Utilization of Fish Meal and Fish Oil from Smoked Salmon By-Products in Juvenile Striped Bass (Morone saxatilis) Feeds: Growth Performance, Nutritional Composition, and Shelf-Life Assessment of Upcycled Ingredients
Abstract
1. Introduction
2. Materials and Methods
2.1. Control and Experimental Feed Manufacturing and Formulation
2.2. Accelerated Shelf-Life Study
2.3. Fish Husbandry
2.4. Pellet Palatability and Floatability
2.5. Feeding Trial Sampling Procedure
2.6. Calculations
2.7. Statistical Analysis
3. Results
3.1. Pellet Floatability and Palatability
3.2. Feeding Trials
3.3. Composition of the Fish After the Feeding Trials
3.4. Accelerated Shelf-Life Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cowey, C.B. Amino acid requirements of fish: A critical appraisal of present values. Aquaculture 1994, 124, 1–11. [Google Scholar] [CrossRef]
- Jones, K.A. The palatability of amino acids and related compounds to rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 1989, 34, 149–160. [Google Scholar] [CrossRef]
- Glencross, B. Understanding the Role of Palatability—It Is All a Matter of Taste. Available online: https://www.iffo.com/understanding-role-palatability-it-all-matter-taste (accessed on 31 May 2024).
- McCollum, E.V.; Simmonds, N.; Pitz, W. Is lysine the limiting amino-acid in the proteins of wheat, maize, or oats? J. Biol. Chem. 1917, 28, 483–499. [Google Scholar] [CrossRef]
- Tulli, F.; Messina, M.; Calligaris, M.; Tibaldi, E. Response of European sea bass (Dicentrarchus labrax) to graded levels of methionine (total sulfur amino acids) in soya protein-based semi-purified diets. Br. J. Nutr. 2010, 104, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Özşahinoğlu, I.; Eroldoğan, T.; Mumoğullarında, P.; Dikel, S.; Engin, K.; Yilmaz, A.H.; Arslan, M.; Sirkecioğlu, A.N. Partial Replacement of Fish Oil with Vegetable Oils in Diets for European Seabass (Dicentrarchus labrax): Effects On Growth Performance and Fatty Acids Profile. Turk. J. Fish. Aquat. Sci. 2013, 13, 819–825. [Google Scholar] [CrossRef]
- Pereira, R.; Basto, A.; Conde-Sieira, M.; Linares, F.; Villanueva, J.L.R.; Sieira, G.P.S.; Soengas, J.L.; Valante, L.M.P. Growth performance and nutrient utilisation of Senegalese sole fed vegetable oils in plant protein-rich diets from juvenile to market size. Aquaculture 2019, 511, 734229. [Google Scholar] [CrossRef]
- Hodar, A.R.; Vasava, R.J.; Mahavadiya, D.R.; Joshi, N.H. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. J. Exp. Zool. India 2020, 23, 13–21. [Google Scholar]
- Tocher, D.R. Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Watanabe, T. Lipid Nutrition in Fish. Comp. Biochem. Physiol. 1982, 73, 3–15. [Google Scholar] [CrossRef]
- Feng-Cheng, W.; Yun-Yuan, T.; Houng-Yung, C. Docosahexaenoic Acid Is Superior to Eicosapentaenoic Acid as the Essential Fatty Acid for Growth of Grouper, Epinephelus malabaricus. J. Nutr. 2002, 132, 72–79. [Google Scholar] [CrossRef]
- Lovell, T. Dietary Requirements. In Nutrition and Feeding of Fish; Lovell, T., Ed.; Springer: New York, NY, USA, 1998; pp. 13–70. [Google Scholar]
- Rosenlund, G.; Corraze, G.; Izquierda, M.; Tortensen, B.E. The Effects of Fish Oil Replacement on Nutritional and Organoleptic Qualities of Farmed Fish. In Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds; Turchini, G.M., Ng, W.-K., Tocher, D.R., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 487–506. [Google Scholar]
- Yildiz, M.; Eroldoğan, T.O.; Ofori-Mensah, S.; Engin, K.; Baltaci, M.A. The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Re-feeding with fish oil finishing diet improved the fatty acid composition. Aquaculture 2018, 488, 123–133. [Google Scholar] [CrossRef]
- Lenihan-Geels, G.; Bishop, K.S.; Ferguson, L.R. Alternative sources of omega-3 fats: Can we find a sustainable substitute for fish? Nutrients 2013, 5, 1301–1315. [Google Scholar] [CrossRef] [PubMed]
- Haouet, M.N.; Tommasino, M.; Mercuri, M.L.; Benedetti, F.; Di Bella, S.; Framboas, M.; Pelli, S.; Altissimi, M.S. Experimental accelerated shelf life determination of a ready-to-eat processed food. Ital. J. Food Saf. 2018, 7, 6919. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chi, S.; Tan, B.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S.; Han, F.; He, Y. Effects of fish oil with difference oxidation degree on growthperformance and expression abundance of antioxidant and fatmetabolism genes in orange spotted grouper, Epinephelus coioides. Aquac. Res. 2019, 50, 188–197. [Google Scholar] [CrossRef]
- Yin, P.; Xie, S.; Huo, Y.; Guo, T.; Fang, H.; Zhang, Y.; Liu, Y.; Tian, L.; Niu, J. Effects of dietary oxidized fish oil on growth performance, antioxidant defense system, apoptosis and mitochondrial function of juvenile largemouth bass (Micropterus salmoides). Aquaculture 2019, 500, 347–358. [Google Scholar] [CrossRef]
- Gao, J.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Ren, T.; Komilus, C.F.; Han, Y. Effects of dietary palm oil supplements with oxidized and non-oxidized fish oil on growth performances and fatty acid compositions of juvenile Japanese sea bass, Lateolabrax japonicus. Aquaculture 2012, 324–325, 97–103. [Google Scholar] [CrossRef]
- Xie, S.; Yin, P.; Tian, L.; Liu, Y.; Niu, J. Lipid metabolism and plasma metabolomics of juvenile largemouth bass Micropterus salmoides were affected by dietary oxidized fish oil. Aquaculture 2020, 522, 735158. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Guo, Z.; Zhao, Y.; Gao, Y.; Yu, T.; Chen, Y.; Zhang, D.; Wang, G. Effects of dietary oxidized fish oil on growth performance and antioxidant defense mechanism of juvenile Rhynchocypris lagowski Dybowski. Aquaculture 2019, 512, 734368. [Google Scholar] [CrossRef]
- Deng, D.-F.; Ju, Z.Y.; Conquest, L.D.; Bechtel, P.J.; Smiley, S. Feed Study Examines Effects of Fishmeal Storage. Responsible Seafood Advocate. 2012, pp. 1–8. Available online: https://www.globalseafood.org/advocate/feed-study-examines-effects-of-fishmeal-storage/ (accessed on 25 February 2025).
- Engle, C.R.; van Senten, J. U.S. hybrid Striped Bass and Red Drum farms: Economic effects of the U.S. regulatory framework. N. Am. J. Aquac. 2023, 85, 293–310. [Google Scholar] [CrossRef]
- Staff. Can We Really Mass-Produce Striped Bass? Available online: https://ncseagrant.ncsu.edu/hooklinescience/can-we-really-mass-produce-striped-bass/#:~:text=StriperHub%20has%20enabled%20a%20demonstration,North%20Carolina%20markets%20in%202021 (accessed on 22 April 2025).
- Harrell, R.M. The Culture of Striped Bass and Its Hybrids in Cages. 1988, pp. 1–7. Available online: https://www.mdsg.umd.edu/sites/default/files/files/Cultureofstripedbass.pdf (accessed on 30 April 2025).
- Webster, C.D.; Muzinic, L.A.; Tompson, K.R. Hybrid Striped Bass Culture a U.S. Success Story. Available online: https://www.globalseafood.org/advocate/hybrid-striped-bass-culture-a-u-s-success-story/#:~:text=Feed%2Dconversion%20ratios,of%20the%20Global%20Aquaculture%20Advocate (accessed on 30 April 2025).
- Walter, J.F., III; Overton, A.S.; Ferry, K.H.; Mather, M.E. Atlantic coast feeding habits of striped bass: A synthesis supporting a coast-wide understanding of trophic biology. Fish. Manag. Ecol. 2003, 10, 349–360. [Google Scholar] [CrossRef]
- Andersen, L.K.; Abernathy, J.; Berlinsky, D.L.; Bolton, G.; Booker, M.M.; Borski, R.J.; Brown, T.; Cerino, D.; Ciaramell, M.; Clark, R.W.; et al. The status of striped bass, Morone saxatilis, as a commercially ready species for U.S. marine aquaculture. J. World Aquac. Soc. 2021, 52, 710–730. [Google Scholar] [CrossRef]
- Patino, D.B. Physicochemical Characterization of Extruded Fish Feeds Having Soybean Meals of Varying Fatty Acid Profiles and its Utilization on Growth Performance and Body Composition of Domesticated Juvenile Striped Bass (Morone saxatilis); North Carolina State University: Raleigh, NC, USA, 2022. [Google Scholar]
- Trushenski, J.; Gause, B. Comparative Value of Fish Meal Alternatives as Protein Sources in Feeds for Hybrid Striped Bass. N. Am. J. Aquac. 2013, 75, 329–341. [Google Scholar] [CrossRef]
- Colombo, S.M. Physiological considerations in shifting carnivorous fishes to plant-based diets. In Fish Physiology, 1st ed.; Benfey, T.J., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 53–82. [Google Scholar]
- Gatlin, D.M., III. Nutrition and feeding of striped bass and hybrid striped bass. In Striped Bass and Other Morone Culture; Harrell, R.M., Ed.; Developments in Aquaculture and Fisheries Science; Elsevier Science B.V.: Amsterdam, The Netherlands, 1997; Volume 30, pp. 235–251. [Google Scholar]
- Craig, S.; Helfrich, L.A. Understanding Fish Nutrition, Feeds, and Feeding; Virginia Tech: Blacksburg, VA, USA, 2002. [Google Scholar]
- Neagle, C.; Chouljenko, A.; Bolton, G.; Mirtalebi, S.; Frinsko, M.O.; Hall, S.G.; Reading, B.J.; Joseph, M. Effect of Pilot-Scale Decanter Centrifuge Processing Parameters on the Quality of Fish Meal Produced from Smoked Salmon Processing By-Products. Processes 2025, 13, 511. [Google Scholar] [CrossRef]
- FAO; WHO. Standard for Fish Oils CXS 329-201. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B329-2017%252FCXS_329e.pdf (accessed on 12 April 2025).
- Fuller, P.; Neilson, M. Morone saxatilis (Walbaum, 1792): U.S. Geological Survey, Nonindigenous Aquatic Species Database. Available online: https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=787 (accessed on 14 April 2024).
- Popovic, N.T.; Strunjak-Perovic, I.; Coz-Rakovac, R.; Barisic, J.; Jadan, M.; Berakovic, A.P.; Klobucar, R.S. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol. 2012, 28, 553–564. [Google Scholar] [CrossRef]
- Corpuz, M.N.C.; Roque, N.B.C.; Manliclic, A.D.C. Survival, condition factor and growth performance of endemic silver therapon Leiopotherapon plumbeus (Perciformes: Terapontidae) reared in varying salinities. Aquac. Aquar. Conserv. Legis. 2021, 14, 3636–3644. [Google Scholar]
- Rahman, M.H.; Haque, M.M.; Alam, M.A.; Flura. A Study on the Specific Growth Rate (SGR) at Different Stages of Tilapia (Oreochromis niloticus) Production Cycle in Tank Based Aquaculture System. Int. J. Aquac. Fish. Sci. 2022, 8, 059–065. [Google Scholar] [CrossRef]
- Welker, T.L.; Wan, X.-c.; Zhou, Y.-b.; Yang, Y.-o.; Overturf, K.; Barrows, F.; Liu, K. Effect of dietary green tea supplementation on growth, fat content, and muscle fatty acid profile of rainbow trout (Oncorhynchus mykiss). Aquac. Int. 2017, 25, 1073–1094. [Google Scholar] [CrossRef]
- Suresh, A.V.; Vasagam, K.P.K.; Nates, S. Attractability and palatability of protein ingredients of aquatic and terrestrial animal origin, and their practical value for blue shrimp, Litopenaeus stylirostris fed diets formulated with high levels of poultry byproduct meal. Aquaculture 2011, 319, 132–140. [Google Scholar] [CrossRef]
- Baek, S.I.; Cho, S.H. Dietary Replacement Effect of Fish Meal by Tuna By-Product Meal on Growth and Feed Availability of Red Sea Bream (Pagrus major). Animals 2024, 14, 688. [Google Scholar] [CrossRef]
- Elshaer, F.M.; Azab, A.M.; El-Tabakh, M.A.M. Effect of Replacing Fish Meal in Fish Diet with Shrimp by-Product Meal on Growth Performance, Feed Utilization, Length-Weight Relationship and Condition Factors of Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758). Int. J. Morphol. 2022, 40, 261–269. [Google Scholar] [CrossRef]
- Voorhees, J.M.; Barnes, M.E.; Chipps, S.R.; Brown, M.L. Bioprocessed soybean meal replacement of fish meal in rainbow trout (Oncorhynchus mykiss) diets. Cogent Food Agric. 2019, 5, 1579482. [Google Scholar] [CrossRef]
- Xing, S.; Liang, X.; Zhang, X.; Oliva-Teles, A.; Peres, H.; Li, M.; Wang, H.; Mai, K.; Kaushik, S.J.; Xue, M. Essential amino acid requirements of fish and crustaceans, a meta-analysis. Rev. Aquac. 2023, 16, 1069–1086. [Google Scholar] [CrossRef]
- Jensen, I.-J.; Eilertsen, K.-E.; Otnæs, C.H.A.; Mæhre, H.K.; Elvevoll, E.O. An Update on the Content of Fatty Acids, Dioxins, PCBs and Heavy Metals in Farmed, Escaped and Wild Atlantic Salmon (Salmo salar L.) in Norway. Foods 2020, 9, 1901. [Google Scholar] [CrossRef] [PubMed]
- Aas, T.S.; Åsgård, T.; Ytrestøyl, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: An update for 2016. Aquac. Rep. 2019, 15, 100216. [Google Scholar] [CrossRef]
- Wang, J.-T.; Han, T.; Li, X.Y.; Yang, Y.X.; Yang, M.; Hu, S.X.; Jiang, Y.D.; Harpaz, S. Effects of dietary protein and lipid levels with different protein-to-energy ratios on growth performance, feed utilization and body composition of juvenile red-spotted grouper, Epinephelus akaara. Aquac. Nutr. 2017, 23, 891–1189. [Google Scholar] [CrossRef]
- Yang, S.-D.; Liou, C.-H.; Liu, F.-G. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquaculture 2002, 213, 363–372. [Google Scholar] [CrossRef]
- Dam, C.T.M.; Elizur, A.; Ventura, T.; Salini, M.; Smullen, R.; Pirozzi, I.; Booth, M. Apparent digestibility of raw materials by yellowtail kingfish (Seriola lalandi). Aquaculture 2019, 511, 734233. [Google Scholar] [CrossRef]
- Kandyliari, A.; Mallouchos, A.; Papandroulakis, N.; Golla, J.P.; Lam, T.T.; Sakellari, A.; Karavoltsos, S.; Vasiliou, V.; Kapsokefalou, M. Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products. Foods 2020, 9, 190. [Google Scholar] [CrossRef]
- Tang, L.; Wang, G.-X.; Jiang, J.; Feng, L.; Yang, L.; Li, S.-H.; Kuang, S.-Y.; Zhou, X.-Q. Effect of methionine on intestinal enzymes activities, microflora and humoral immune of juvenile Jian carp (cyprinus carpio var. Jian). Aquac. Nutr. 2009, 15, 453–557. [Google Scholar] [CrossRef]
- Abidi, S.F.; MA, K. Total sulphur amino acid requirement and cystine replacement value for fingerling rohu, Labeo rohita: Effects on growth, nutrient retention and body composition. Aquac. Nutr. 2011, 17, e583–e594. [Google Scholar] [CrossRef]
- Zhou, Q.-C.; Wu, Z.-H.; Tan, B.-P.; Chi, S.-Y.; Yang, Q.-H. Optimal dietary methionine requirement for Juvenile Cobia (Rachycentron canadum). Aquaculture 2006, 258, 551–557. [Google Scholar] [CrossRef]
- Li, P.; Burr, G.S.; Wen, Q.; Goff, J.B.; Murthy, H.S.; Gatlin, D.M., III. Dietary sufficiency of sulfur amino acid compounds influences plasma ascorbic acid concentrations and liver peroxidation of juvenile hybrid striped bass (Morone chrysops × M. saxatilis). Aquaculture 2009, 287, 414–418. [Google Scholar] [CrossRef]
- Crane, D.P.; Ogle, D.H.; Shoup, D.E. Use and misuse of a common growth metric: Guidance for appropriately calculating and reporting specific growth rate. Rev. Aquac. 2019, 12, 1542–1547. [Google Scholar] [CrossRef]
- Lamb, M.W.; Harden, M.L. Protein as a Source of Amino Acids. In The Meaning of Human Nutrition; Maickel, R., Ed.; Pergamon Bio-medical Sciences Series; Elsevier Inc.: Bloomington, IN, USA, 1973; pp. 153–191. [Google Scholar]
- FFF. Terms Used in Aquaculture. Available online: https://www.fishfarmfeeder.com/en/common-terms-in-aquaculture/ (accessed on 30 May 2024).
- Barnham, C.; Baxter, A. Condition Factor, K, for Salmonid Fish. Available online: http://bamboorods.ca/Trout%20condition%20factor.pdf (accessed on 18 March 2025).
- Kenter, L.W.; Kovach, A.I.; Woods, L.C., III; Reading, B.J.; Berlinsky, D.L. Strain evaluation of striped bass (Morone saxatilis) cultured at different salinities. Aquaculture 2018, 492, 215–225. [Google Scholar] [CrossRef]
- Lise, C.C.; Marques, C.; Bonadimann, F.S.; Pereira, E.A.; Mitterer-Daltoe, M.L. Amino acid profile of food fishes with potential to diversify fish farming activity. J. Food Sci. Technol. 2020, 58, 383–388. [Google Scholar] [CrossRef]
- Relekar, S.S.; Koli, J.M.; Gore, S.B.; Mohite, A.S.; Desai, A.s.; Wasave, S.M.; Telvekar, P.; Pagarkar, A.U. Proximate and Amino Acid Composition of Freshwater Fish of Nagpur, Maharashtra, India. Indian J. Anim. Res. 2024, B-5410, 1–6. [Google Scholar] [CrossRef]
- Duchene, L. Development of New Oils May Decrease Levels of Inflammation-Causing Fatty Acids. Available online: https://www.globalseafood.org/advocate/omega-6s-and-the-threat-to-seafoods-healthy-halo/ (accessed on 13 March 2025).
- Talbot, G. The Stability and Shelf Life of Fats and Oils. In The Stability and Shelf Life of Food; Subramanium, P., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 461–503. [Google Scholar]
- Ismail, A.; Bannenberg, g.; Rice, H.B.; Schutt, E.; MacKay, D. Oxidation in EPA- and DHA-rich oils: An overview. Lipid Technol. 2016, 28, 55–59. [Google Scholar] [CrossRef]
- Schlossman, N.; Johnson, Q.; Wood, L.; Coglianese, N.; Santoso, V.; Koeppel, L. Accelerated Shelf Life Studies: Methods and Results Relating to New and Upgraded Food Aid Products; Tufts University: Boston, MA, USA, 2015; pp. 1–35. [Google Scholar]
- Chew, S.C.; Nyam, K.L. Refining of edible oils. In Lipids and Edible Oils: Properties, Processing, and Applications; Galanakis, C.M., Ed.; Academic Press: San Diego, CA, USA, 2020; pp. 213–241. [Google Scholar]
- Dunford, N.T. Edible Oil Quality; Oklahoma Cooperative Extension Service: Stillwater, OK, USA, 2016. [Google Scholar]
- Sellinger, S.; Sivakumar, M.; Gamage, T.W.; Rick, G. Determination of Free Fatty Acids (FFA), Peroxide Value (PV), and p-Anisidine Value (p-AV) of Marine Oil using the Fourier Transform Near Infrared (FT-NIR) Spectroscopy. Can. Soc. Bioeng. 2017, Paper No. CSBE17050, 1–7. Available online: https://library.csbe-scgab.ca/docs/meetings/2017/CSBE17050.pdf (accessed on 18 March 2025).
- de Koning, A.J.; Milkovitch, S.; Fick, M.; Wessels, J.P.H. The Free Fatty Acid Content of Fish Oil-An Analysis of Anchovy Lipids at Different Stages in the Manufacture of Anchovy Meal and Oil. Eur. J. Lipid Sci. Technol. 1986, 88, 404–406. [Google Scholar] [CrossRef]
- Bimbo, A. Processing of fish oils. In Fish Oils in Nutrition; Stansby, M.E., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1990; pp. 181–225. [Google Scholar]
- Miyashita, K. Prevention of fish oil oxidation. J. Oleo Sci. 2019, 68, 1–11. [Google Scholar] [CrossRef]
- Tenyang, N.; Tiencheu, B.; Djikeng, F.T.; Morfor, A.T.; Womeni, H.M. Alteration of the lipid of red carp (Cyprinus carpio) during frozen storage. Food Sci. Nutr. 2019, 7, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Tomas, M.C.; Anon, M.C. Study on the influence of freezing rate on lipid oxidation in fish (salmon) and chicken breast muscles. Int. J. Food Sci. Technol. 1990, 25, 613–722. [Google Scholar] [CrossRef]
- Geromel, E.J.; Montgomery, M.W. Lipase release from lysosomes of ranibow trout (Salmo gairdneri) muscle subjected to low temperatures. J. Food Sci. 1980, 43, 412–419. [Google Scholar] [CrossRef]
- Boran, G.; Karaçam, H.; Boran, M. Changes in the quality of fish oils due to storage temperature and time. Food Chem. 2006, 98, 693–698. [Google Scholar] [CrossRef]
- Karami, B.; Moradi, Y.; Motallebi, A.A.; Hosseini, E.; Soltani, M. Effects of frozen storage on fatty acids profile, chemical quality indices and sensory properties of red tilapia (Oreochromis niloticus × Tilapia mosambicus) fillets. Iran. J. Fish. Sci. 2013, 12, 378–388. [Google Scholar]
- Nazemroaya, S.; Sahari, M.A.; Rezaei, M. Effect of frozen storage on fatty acid composition and changes in lipid content of Scomberomorus commersoni and Carcharhinus dussumieri. J. Appl. Ichthyol. 2009, 25, 91–95. [Google Scholar] [CrossRef]
- Romotowska, P.E.; Karlsdóttir, M.G.; Gudjónsdóttir, M.; Kristinsson, H.G. Influence of feeding state and frozen storage temperature on the lipid stability of Atlantic mackerel (Scomber scombrus). Int. J. Food Sci. Technol. 2016, 51, 1711–1720. [Google Scholar] [CrossRef]
- Sabetian, M.; Delshad, S.T.; Moini, S.; Islami, H.R.; Beglaryan, R.; Motalebi, A. Identification and Changes in Fatty Acid Profile of Rainbow Trout (Oncorhynchus mykiss) Fillet During Frozen Storage (−18 °C). J. Aquat. Food Prod. Technol. 2014, 23, 321–332. [Google Scholar] [CrossRef]
- Quintero_Martinez, G.Á.; Hernández, C.; Palacios, E.; Sánchez, M.C.C.; Ibarra-Castro, L.; Oliva, M.Á.H. Oxidized fish oil in the diet negatively affect rearing performance, health, and tissue fatty acid composition of juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquac. Int. 2023, 31, 3489–3511. [Google Scholar] [CrossRef]
Ingredients | Commercial (%) | 25% SSBP (%) | 50% SSBP (%) | 100% SSBP (%) |
---|---|---|---|---|
Wheat Flour Bagged | 23.71 | 23.71 | 23.71 | 23.71 |
Poultry By-Product Meal: 67 | 19.65 | 19.65 | 19.65 | 19.65 |
Soybean Meal: 47.5 | 18.00 | 18.00 | 18.00 | 18.00 |
Pacific Whiting Fish Meal 68% | 15.00 | 11.25 | 7.50 | 0.00 |
Corn Gluten 60% | 12.29 | 12.29 | 12.29 | 12.29 |
Menhaden Gold Oil Mixer | 4.26 | 3.20 | 2.13 | 0.00 |
Feather Meal | 3.00 | 3.00 | 3.00 | 3.00 |
Menhaden Gold Oil Topdress | 2.00 | 1.50 | 1.00 | 0.00 |
Dicalcium phosphate | 1.00 | 1.00 | 1.00 | 1.00 |
L Lysine 98.5% | 0.25 | 0.25 | 0.25 | 0.25 |
Choline CL 60% | 0.20 | 0.20 | 0.20 | 0.20 |
Premix Aqua-Vit | 0.20 | 0.20 | 0.20 | 0.20 |
Premix Aqua-Min Fish | 0.20 | 0.20 | 0.20 | 0.20 |
AMONEX Aqua Dry: Mold Inhibitor | 0.20 | 0.20 | 0.20 | 0.20 |
Vitamin C Monophosphate 35% | 0.04 | 0.04 | 0.04 | 0.04 |
SSBP Fish Meal | 0.00 | 3.75 | 7.50 | 15.00 |
SSBP Fish Oil Mixer | 0.00 | 1.07 | 2.13 | 4.26 |
SSBP Fish Oil Topdress | 0.00 | 0.50 | 1.00 | 2.00 |
Ingredients | Commercial | 25% SSBP | 50% SSBP | 100% SSBP |
---|---|---|---|---|
Crude protein (%) | 45.06 | 45.31 | 45.56 | 46.07 |
Crude fat (%) | 11.12 | 11.15 | 11.19 | 11.25 |
Crude fiber (%) | 1.56 | 1.60 | 1.64 | 1.71 |
Ash (%) | 8.08 | 7.95 | 7.82 | 7.55 |
Moisture (%) | 8.00 | 8.00 | 8.00 | 8.00 |
Days | Commercial Feed | 25% SSBP | 50% SSBP | 100% SSBP |
---|---|---|---|---|
Day 1 | 71.67 ± 17.07 | 69.83 ± 3.17 | 71.33 ± 1.25 | 77.67 ± 3.25 |
Day 2 | 36.67 ± 3.54 | 45.50 ± 7.40 | 56.00 ± 19.75 | 46.00 ± 9.53 |
Day 3 | 47.17 ± 5.48 | 56.16 ± 9.69 | 49.00 ± 2.78 | 50.83 ± 3.68 |
Day 4 | 48.50 ± 1.32 | 54.50 ± 9.83 | 49.50 ± 2.29 | 47.83 ± 11.89 |
Day 5 | 61.83 ± 7.52 | 61.00 ± 5.39 | 49.67 ± 7.18 | 53.50 ± 5.30 |
% Pellet Float | 100 ± 0.00 | 100 ± 0.00 | 97.33 ± 2.19 | 99.00 ± 0.58 |
Commercial Feed | 25% SSBP | 50% SSBP | 100% SSBP | |
---|---|---|---|---|
W1 (g) | 38.23 ± 8.86 A | 35.50 ± 9.26 A | 32.08 ± 11.51 A | 35.88 ± 13.58 A |
W2 (g) | 60.77 ± 17.54 A | 56.45 ± 10.90 A | 55.40 ± 16.82 A | 62.75 ± 14.29 A |
W3 (g) | 86.10 ± 25.12 A | 79.45 ± 21.23 A | 85.20 ± 25.41 A | 80.13 ± 24.33 A |
W4 (g) | 129.35 ± 35.86 A | 107.33 ± 30.31 AB | 114.41 ± 41.13 AB | 103.90 ± 24.02 B |
W5 (g) | 183.12 ± 54.71 A | 154.62 ± 51.25 AB | 157.55 ± 42.74 AB | 136.23 ± 34.50 B |
W6 (g) | 217.52 ± 35.30 A | 218.78 ± 11.08 A | 212.23 ± 36.37 A | 197.70 ± 27.59 A |
L1 (mm) | 145.03 ± 11.62 A | 141.17 ± 12.55 AB | 134.37 ± 14.02 B | 140.20 ± 14.51 AB |
L2 (mm) | 161.47 ± 13.72 A | 157.33 ± 10.20 A | 154.97 ± 14.46 A | 160.17 ± 13.16 A |
L3 (mm) | 182.77 ± 16.36 A | 175.30 ± 14.68 A | 179.53 ± 17.02 A | 174.57 ± 18.08 A |
L4 (mm) | 206.27 ± 17.20 A | 194.90 ± 17.44 AB | 196.70 ± 21.81 AB | 192.77 ± 16.38 B |
L5 (mm) | 228.13 ± 23.15 A | 214.90 ± 23.80 AB | 217.37 ± 18.19 AB | 207.57 ± 14.48 B |
L6 (mm) | 239.77 ± 7.13 A | 241.23 ± 4.70 A | 234.77 ± 12.19 A | 232.97 ± 8.49 A |
Commercial Feed | 25% SSBP | 50% SSBP | 100% SSBP | |
---|---|---|---|---|
WG (g) | 179.28 ± 57.23 | 183.28 ± 50.74 | 180.15 ± 74.15 | 161.82 ± 60.45 |
WG% | 486.68 ± 177.46 | 556.05 ± 216.44 | 655.49 ± 437.06 | 499.36 ± 227.58 |
SGR | 1.15 ± 0.22 | 1.22 ± 0.23 | 1.26 ± 0.34 | 1.14 ± 0.28 |
FI (g) | 240.58 ± 21.98 | 239.86 ± 6.55 | 230.04 ± 15.74 | 230.66 ± 25.20 |
FCR | 1.36 ± 0.13 | 1.31 ± 0.12 | 1.31 ± 0.21 | 1.44 ± 0.14 |
PER | 1.65 ± 0.16 | 1.70 ± 0.16 | 1.73 ± 0.30 | 1.55 ± 0.15 |
K | 1.24 ± 0.02 | 1.24 ± 0.11 | 1.29 ± 0.18 | 1.27 ± 0.16 |
% Survival | 87.33 ± 2.30 | 93.33 ± 1.15 | 89.33 ± 4.16 | 89.33 ± 10.26 |
Diet Type | Crude Protein (%) | Crude Fat by Acid Hydrolysis (%) | Crude Fiber (%) | Ash (%) | Sodium (%) | |
---|---|---|---|---|---|---|
Fillet | 0% SSBP | 70.59 ± 2.98 A | 25.63 ± 3.42 D | 2.94 ± 0.64 A | 5.60 ± 0.29 B | 0.25 ± 0.01 C |
25% SSBP | 62.46 ± 4.13 C | 34.66 ± 2.82 BCD | 2.00 ± 0.72 A | 5.79 ± 2.76 B | 0.25 ± 0.01 C | |
50% SSBP | 62.86 ± 1.57 BC | 29.91 ± 2.47 CD | 2.24 ± 0.54 A | 5.86 ± 1.84 B | 0.28 ± 0.04 BC | |
100% SSBP | 69.94 ± 2.75 AB | 27.27 ± 1.53 CD | 2.77 ± 1.02 A | 6.16 ± 1.51 B | 0.28 ± 0.01 BC | |
Whole Fish | 0% SSBP | 44.47 ± 1.82 D | 42.17 ± 8.56 ABC | 1.92 ± 0.21 A | 9.23 ± 1.29 AB | 0.32 ± 0.03 ABC |
25% SSBP | 42.44 ± 3.48 D | 37.50 ± 1.44 BCD | 1.52 ± 0.89 A | 9.82 ± 2.18 AB | 0.29 ± 0.02 BC | |
50% SSBP | 49.37 ± 4.93 D | 48.51 ± 1.24 AB | 1.92 ± 0.13 A | 11.01 ± 0.16 AB | 0.34 ± 0.01 AB | |
100% SSBP | 48.66 ± 1.73 D | 56.56 ± 4.60 A | 2.47 ± 0.86 A | 12.64 ± 0.69 A | 0.39 ± 0.02 A |
Fatty Acids | 0% SSBP | 25% SSBP | 50% SSBP | 100% SSBP | ||||
---|---|---|---|---|---|---|---|---|
Fillet | Whole Fish | Fillet | Whole Fish | Fillet | Whole Fish | Fillet | Whole Fish | |
Myristic (C 14:0) | 4.04 ± 0.01 A | 4.08 ± 0.01 A | 3.60 ± 0.01 C | 3.86 ± 0.04 B | 3.31 ± 0.00 D | 3.80 ± 0.04 B | 2.62 ± 0.02 F | 2.91 ± 0.01 E |
Palmitic (C 16:0) | 22.14 ± 0.05 C | 21.78 ± 0.04 CD | 21.94 ± 0.05 CD | 22.82 ± 0.01 B | 21.69 ± 0.00 D | 24.77 ± 0.35 A | 20.63 ± 0.01 E | 23.04 ± 0.01 B |
Palmitoleic (C 16:1) | 9.95 ± 0.01 B | 10.21 ± 0.05 A | 9.00 ± 0.07 D | 9.15 ± 0.05 D | 8.54 ± 0.00 E | 9.45 ± 0.12 C | 6.54 ± 0.03 G | 7.00 ± 0.01 F |
Stearic (C 18:0) | 3.22 ± 0.01 A | 3.09 ± 0.01 B | 3.19 ± 0.01 A | 3.11 ± 0.01 B | 2.91 ± 0.00 C | 2.83 ± 0.04 DE | 2.81 ± 0.00 E | 2.89 ± 0.01 CD |
Oleic (C 18:1) | 30.73 ± 0.13 H | 31.56 ± 0.03 G | 33.72 ± 0.06 E | 33.02 ± 0.18 F | 34.89 ± 0.00 D | 36.42 ± 0.11 C | 38.98 ± 0.10 B | 39.75 ± 0.02 A |
Linoleic (C 18:2) | 10.90 ± 0.03 H | 11.02 ± 0.02 G | 11.63 ± 0.01 F | 11.94 ± 0.01 E | 13.13 ± 0.00 D | 14.58 ± 0.01 C | 15.70 ± 0.06 B | 17.69 ± 0.00 A |
alpha-Linolenic (C 18:3 n-3) | 1.42 ± 0.03 F | 1.42 ± 0.00 F | 1.55 ± 0.00 E | 1.54 ± 0.00 E | 1.69 ± 0.00 D | 1.83 ± 0.00 C | 2.01 ± 0.00 B | 2.13 ± 0.01 A |
Gondoic (C 20:1) | 1.67 ± 0.11 D | 1.78 ± 0.01 CD | 1.72 ± 0.08 CD | 1.95 ± 0.01 BC | 2.04 ± 0.00 B | 1.05 ± 0.10 E | 2.48 ± 0.02 A | 1.24 ± 0.02 E |
Arachidonic (C 20:4 n-6) | 0.69 ± 0.01 A | 0.10 ± 0.00 D | 0.10 ± 0.01 D | 0.12 ± 0.01 D | 0.11 ± 0.00 D | 0.33 ± 0.03 B | 0.15 ± 0.01 D | 0.21 ± 0.01 C |
Eicosapentaenoic (EPA) (C 20:5 n-3) | 5.12 ± 0.00 A | 4.87 ± 0.01 B | 4.28 ± 0.00 C | 3.69 ± 0.02 D | 3.29 ± 0.00 E | 1.66 ± 0.09 G | 1.82 ± 0.01 F | 0.67 ± 0.01 H |
Docosahexaenoic (DHA) (C 22:6 n-3) | 5.31 ± 0.01 A | 4.65 ± 0.01 B | 4.60 ± 0.01 B | 3.77 ± 0.02 C | 3.45 ± 0.00 D | 0.82 ± 0.11 F | 2.12 ± 0.02 E | 0.41 ± 0.01 G |
Trans Fats | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Saturated Fats | 35.89 ± 0.73 A | 32.37 ± 0.90 AB | 31.36 ± 0.90 B | 32.87 ± 0.90 AB | 30.78 ± 0.90 B | 32.37 ± 0.90 AB | 28.18 ± 0.90 B | 29.44 ± 0.90 B |
Monounsaturated | 42.78 ± 0.22 F | 43.98 ± 0.04 E | 44.84 ± 0.06 D | 44.51 ± 0.14 D | 45.84 ± 0.00 C | 47.30 ± 0.07 B | 48.29 ± 0.12 A | 48.26 ± 0.00 A |
Polyunsaturated | 21.33 ± 2.92 A | 23.66 ± 0.04 A | 23.81 ± 0.01 A | 22.62 ± 0.07 A | 23.38 ± 0.00 A | 20.33 ± 0.29 A | 23.54 ± 0.09 A | 22.30 ± 0.00 A |
Total omega-3 | 8.54 ± 2.93 AB | 10.94 ± 0.01 A | 10.44 ± 0.01 A | 9.00 ± 0.00 AB | 8.44 ± 0.00 ABC | 4.38 ± 0.21 BC | 5.96 ± 0.01 ABC | 3.28 ± 0.01 C |
Total omega-6 | 12.45 ± 0.03 G | 11.88 ± 0.01 H | 12.65 ± 0.01 F | 12.95 ± 0.04 E | 14.31 ± 0.00 D | 15.69 ± 0.09 C | 17.14 ± 0.05 B | 18.80 ± 0.01 A |
Total omega-9 | 32.43 ± 0.21 E | 33.37 ± 0.02 D | 35.47 ± 0.13 C | 35.00 ± 0.19 C | 36.96 ± 0.00 B | 37.50 ± 0.21 B | 41.49 ± 0.08 A | 41.01 ± 0.00 A |
Amino Acids | 0% SSBP | 25% SSBP | 50% SSBP | 100% SSBP | ||||
---|---|---|---|---|---|---|---|---|
Fillet | Whole Fish | Fillet | Whole Fish | Fillet | Whole Fish | Fillet | Whole Fish | |
Alanine | 1.27 ± 0.01 A | 1.14 ± 0.03 AB | 1.13 ± 0.06 AB | 0.96 ± 0.03 B | 1.18 ± 0.18 AB | 0.99 ± 0.09 AB | 1.26 ± 0.06 A | 0.99 ± 0.16 AB |
Arginine | 0.86 ± 0.00 AB | 0.78 ± 0.12 B | 0.76 ± 0.01 B | 0.72 ± 0.12 B | 0.85 ± 0.09 AB | 0.83 ± 0.08 AB | 0.99 ± 0.01 A | 0.75 ± 0.07 B |
Aspartic Acid | 1.83 ± 0.04 AB | 1.35 ± 0.13 CD | 1.76 ± 0.12 AB | 1.20 ± 0.13 D | 1.54 ± 0.13 BC | 1.37 ± 0.09 CD | 1.87 ± 0.08 A | 1.25 ± 0.17 CD |
Cysteine | 0.19 ± 0.00 A | 0.12 ± 0.00 B | 0.19 ± 0.00 A | 0.10 ± 0.00 B | 0.17 ± 0.00 A | 0.13 ± 0.00 B | 0.20 ± 0.00 A | 0.12 ± 0.00 B |
Glutamic Acid | 2.99 ± 0.09 A | 2.02 ± 0.11 B | 2.70 ± 0.05 A | 1.67 ± 0.11 B | 2.57 ± 0.30 A | 2.05 ± 0.10 B | 2.70 ± 0.03 A | 1.78 ± 0.32 B |
Glycine | 0.91 ± 0.01 A | 1.10 ± 0.03 A | 0.99 ± 0.06 A | 0.85 ± 0.03 A | 1.01 ± 0.15 A | 0.88 ± 0.05 A | 0.93 ± 0.04 A | 1.01 ± 0.03 A |
Histidine | 0.28 ± 0.01 B | 0.30 ± 0.06 B | 0.27 ± 0.01 B | 0.28 ± 0.06 B | 0.35 ± 0.02 AB | 0.31 ± 0.01 B | 0.46 ± 0.07 A | 0.33 ± 0.11 AB |
Isoleucine | 0.95 ± 0.05 A | 0.67 ± 0.05 B | 0.93 ± 0.02 A | 0.66 ± 0.05 B | 0.85 ± 0.12 A | 0.61 ± 0.06 B | 0.91 ± 0.06 A | 0.62 ± 0.05 B |
Leucine | 1.48 ± 0.12 A | 1.04 ± 0.05 B | 1.51 ± 0.04 A | 1.08 ± 0.05 B | 1.46 ± 0.18 A | 0.94 ± 0.06 B | 1.47 ± 0.04 A | 1.02 ± 0.04 B |
Lysine | 2.00 ± 0.06 A | 1.25 ± 0.09 B | 1.94 ± 0.02 A | 1.32 ± 0.09 B | 1.79 ± 0.23 A | 1.11 ± 0.07 B | 1.87 ± 0.05 A | 1.25 ± 0.06 B |
Methionine | 0.55 ± 0.01 A | 0.44 ± 0.01 B | 0.57 ± 0.01 A | 0.33 ± 0.01 C | 0.55 ± 0.01 A | 0.47 ± 0.01 B | 0.57 ± 0.01 A | 0.37 ± 0.01 C |
Ornithine | 0.16 ± 0.03 AB | 0.14 ± 0.04 AB | 0.17 ± 0.02 A | 0.12 ± 0.04 AB | 0.19 ± 0.07 A | 0.07 ± 0.01 B | 0.11 ± 0.03 AB | 0.09 ± 0.02 AB |
Phenylalanine | 0.72 ± 0.04 A | 0.58 ± 0.04 B | 0.71 ± 0.02 A | 0.54 ± 0.04 B | 0.76 ± 0.10 A | 0.48 ± 0.04 B | 0.72 ± 0.01 A | 0.47 ± 0.02 B |
Proline | 0.59 ± 0.00 A | 0.73 ± 0.05 A | 0.61 ± 0.00 A | 0.53 ± 0.05 A | 0.60 ± 0.09 A | 0.61 ± 0.06 A | 0.72 ± 0.06 A | 0.63 ± 0.05 A |
Serine | 0.57 ± 0.01 B | 0.59 ± 0.04 B | 0.55 ± 0.05 BC | 0.44 ± 0.04 C | 0.58 ± 0.04 B | 0.57 ± 0.04 B | 0.74 ± 0.03 A | 0.47 ± 0.07 BC |
Taurine | 0.29 ± 0.02 A | 0.28 ± 0.02 A | 0.28 ± 0.03 A | 0.26 ± 0.02 A | 0.22 ± 0.03 A | 0.27 ± 0.03 A | 0.30 ± 0.04 A | 0.25 ± 0.04 A |
Threonine | 0.72 ± 0.05 ABCD | 0.68 ± 0.04 BCD | 0.84 ± 0.05 A | 0.63 ± 0.04 CD | 0.73 ± 0.09 ABC | 0.62 ± 0.03 CD | 0.82 ± 0.03 AB | 0.58 ± 0.08 D |
Tryptophan | 0.20 ± 0.00 AB | 0.14 ± 0.00 C | 0.15 ± 0.00 BC | 0.09 ± 0.00 D | 0.11 ± 0.00 CD | 0.08 ± 0.00 D | 0.21 ± 0.00 A | 0.13 ± 0.00 CD |
Parameters | Week 0 | Week 2 | Week 4 | Week 6 | Week 8 | Week 10 | Week 12 | |
---|---|---|---|---|---|---|---|---|
FM | FFA (%) | 3.70 ± 0.06 B | 0.55 ± 0.04 G | 1.61 ± 0.05 F | 2.22 ± 0.05 E | 2.67 ± 0.11 D | 4.62 ± 0.08 A | 3.02 ± 0.13 C |
PV (meq/kg) | 14.00 ± 0.00 A | 13.00 ± 0.00 B | 10.67 ± 0.58 C | 6.50 ± 0.35 E | 8.70 ± 0.40 D | 7.27 ± 0.31 E | 11.00 ± 0.00 C | |
p-AV | 8.33 ± 0.23 D | 14.2 ± 0.70 C | 9.83 ± 0.95 CD | 74.53 ± 2.32 B | 86.87 ± 2.67 A | 9.47 ± 0.21 D | 73.40 ± 2.23 B | |
TOTOX | 36.33 ± 0.23 D | 40.2 ± 0.70 D | 31.17 ± 0.31 E | 87.53 ± 2.25 C | 104.27 ± 3.46 A | 24.00 ± 0.82 F | 95.40 ± 2.23 B | |
FO | FFA (%) | 1.60 ± 0.00 AB | 1.50 ± 0.00 BC | 1.70 ± 0.00 A | 1.47 ± 0.00 C | 1.47 ± 0.00 C | 1.60 ± 0.00 AB | 1.67 ± 0.06 A |
PV (meq/kg) | 21.00 ± 0.00 A | 18.00 ± 0.00 C | 14.33 ± 0.58 D | 19.00 ± 0.00 B | 14.00 ± 0.00 D | 19.33 ± 0.58 B | 8.70 ± 0.10 E | |
p-AV | 7.83 ± 0.47 E | 12.30 ± 0.70 D | 13.9 ± 0.20 C | 24.23 ± 0.21 B | 24.60 ± 0.30 B | 27.10 ± 0.17 A | 27.43 ± 0.49 A | |
TOTOX | 49.83 ± 0.47 D | 48.3 ± 0.70 D | 42.57 ± 0.99 F | 62.23 ± 0.21 B | 52.60 ± 0.30 C | 65.77 ± 1.33 A | 44.83 ± 0.68 E |
Amino Acid | Pacific WFM (%) | SSBP FM (%) |
---|---|---|
Alanine | 4.0 | 1.62 ± 0.03 |
Arginine | 4.5 | 1.67 ± 0.03 |
Aspartic acid | 5.3 | 2.36 ± 0.10 |
Cystine | 0.5 | 0.23 ± 0.02 |
Glutamic acid | 8.0 | 3.19 ± 0.32 |
Glycine | 5.4 | 2.25 ± 0.28 |
Histidine | 1.4 | 0.68 ± 0.02 |
Isoleucine | 2.6 | 1.06 ± 0.12 |
Leucine | 4.9 | 1.43 ± 0.50 |
Lysine | 5.0 | 1.78 ± 0.13 |
Methionine | 1.6 | 0.78 ± 0.02 |
Phenylalanine | 2.7 | 0.97 ± 0.06 |
Proline | 3.6 | 1.29 ± 0.07 |
Serine | 3.0 | 1.12 ± 0.06 |
Threonine | 2.0 | 1.11 ± 0.04 |
Tryptophan | 0.5 | 0.37 ± 0.02 |
Tyrosine | 2.1 | 0.93 ± 0.09 |
Valine | 3.2 | 1.14 ± 0.06 |
Fatty Acids | Pacific WFO (%) | SSBP FO (%) | Farmed Salmon Reports (%) |
---|---|---|---|
Myristic (C 14:0) | 3.3 | 2.01 ± 0.12 | 1.5–5.5 |
Palmitic (C 16:0) | 21.8 | 12.06 ± 0.01 | 6.5–12.0 |
Stearic (C 18:0) | 3.5 | 3.97 ± 0.09 | 2.0–5.0 |
Total SFA | 30.0 | 21.29 ± 0.36 | X |
Palmitoleic (C 16:1 n-7) | 7.3 | 2.33 ± 0.04 | 2.0–5.0 |
Erucic (C 22:1 n-9) | 1.0 | 3.86 ± 0.10 | 3.0–7.0 |
cis-Oleic (C 18:1 n-9) | 28.7 | 36.41 ± 0.76 | 30.0–47.0 |
Total MUFA | 38.5 | 46.86 ± 0.59 | X |
alpha-Linolenic (C 18:3 n-3) | 0.8 | 4.19 ± 0.06 | 3.0–6.0 |
cis-11,14,17-Eicosatrienoic (C 20:3 n-3) | 0.2 | 0.34 ± 0.05 | X |
Docosahexaenoic (DHA) (C 22:6 n-3) | 9.9 | 4.67 ± 0.29 | 3.0–10.0 |
Eicosapentaenoic (EPA) (C 20:5 n-3) | 14.6 | 0.36 ± 0.01 | 2.0–6.0 |
Total n-3 PUFA | 26.6 | 9.46 ± 0.42 | X |
Arachidonic (C 20:4 n-6) | 1.1 | 0.35 ± 0.04 | ND–1.2 |
Linoleic (C 18:2 n-6) | X | 20.06 ± 0.13 | 8.0–15.0 |
Total n-6 PUFA | 2.8 | 22.12 ± 0.11 | X |
Total PUFA | 29.5 | 31.86 ± 0.27 | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagle, C.; Frinsko, M.O.; Kelly, R.; Hall, S.G.; Reading, B.J.; Chouljenko, A.; Bolton, G.; Joseph, M. Utilization of Fish Meal and Fish Oil from Smoked Salmon By-Products in Juvenile Striped Bass (Morone saxatilis) Feeds: Growth Performance, Nutritional Composition, and Shelf-Life Assessment of Upcycled Ingredients. Fishes 2025, 10, 240. https://doi.org/10.3390/fishes10050240
Neagle C, Frinsko MO, Kelly R, Hall SG, Reading BJ, Chouljenko A, Bolton G, Joseph M. Utilization of Fish Meal and Fish Oil from Smoked Salmon By-Products in Juvenile Striped Bass (Morone saxatilis) Feeds: Growth Performance, Nutritional Composition, and Shelf-Life Assessment of Upcycled Ingredients. Fishes. 2025; 10(5):240. https://doi.org/10.3390/fishes10050240
Chicago/Turabian StyleNeagle, Connor, Michael O. Frinsko, Ryan Kelly, Steven G. Hall, Benjamin J. Reading, Alexander Chouljenko, Greg Bolton, and Michael Joseph. 2025. "Utilization of Fish Meal and Fish Oil from Smoked Salmon By-Products in Juvenile Striped Bass (Morone saxatilis) Feeds: Growth Performance, Nutritional Composition, and Shelf-Life Assessment of Upcycled Ingredients" Fishes 10, no. 5: 240. https://doi.org/10.3390/fishes10050240
APA StyleNeagle, C., Frinsko, M. O., Kelly, R., Hall, S. G., Reading, B. J., Chouljenko, A., Bolton, G., & Joseph, M. (2025). Utilization of Fish Meal and Fish Oil from Smoked Salmon By-Products in Juvenile Striped Bass (Morone saxatilis) Feeds: Growth Performance, Nutritional Composition, and Shelf-Life Assessment of Upcycled Ingredients. Fishes, 10(5), 240. https://doi.org/10.3390/fishes10050240