion process, limiting the development of hydrogen engines. These challenges include abnormal combustion, the high burning velocity of hydrogen-enriched mixtures, increased nitrogen oxide emissions, and others. A rational organization of hydrogen combustion can partially or fully mitigate these issues through the use of advanced methods such as late direct injection, charge stratification, dual injection, jet-guided operation, and others. However, mathematical models describing hydrogen combustion for these methods are still under development, complicating the optimization and refinement of hydrogen engines. Previously, we proposed a mathematical model based on Wiebe functions to describe premixed and diffusion combustion, as well as relatively slow combustion in lean-mixture zones, behind the flame front, and near-wall regions. This study further develops the model by accounting for the combined influence of the mixture composition and engine speed, mixture stratification, and the effects of injection and ignition parameters on premixed and diffusion combustion. Special attention is given to combustion modeling in an engine with single injection and jet-guided operation. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

13 pages, 1205 KiB  
Article
Applications of Hydrogenous Species for Initiation of Carbon Monoxide/Air Premixed Flame
by Annas Fauzy, Guan-Bang Chen and Ta-Hui Lin
Energies 2025, 18(12), 3003; https://doi.org/10.3390/en18123003 - 6 Jun 2025
Viewed by 351
Abstract
Carbon monoxide (CO) is classified as a simple fuel that contains one carbon and one oxygen atom. The oxidation of CO with an oxidizer is relatively unusual, with the oxidation of CO having a slow reaction time. The addition of a small amount [...] Read more.
Carbon monoxide (CO) is classified as a simple fuel that contains one carbon and one oxygen atom. The oxidation of CO with an oxidizer is relatively unusual, with the oxidation of CO having a slow reaction time. The addition of a small amount of “hydrogenous” species, such as H2, H2O, and CH4, will substantially increase the reaction time. This study numerically investigated and compared the effects of different hydrogenous species addition on the premixed CO/air flames, which act as the initiation of a CO/air flame, on the adiabatic flame temperature, laminar flame speed, and heat release rates at standard conditions (298 K and 1 atm pressure) using San Diego Mechanism. The results showed that the addition of critical hydrogenous species distinguished the difference between dry and wet CO/air oxidation, in which different hydrogenous species have an identical critical value. Adding different hydrogenous species and different addition ratios has an indistinguishable adiabatic flame temperature, while adding CH4 has a higher laminar flame speed distribution compared with H2 and H2O addition, respectively. Furthermore, the laminar flame speed positively correlates with the net heat release rate, which adding CH4 has a noticeable increase on the net heat release rate. Adding more hydrogenous species makes the reactant more reactive and moves the reaction zone upstream. Finally, the dominant reactions to the heat release rate are identical in different hydrogenous species addition, where R23: CO + O (+M) ⇌ CO2 (+M) becomes the most contributed reaction. Full article
Show Figures

Figure 1

22 pages, 6488 KiB  
Article
Risk of Flame Acceleration Due to Accumulation of Unburnt Volatiles in Zero-Gravity Condition
by Huiying Wang and Némo Decamps
Sci 2025, 7(2), 75; https://doi.org/10.3390/sci7020075 - 3 Jun 2025
Viewed by 340
Abstract
This paper investigates the influence of ventilation conditions, including oxidizer flow speed and oxygen concentration, on major species composition in favor of estimating a risk of flame acceleration at reduced gravity. A two-step chemical reaction for gas phase and a soot formation model [...] Read more.
This paper investigates the influence of ventilation conditions, including oxidizer flow speed and oxygen concentration, on major species composition in favor of estimating a risk of flame acceleration at reduced gravity. A two-step chemical reaction for gas phase and a soot formation model based on laminar smoke point are used. To calculate thermal radiation from flame, a discrete-ordinates method is coupled with a non-grey model by taking into account the radiative properties of CO, CO2, H2O and soot. The predictions provide further insights into the intimate coupling of fuel types, such as heptane and dodecane, with burning rate, flame structure and toxic emissions as a consequence of changes in ventilation conditions such as oxidizer flow velocity and oxygen concentration. From a boundary-layer microgravity flame, the CO2 to CO ratio is less than 3, and the unburnt hydrocarbons CmHn to CO ratio is less than 2, with a concentration of unburnt fuel that exceeds the Lower Flammability Limit. This finding on the production of unburnt species is contrasted to the case of a buoyancy-controlled flame at Earth gravity. Full article
(This article belongs to the Section Chemistry Science)
Show Figures

Figure 1

Back to TopTop