Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (501)

Search Parameters:
Keywords = fish storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2562 KiB  
Article
Comparative Stability and Anesthetic Evaluation of Holy Basil Essential Oil Formulated in SNEDDS and Microemulsion Systems in Cyprinus carpio var. Koi
by Kantaporn Kheawfu, Chuda Chittasupho, Surachai Pikulkaew, Wasana Chaisri and Taepin Junmahasathien
Pharmaceutics 2025, 17(8), 997; https://doi.org/10.3390/pharmaceutics17080997 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Holy basil (Ocimum tenuiflorum L.) essential oil exhibits antioxidant, antimicrobial, and anesthetic activities, mainly due to eugenol, methyl eugenol, and β-caryophyllene. However, its clinical application is limited by poor water solubility, instability, and low bioavailability. This study developed and compared two [...] Read more.
Background/Objectives: Holy basil (Ocimum tenuiflorum L.) essential oil exhibits antioxidant, antimicrobial, and anesthetic activities, mainly due to eugenol, methyl eugenol, and β-caryophyllene. However, its clinical application is limited by poor water solubility, instability, and low bioavailability. This study developed and compared two delivery systems, self-nanoemulsifying drug delivery systems (SNEDDS) and microemulsions (ME), to enhance their stability and fish anesthetic efficacy. Methods: The optimized SNEDDS (25% basil oil, 8.33% coconut oil, 54.76% Tween 80, 11.91% PEG 400) and ME (12% basil oil, 32% Tween 80, 4% sorbitol, 12% ethanol, 40% water) were characterized for droplet size, PDI, zeta potential, pH, and viscosity. Stability was evaluated by monitoring droplet size and PDI over time and by determining the retention of eugenol, methyl eugenol, and β-caryophyllene after storage at 45 °C. Fish anesthetic efficacy was tested in koi carp (Cyprinus carpio var. koi). Results: SNEDDS maintained a small droplet size (~22.78 ± 1.99 nm) and low PDI (0.188 ± 0.088 at day 60), while ME showed significant size enlargement (up to 177.10 ± 47.50 nm) and high PDI (>0.5). After 90 days at 45 °C, SNEDDS retained 94.45% eugenol, 94.08% methyl eugenol, and 88.55% β-caryophyllene, while ME preserved 104.76%, 103.53%, and 94.47%, respectively. In vivo testing showed that SNEDDS achieved faster anesthesia (114.70 ± 24.80 s at 120 ppm) and shorter recovery (379.60 ± 15.61 s) than ME (134.90 ± 4.70 s; 473.80 ± 16.94 s). Ethanol failed to induce anesthesia at 40 ppm and performed poorly compared to SNEDDS and ME at other concentrations (p < 0.0001). Conclusions: SNEDDS demonstrated superior physical stability and fish anesthetic performance compared to ME. These findings support SNEDDS as a promising formulation for delivering holy basil essential oil in biomedical and aquaculture applications. Full article
(This article belongs to the Special Issue Applications of Nanotechnology in Veterinary Drug Delivery)
Show Figures

Figure 1

16 pages, 1213 KiB  
Article
Elucidating Volatile Flavor Profiles and Metabolic Pathways in Northern Pike (Esox lucius) During Superchilled Storage: A Combined UPLC-Q-TOF/MS and GC-MS Approach
by Shijie Bi, Na Li, Gao Gong, Peng Gao, Jinfang Zhu and Batuer Abulikemu
Foods 2025, 14(15), 2556; https://doi.org/10.3390/foods14152556 - 22 Jul 2025
Viewed by 266
Abstract
Temperature is the most critical factor in fish preservation. Superchilled storage represents a novel technology that effectively retards quality deterioration in aquatic products. This study investigated the flavor variation patterns and deterioration mechanisms in 16 northern pike (Esox lucius) samples during [...] Read more.
Temperature is the most critical factor in fish preservation. Superchilled storage represents a novel technology that effectively retards quality deterioration in aquatic products. This study investigated the flavor variation patterns and deterioration mechanisms in 16 northern pike (Esox lucius) samples during superchilled storage (−3 °C) based on analysis using gas chromatography-ion mobility spectrometry (GC-IMS) and ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The results indicate that GC-MS analysis identified 25 key volatile flavor compounds. These comprised seven ketones, thirteen alcohols, aldehydes including 2-methylbutanal, esters such as 2-heptyl acetate and methyl butyrate, as well as nitrogen-containing compounds, exemplified by pyrazines and indole. Non-targeted metabolomics further revealed four pivotal metabolic pathways, glycerophospholipid metabolism, purine metabolism, the pentose phosphate pathway, and arginine biosynthesis. These metabolic pathways were found to regulate flavor changes through modulation of lipid oxidation, nucleotide degradation, and amino acid metabolism. Notably, the arginine biosynthesis pathway exhibited significant correlations with the development of characteristic cold-storage off-flavors, mediated by glutamate accumulation and fumarate depletion. This investigation provided a theoretical foundation for optimizing preservation strategies in cold-water fish species at the molecular level. Full article
(This article belongs to the Special Issue Innovative Muscle Foods Preservation and Packaging Technologies)
Show Figures

Figure 1

17 pages, 3568 KiB  
Article
Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel
by Lanjing Wang, Weiyi Yan, Aijun Li, Huayin Zhang and Qian Xu
Foods 2025, 14(14), 2505; https://doi.org/10.3390/foods14142505 - 17 Jul 2025
Viewed by 267
Abstract
The visual colorimetric sensing of total volatile basic nitrogen (TVB-N) allows for convenient dynamic monitoring of animal-derived food freshness to ensure food safety. The agarose hydrogel loaded with the natural dye juglone (Jug@AG) prepared in this study exhibits visible multicolor changes from yellow [...] Read more.
The visual colorimetric sensing of total volatile basic nitrogen (TVB-N) allows for convenient dynamic monitoring of animal-derived food freshness to ensure food safety. The agarose hydrogel loaded with the natural dye juglone (Jug@AG) prepared in this study exhibits visible multicolor changes from yellow to grayish-yellow and then to brownish with increasing TVB-N gas concentration, achieving sensitive detection of TVB-N gas at concentrations as low as 0.05 mg/dm3 within 8 min. The minimum observable amounts of TVB-N in spiked pork and fish samples are 8.43 mg/100 g and 8.27 mg/100 g, respectively, indicating that the Jug@AG hydrogel possesses sensitive colorimetric sensing capability in practical applications. The Jug@AG hydrogel also shows significant changes in color difference value (∆C) under both room temperature (25 °C) and cold storage (4 °C) conditions, with the changing trends of ∆C showing consistency with the measured TVB-N and total viable counts (TVC) during the transition of pork and fish samples from freshness to early spoilage and then to spoilage. The results indicate that the Jug@AG hydrogel can be used as a colorimetric sensor to achieve real-time dynamic freshness monitoring of animal-derived food. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

16 pages, 14728 KiB  
Article
Comparative Study of the Gel-Forming Ability of Type I Collagens Extracted from Different Organs and Fish Species
by Abdul Ghani, Mantaro Okada, Beini Sun, Xi Zhang, Ichiro Higuchi and Yasuaki Takagi
Gels 2025, 11(7), 533; https://doi.org/10.3390/gels11070533 - 9 Jul 2025
Viewed by 294
Abstract
The gel-forming ability of collagens is vital for their application in cell scaffolds, yet very few comparative studies on fish collagen sources are available. This study isolated and characterized type I collagens from carp skin (CSK), scales (CSC), and swim bladders (CSB) and [...] Read more.
The gel-forming ability of collagens is vital for their application in cell scaffolds, yet very few comparative studies on fish collagen sources are available. This study isolated and characterized type I collagens from carp skin (CSK), scales (CSC), and swim bladders (CSB) and sturgeon skin (SSK) and swim bladders (SSB). The carp collagens exhibited higher thermal stability (34.75–34.78 °C) and formed more transparent, stronger gels than the sturgeon collagens. Additionally, as demonstrated by scanning electron microscopy, the sturgeon collagens exhibited faster fibril formation, with visible fibrils after 3 h which grew thicker but did not form bundles. The carp collagens, in contrast, initially displayed fewer, thinner, and longer fibrils, with their formation accelerating over time and fibril bundles emerging after 24 h. All collagen solutions of 4% (w/v) exhibited shear-thinning flow behavior, with the carp-derived solutions showing higher viscosities (103–104 Pa·s) than those demonstrated by the sturgeon-derived solutions (102–103 Pa·s). The CSBs and SSBs demonstrated the highest storage (G′) and loss (G″) moduli, with the former exhibiting the lowest loss tangent (tan δ), indicative of a stronger gel structure. The gels at 24 h showed slightly poorer mechanical properties than those at 3 h. The CSC and SSB gels had the highest thermal stability. These findings highlight the distinctiveness of the characteristics of collagens and their gels, emphasizing their potential in biomaterial applications. The present study also provides a foundational framework for assessing cellular responses in a comparative context that may help in identifying the most suitable collagen types for biomedical applications. Full article
Show Figures

Graphical abstract

22 pages, 3940 KiB  
Article
Insights into the Process of Fish Diversity Pattern Changes and the Current Status of Spatiotemporal Dynamics in the Three Gorges Reservoir Area Using eDNA
by Jiaxin Huang, Yufeng Zhang, Xiaohan Dong, Xinxin Zhou, Zhihao Liu, Qiliang Chen, Fan Chen and Yanjun Shen
Fishes 2025, 10(6), 295; https://doi.org/10.3390/fishes10060295 - 18 Jun 2025
Cited by 1 | Viewed by 493
Abstract
The ecological consequences of the construction and operation of the Three Gorges Reservoir, particularly its unique operation strategy of storing clear water and releasing turbid water, exerts a profound influence on the composition and dynamics of local fish communities. To date, detailed and [...] Read more.
The ecological consequences of the construction and operation of the Three Gorges Reservoir, particularly its unique operation strategy of storing clear water and releasing turbid water, exerts a profound influence on the composition and dynamics of local fish communities. To date, detailed and comprehensive research on seasonal changes in the fish community across the entire reservoir remains scarce. This study aims to fill this research gap by systematically investigating fish diversity through a comprehensive assessment of six main river reaches and eight major tributaries. The investigation employs environmental DNA (eDNA) technology across three critical life-cycle stages: breeding, feeding, and overwintering periods. A total of 124 fish species were recorded, comprising 10 orders, 20 families, and 80 genera. The comparative analyses of historical data suggest a significant decline in lotic and endemic fish populations, accompanied by a concurrent increase in lentic, eurytopic, and non-native fish species. Notably, the composition of fish communities exhibited similarities between breeding and overwintering periods. This study highlights the occurrence of significant seasonal fluctuations in the fish communities, showing a preference for reservoir tails and tributaries as optimal habitats. Water temperature has a predominant influence on structuring fish communities within aquatic ecosystems. This study investigates variations in the biodiversity of fish communities using historical data, with a focus on changes linked to reservoir operations and water impoundment activities. By integrating historical data, this research examines changes in fish diversity that are associated with water storage processes. It provides foundational data on the current composition and diversity of fish communities within the watershed, elucidating the spatiotemporal variations in fish diversity and the mechanisms by which environmental factors influence these communities. Furthermore, the current study serves as a valuable reference for understanding the changes in fish communities within other large reservoirs. Full article
Show Figures

Figure 1

17 pages, 2285 KiB  
Article
A Promising Attenuated Rhabdovirus Vaccine Candidate Conferring Dual-Route Protection Against MSRV Disease in Largemouth Bass (Micropterus salmoides)
by Xiaozhe Fu, Wenxian Li, Minghui Kong, Hongru Liang, Qiang Lin, Yinjie Niu, Xia Luo, Baofu Ma, Jin Zhou and Ningqiu Li
Vaccines 2025, 13(6), 645; https://doi.org/10.3390/vaccines13060645 - 16 Jun 2025
Viewed by 518
Abstract
Background/Objectives: Largemouth bass rhabdovirus (Micropterus salmoides rhabdovirus, MSRV) disease causes high mortality in largemouth bass farming. Therefore, vaccine development is critical for largemouth bass prevention against MSRV. Methods: An attenuated strain, denoted as MSRV-0509, was selected through intraperitoneal injection and immersion challenge [...] Read more.
Background/Objectives: Largemouth bass rhabdovirus (Micropterus salmoides rhabdovirus, MSRV) disease causes high mortality in largemouth bass farming. Therefore, vaccine development is critical for largemouth bass prevention against MSRV. Methods: An attenuated strain, denoted as MSRV-0509, was selected through intraperitoneal injection and immersion challenge assays, followed by plaque purification. The biological characteristics of MSRV-0509, including optimal inoculation dose, replication kinetics, thermostability, pH resistance, chloroform tolerance, and storage viability, were determined via viral titration. Spatiotemporal distribution patterns in largemouth bass post-intraperitoneal injection or immersion infection were quantified by qPCR. Immunoprotective efficacy was evaluated through intraperitoneal and immersion vaccination. Mechanistic insights were explored via relative qPCR and serum neutralization assays. Safety was assessed by single-dose overdose immunization and virulence reversion experiments. Results: An attenuated strain MSRV-0509 was screened through a challenge assay, exhibiting complete avirulence in largemouth bass compared to the virulent strain SCRV-T6. MSRV-0509 demonstrated optimal replication at low MOI (0.0001) in CPB cells, with peak titers (108.3 TCID50/mL) at 96 h post-infection. The virus showed susceptibility to high temperatures, lipid solvents and acidic conditions, with prolonged stable storage viability at −80 °C. Tissue distribution revealed the spleen as the primary target after intraperitoneal injection, while immersion restricted infection to gills, with rapid clearance by 3–6 dpi. Vaccination trials identified 5 × 102 TCID50/fish via intraperitoneal injection and 106.0 TCID50/mL via immersion as effective immunizing doses, providing 100% relative survival post-challenge. Immune gene expression and serum neutralization showed Th1 and Th2 activation via intraperitoneal injection (elevated IL-12, IFN-γ, IL-10, IgM), whereas only the Th1 response was activated after vaccine immersion. No abnormality and mortality were observed in single overdose vaccination and virulence reversion experiments, confirming that MSRV-0509 was safe. Conclusions: These results proved that MSRV-0509 could be a promising vaccine candidate to protect largemouth bass from MSRV disease. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

18 pages, 4392 KiB  
Article
Trimethylamine Gas Sensor Based on Electrospun In2O3 Nanowires with Different Grain Sizes for Fish Freshness Monitoring
by Xiangrui Dong, Bo Zhang, Mengyao Shen, Qi Lu, Hao Shen, Yi Ni, Yuechen Liu and Haitao Song
Chemosensors 2025, 13(6), 218; https://doi.org/10.3390/chemosensors13060218 - 14 Jun 2025
Viewed by 2216
Abstract
Seafood, especially marine fish, is highly prone to spoilage during processing, transportation, and storage. It releases pungent trimethylamine (TMA) gas, which severely affects food quality and safety. Metal–oxide–semiconductor (MOS) gas sensors for TMA detection offer a rapid, convenient, and accurate method for assessing [...] Read more.
Seafood, especially marine fish, is highly prone to spoilage during processing, transportation, and storage. It releases pungent trimethylamine (TMA) gas, which severely affects food quality and safety. Metal–oxide–semiconductor (MOS) gas sensors for TMA detection offer a rapid, convenient, and accurate method for assessing fish freshness. Indium oxide (In2O3) has shown potential as an effective sensing material for the detection of TMA. In this work, one-dimensional In2O3 nanowires with different grain sizes and levels of crystallinity were synthetized using the electrospinning technique and underwent different thermal calcination processes. Gas-sensing tests showed that the In2O3–3 °C/min–500 °C gas sensor exhibited an outstanding performance, including a high response (Ra/Rg = 47.0) to 100 ppm TMA, a short response time (6 s), a low limit of detection (LOD, 0.0392 ppm), and an excellent long-term stability. Furthermore, the sensor showed promising experimental results in monitoring the freshness of Larimichthys crocea (L. crocea). By analyzing the relationship between the grain size and crystallinity of the In2O3 samples, a mechanism for the enhanced gas-sensing performance was proposed. This work provides a novel strategy for designing and fabricating gas sensors for TMA detection and highlights their potential for broad applications in real-time fish freshness monitoring. Full article
Show Figures

Figure 1

12 pages, 2531 KiB  
Article
Isolation and Characterization of Aeromonas salmonicida Phage TSW001 and Its Application on Large Yellow Croaker
by Jun Yan, Zhenghao Guo and Jing Xie
Foods 2025, 14(12), 2082; https://doi.org/10.3390/foods14122082 - 12 Jun 2025
Viewed by 597
Abstract
Aeromonas salmonicida is a common spoilage bacterium found in refrigerated fish. In this study, a virulent bacteriophage was isolated from wastewater using A. salmonicida AS08 as the host, and it was designated as TSW001. Based on morphological characterization and whole-genome analysis, bacteriophage TSW001 [...] Read more.
Aeromonas salmonicida is a common spoilage bacterium found in refrigerated fish. In this study, a virulent bacteriophage was isolated from wastewater using A. salmonicida AS08 as the host, and it was designated as TSW001. Based on morphological characterization and whole-genome analysis, bacteriophage TSW001 was classified within the genus Tedavirus. Biological characterization revealed that TSW001 maintained a stable titer within a temperature range of 4~60 °C, a pH range of 4~9, and a salinity range of 50~1000 mM. The optimal multiplicity of infection (MOI) for TSW001 was 0.1, with a short latency period of approximately 10 min and a burst size of approximately 68 PFU/cell. When applied during the cold storage of large yellow croaker, the A. salmonicida count in the fish juice decreased by approximately 2.1~2.3 log10 CFU/mL over the first two days, while the count in the fish fillets decreased by approximately 1.1~1.8 log10 CFU/g. Furthermore, TSW001 demonstrated the ability to inhibit the formation of A. salmonicida biofilms. These results suggest that phage TSW001 is a promising biological antimicrobial agent for controlling A. salmonicida during the cold storage of seafood. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

13 pages, 2529 KiB  
Article
Cryopreservation of Ovarian Tissue at the Stage of Vitellogenesis from Yellow Drum (Nibea albiflora) and Its Effects on Cell Viability and Germ Cell-Specific Gene Expression
by Li Zhou, Feiyan Li, Zhaohan Sun, Jia Chen and Kunhuang Han
Fishes 2025, 10(6), 288; https://doi.org/10.3390/fishes10060288 - 12 Jun 2025
Viewed by 333
Abstract
The cryopreservation of ovarian tissues from fish has recently been carried out for several endangered and commercially valuable species. However, previous studies in this context have focused on the cryopreservation of immature ovaries—mainly through slow freezing and vitrification—which requires specialized freezing equipment or [...] Read more.
The cryopreservation of ovarian tissues from fish has recently been carried out for several endangered and commercially valuable species. However, previous studies in this context have focused on the cryopreservation of immature ovaries—mainly through slow freezing and vitrification—which requires specialized freezing equipment or higher cryoprotectant concentrations to keep cell viability. Therefore, the aim of this study was to explore a convenient, rapid, efficient and less toxic method for the cryopreservation of ovaries at the stage of vitellogenesis from yellow drum (Nibea albiflora), an economically important marine fish. The ovaries at the stage of vitellogenesis were isolated and cut into blocks of approximately 1 cm3, then cryopreserved with 15% propylene glycol (PG), fetal bovine serum (FBS) and 0.2 M trehalose as cryoprotectants. Finally, the samples were treated using three different freezing procedures, including a −80 °C refrigerator, liquid nitrogen, and their combination. After 7 days, the tissues were thawed and digested, and the cell survival rates and gene expression levels were detected using cell viability assay kits and qRT-PCR, respectively. The results of the viability assay showed that the procedure of ovarian tissue storage at −80 °C in a refrigerator for 1 h, followed by transfer to liquid nitrogen, resulted in the highest cell survival rate (>90%). Furthermore, the germ cells at various phases were of normal size; presented a full, smooth surface and regular shape; and did not show any signs of cell rupture, atrophy, depression, granulation or cavitation. Furthermore, the qRT-PCR results revealed that genes related to reproductive development, such as vasa, foxl2, zp3 and gsdf, were all down-regulated under the optimal protocol, while the expression of the nanos2 gene (which is specifically distributed in oogonia) maintained a higher level, similar to that in the control group. This indicated that the viability of germ stem cells (oogonia) was not weakened after freezing and that oogonia could be isolated from the cryopreserved ovaries for germ cell transplantation. The present study successfully establishes an optimal cryopreservation protocol for ovarian tissues from Nibea albiflora, providing reference for the preservation of ovaries at the stage of vitellogenesis from other species. Full article
Show Figures

Figure 1

14 pages, 1730 KiB  
Article
A Comparative Study Based on HS-SPME-GC-MS of Volatile Compounds in Large Yellow Croaker (Pseudosciaena crocea) During Varied Cold Storage Conditions
by Wenyuchu Chen, Fang Tian, Ailing Cao, Weiliang Guan, Tianyu Liu, Ying Liu and Luyun Cai
Foods 2025, 14(12), 2063; https://doi.org/10.3390/foods14122063 - 11 Jun 2025
Viewed by 742
Abstract
Various volatile compounds are responsible for the odor changes in fish during storage. In this study, a coupled headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS) analytical approach was applied to characterize the volatile compounds in large yellow croaker (Pseudosciaena crocea [...] Read more.
Various volatile compounds are responsible for the odor changes in fish during storage. In this study, a coupled headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS) analytical approach was applied to characterize the volatile compounds in large yellow croaker (Pseudosciaena crocea) during storage under three treatments: cold storage (CS), slurry ice (SI), and crushed ice (CI). A total of 24 volatile substances were identified, including aldehydes, ketones, and alcohols. Multivariate statistical analyses (PCA, PLS-DA, VIP, and cluster heatmap) revealed significant differences in volatile compounds between the treatment groups during storage, and 10 key volatiles along with 5 potential biomarker compounds were identified. The underlying mechanisms of volatile changes were further investigated by analyzing three key pathways: thermal reactions, lipid oxidation, and amino acid degradation. Notably, SI treatment better avoid volatile compound variation in large yellow croaker. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

16 pages, 1381 KiB  
Article
Characterization of Microbial Growth, Pathogen Presence, and Histamine Accumulation in Chilled Rainbow Trout and Mackerel Samples Collected from Romanian Markets
by Vida Silviu, Alexandra Tabaran, Oana Lucia Crişan Reget, Mihaela Niculina Duma, Luciana Cătălina Panait and Sorin Daniel Dan
Pathogens 2025, 14(6), 580; https://doi.org/10.3390/pathogens14060580 - 11 Jun 2025
Viewed by 713
Abstract
This study aimed to evaluate microbial growth, pathogen presence, and histamine production in rainbow trout and mackerel stored on flaked ice over their shelf life. A total of 72 fish samples (rainbow trout and mackerel) were analyzed across four storage intervals (day 1, [...] Read more.
This study aimed to evaluate microbial growth, pathogen presence, and histamine production in rainbow trout and mackerel stored on flaked ice over their shelf life. A total of 72 fish samples (rainbow trout and mackerel) were analyzed across four storage intervals (day 1, 3, 9, 12/11) on flaked ice. TVC increased from 2.59 to 5.04 log cfu/g in rainbow trout and from 3.18 to 4.88 log cfu/g in mackerel over the storage period. Significant increases were observed in Pseudomonas, Aeromonas, and Enterobacteriaceae populations, especially after the ninth day. Microbial identification revealed spoilage-associated bacteria, such as Pseudomonas fluorescens and Aeromonas salmonicida, as well as opportunistic pathogens, including Francisella tularensis, Yersinia spp., and Chromobacterium violaceum. Histamine levels rose with storage time but remained below toxic thresholds (<200 mg/kg), peaking at 1.56 mg/kg in trout and 1.87 mg/kg in mackerel. A strong positive correlation was found between TVC and histamine levels (Pearson’s r = 0.85 for trout, 0.82 for mackerel). Proper hygiene and storage are crucial, and consumption is recommended before day 9 of storage on flaked ice. Hygiene measures remain essential to minimize contamination risks and preserve product safety. Full article
Show Figures

Figure 1

9 pages, 1448 KiB  
Brief Report
Red Sea Bream Iridovirus Stability in Freeze–Thaw Cycles: Quantitative Assays of Infectious Particles
by Ji-Min Jeong, Gyoungsik Kang, Jae-Ok Kim, Jeong-Tae Lee, Chan-Il Park and Kyung-Ho Kim
Animals 2025, 15(12), 1699; https://doi.org/10.3390/ani15121699 - 9 Jun 2025
Viewed by 584
Abstract
Red sea bream iridovirus is a serious threat to farmed fish, but little is known about how repeated freezing and thawing affect its stability. This study investigated the effects of repeated freeze–thaw cycles on RSIV infectivity by comparing quantitative polymerase chain reaction (qPCR), [...] Read more.
Red sea bream iridovirus is a serious threat to farmed fish, but little is known about how repeated freezing and thawing affect its stability. This study investigated the effects of repeated freeze–thaw cycles on RSIV infectivity by comparing quantitative polymerase chain reaction (qPCR), viability qPCR (vqPCR), and 50% tissue culture infectious dose (TCID50) assays. While qPCR detected high amounts of viral DNA after multiple cycles, both viability qPCR and TCID50 revealed a significant loss of infectivity unless serum was present. Correlation analysis showed a high degree of agreement between vqPCR and TCID50, indicating their high compatibility for assessing viral infectivity. However, the correlations between qPCR and vqPCR, as well as between qPCR and TCID50, were significantly lower, suggesting that qPCR alone may overestimate viral infectivity by detecting non-infectious viral DNA. These results demonstrate the critical role of serum in preserving RSIV infectivity and highlight the superior accuracy of vqPCR and TCID50 in assessing viral infectivity compared with qPCR. This study emphasizes the importance of serum in storage media and suggests that combining vqPCR with TCID50 is a more reliable measure of RSIV infectivity than qPCR alone. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 5309 KiB  
Article
Energy Optimization Strategy for Wind–Solar–Storage Systems with a Storage Battery Configuration
by Yufeng Wang, Haining Ji, Runteng Luo, Bin Liu and Yongzi Wu
Mathematics 2025, 13(11), 1755; https://doi.org/10.3390/math13111755 - 25 May 2025
Cited by 1 | Viewed by 594
Abstract
With the progressive advancement of the energy transition strategy, wind–solar energy complementary power generation has emerged as a pivotal component in the global transition towards a sustainable, low-carbon energy future. To address the inherent challenges of intermittent renewable energy generation, this paper proposes [...] Read more.
With the progressive advancement of the energy transition strategy, wind–solar energy complementary power generation has emerged as a pivotal component in the global transition towards a sustainable, low-carbon energy future. To address the inherent challenges of intermittent renewable energy generation, this paper proposes a comprehensive energy optimization strategy that integrates coordinated wind–solar power dispatch with strategic battery storage capacity allocation. Through the development of a linear programming model for the wind–solar–storage hybrid system, incorporating critical operational constraints including load demand, an optimization solution was implemented using the Artificial Fish Swarm Algorithm (AFSA). This computational approach enabled the determination of an optimal scheme for the coordinated operation of wind, solar, and storage components within the integrated energy system. Based on the case study analysis, the AFSA optimization algorithm achieves a 1.07% reduction in total power generation costs compared to the traditional Simulated Annealing (SA) approach. Comparative analysis reveals that the integrated grid-connected operation mode exhibits superior economic performance over the standalone storage microgrid system. Additionally, we conducted a further analysis of the key factors contributing to the enhancement of economic benefits. The strategy proposed in this paper significantly enhances power supply stability, reduces overall costs and promotes the large-scale application of green energy. Full article
Show Figures

Figure 1

22 pages, 311 KiB  
Article
Utilization of Fish Meal and Fish Oil from Smoked Salmon By-Products in Juvenile Striped Bass (Morone saxatilis) Feeds: Growth Performance, Nutritional Composition, and Shelf-Life Assessment of Upcycled Ingredients
by Connor Neagle, Michael O. Frinsko, Ryan Kelly, Steven G. Hall, Benjamin J. Reading, Alexander Chouljenko, Greg Bolton and Michael Joseph
Fishes 2025, 10(5), 240; https://doi.org/10.3390/fishes10050240 - 21 May 2025
Viewed by 1717
Abstract
Fish meal (FM) and fish oil (FO) are vital components commonly used in feed formulations. However, their supply, which generally comes from capture fisheries, is being exhausted, necessitating the exploration of sustainable alternatives. In a two-part study, the first part evaluated the FM [...] Read more.
Fish meal (FM) and fish oil (FO) are vital components commonly used in feed formulations. However, their supply, which generally comes from capture fisheries, is being exhausted, necessitating the exploration of sustainable alternatives. In a two-part study, the first part evaluated the FM and FO derived from smoked salmon by-product (SSBP) over a 12-week accelerated shelf-life test, comparing their lipid oxidation, amino acid, and fatty acid profiles to those of commercial whitefish meal and oil. In the second part, the SSBP FM and FO were then included in three experimental feeds at 25%, 50%, and 100% inclusion levels. These feeds were tested on juvenile striped bass (Morone saxatilis) cultured in a recirculating aquaculture system (RAS). The results indicated that the quality of SSBP FM and FO was lower than the commercial product (less amino acids (23.98% vs. 60.30%) and omega-3 fatty acids (9.46% vs. 26.6%), respectively). SSBP FO exhibited high initial peroxide value (21.00 ± 0.00 meq/kg oil), with gradually increasing total oxidation value and p-Anisidine value during storage. Regarding the feeding trial, all fish showed signs of Mycobacterium marinum infection after one month. While there was no significant difference in feed palatability (p > 0.8559), the feed conversion ratio was less efficient for the 100% SSBP feed (1.44 ± 0.14) compared to commercial feed (1.36 ± 0.13), but these differences were not statistically significant. This study suggests that SSBP FM and FO can be used as supplements at lower levels (25% and 50%) without negatively affecting growth, feed efficiency, or survival. Our findings may be useful for enabling beneficial collaborations between smoked salmon processors, feed manufacturers, and striped bass farmers, therefore contributing to sustainability in aquaculture practices. Full article
(This article belongs to the Special Issue Alternative Feeds for Aquatic Animals)
19 pages, 1435 KiB  
Article
The Effect of Combined Extracts from By-Products, Seaweed, and Pure Phenolics on the Quality of Vacuum-Packed Fish Burgers
by Vida Šimat, Danijela Skroza, Roberta Frleta Matas, Dilajla Radelić, Tanja Bogdanović and Martina Čagalj
Appl. Sci. 2025, 15(10), 5508; https://doi.org/10.3390/app15105508 - 14 May 2025
Viewed by 421
Abstract
The objective of the present study was to determine the effect of mixed plant extracts on chemical (pH, total volatile base nitrogen (TVB-N), trimethylamine nitrogen (TMA), thiobarbituric acid reactive substances (TBARS), biogenic amines, relative fatty acid composition) and microbiological quality indicators of vacuum-packed [...] Read more.
The objective of the present study was to determine the effect of mixed plant extracts on chemical (pH, total volatile base nitrogen (TVB-N), trimethylamine nitrogen (TMA), thiobarbituric acid reactive substances (TBARS), biogenic amines, relative fatty acid composition) and microbiological quality indicators of vacuum-packed fish burgers stored at 0 ± 2 °C over 13 days. Three mixtures of common juniper by-product and blackberry leaves extracts (JB), Padina pavonica and prickly juniper needles extracts (PCJ), and blackberry leaves extract with catechin and vanillic (BCV) were tested. At the end of storage, TVB-N (15.38–20.03 mg/100 g) and TMA (10.64–15.63 mg/100 g) of burgers with extracts were significantly lower than those of the control group (22.77 mg TVB-N/100 g, 18.37 mg TMA/100 g). The TBARS values in the control burger reached 2.62 ± 0.02 µmol malondialdehyde (MDA)/100 g, while in burgers with extracts, final values were in the range of 0.62 ± 0.01 to 0.80 ± 0.02 µmol MDA/100 g. The extracts showed no effect on biogenic amine formation (tryptamine, putrescine, and cadaverine levels increased during the storage, being the lowest in BCV) or microbial counts, with the exception of the Pseudomonas sp. counts that were significantly lower in JB and PCJ in comparison to the control, reaching 4.1, 4.1, and 5.0 log CFU/g in JB, PCJ, and control, respectively. Full article
(This article belongs to the Special Issue New Technologies for Marine Foods and Products)
Show Figures

Figure 1

Back to TopTop