Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Working Solutions
2.3. Samples Collection and Processing
2.4. Preparation and Characterization of Jug@AG Hydrogel
2.5. Evaluation of Jug@AG Hydrogel as a Colorimetric Sensor for TVB-N
2.5.1. Laboratory-Made Gas Sensing Chamber
2.5.2. Investigation of the Feasibility of the Jug@AG Hydrogel as a Colorimetric Sensor for TVB-N
2.5.3. Evaluation of the Efficiency of Jug@AG Hydrogel for Detecting TVB-N Volatilized from Samples
2.6. Reliability Evaluation of Jug@AG Hydrogel for Dynamic Monitoring of Actual Sample Freshness
3. Results and Discussion
3.1. Comparison of Jug@AG Hydrogel, Jug@PVDF, and Jug@FP
3.2. Optimization of the Preparation Conditions for Jug@AG Hydrogel
3.3. Evaluation of Jug@AG Hydrogel as the Colorimetric Sensor for TVB-N
3.3.1. Feasibility of Jug@AG Hydrogel as the Colorimetric Sensor for TVB-N
3.3.2. Evaluation of the Efficiency of Jug@AG Hydrogel for Detecting Volatile TVB-N from Samples
3.4. Reliability Assessment of the Jug@AG Hydrogel for Dynamic Monitoring of Actual Sample Freshness
3.5. Comparison with Existing Hydrogel-Based Colorimetric Sensing Methods for TVB-N Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Q.; Zhang, Y.; Zhou, Y.; Liu, S.G.; Gao, W.; Shi, X. Portable functional hydrogels based on silver metallization for visual monitoring of fish freshness. Food Control 2021, 123, 107824. [Google Scholar] [CrossRef]
- Luo, S.; Hu, C.-Y.; Xu, X. Ammonia-responsive chitosan/polymethacrylamide double network hydrogels with high-stretchability, fatigue resistance and anti-freezing for real-time chicken breast spoilage monitoring. Int. J. Biol. Macromol. 2024, 268, 131617. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Regulation (EC) No 2074/2005 of the European Parliament and of the Council: Implementing Rules on Food Legislation [S/OL]. Off. J. Eur. Union 22 December 2005, L 338/27.
- Huang, X.-W.; Zou, X.-B.; Shi, J.-Y.; Guo, Y.; Zhao, J.-W.; Zhang, J.; Hao, L. Determination of pork spoilage by colorimetric gas sensor array based on natural pigments. Food Chem. 2014, 145, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, Z.; Zhao, W.; Guo, J.; Hashim, S.B.H.; Khan, S.; Shi, J.; Huang, X.; Zou, X. Aerogel colorimetric label sensors based on carboxymethyl cellulose/sodium alginate with black goji anthocyanin for monitoring fish freshness. Int. J. Biol. Macromol. 2024, 265, 130466. [Google Scholar] [CrossRef] [PubMed]
- GB 2707-2016; National Food Safety Standard for Fresh (Frozen) Livestock and Poultry Products. National Health Commission, State Administration for Market Regulation: Beijing, China, 2016.
- GB 2733-2015; National Food Safety Standard for Fresh and Frozen Animal Aquatic Products. National Health Commission, State Administration for Market Regulation: Beijing, China, 2015.
- Chen, H.-Z.; Zhang, M.; Bhandari, B.; Yang, C.-H. Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT-Food Sci. Technol. 2019, 99, 43–49. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Chen, L.-J.; Zhao, X.; Yan, X.-P. Silk fibroin-based colorimetric microneedle patch for rapid detection of spoilage in packaged salmon samples. Food Chem. 2023, 406, 135039. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Chin, Y.-W.; Paik, H.-D. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021, 10, 2418. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.Y.; Zaitoon, A.; Lim, L.T. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2489–2519. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Suh, J.M.; Eom, T.H.; Kim, T.; Jang, H.W. Colorimetric Sensors for Toxic and Hazardous Gas Detection: A Review. Electron. Mater. Lett. 2021, 17, 1–17. [Google Scholar] [CrossRef]
- Cao, Y.; Song, Y.; Fan, X.; Ma, L.; Feng, T.; Zeng, J.; Xue, C.; Xu, J. A smartphone-assisted sensing hydrogels based on UCNPs@SiO2-phenol red nanoprobes for detecting the pH of aquatic products. Food Chem. 2024, 451, 139428. [Google Scholar] [CrossRef] [PubMed]
- Sutthasupa, S.; Padungkit, C.; Suriyong, S. Colorimetric ammonia (NH3) sensor based on an alginate-methylcellulose blend hydrogel and the potential opportunity for the development of a minced pork spoilage indicator. Food Chem. 2021, 362, 130151. [Google Scholar] [CrossRef] [PubMed]
- Diana, R.; Milzi, L.; Gentile, F.S.; Pannico, M.; Musto, P.; Maiello, A.; Panunzi, B. A versatile pH-sensitive hydrogel based on a high-performance dye: Monitoring the freshness of milk and chicken meat. J. Food Compos. Anal. 2024, 135, 106667. [Google Scholar] [CrossRef]
- Wang, J.; Xia, L.; Liu, H.; Zhao, C.; Ming, S.; Wu, J. Colorimetric microneedle sensor using deep learning algorithm for meat freshness monitoring. Chem. Eng. J. 2024, 481, 148474. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Phung, D.N.D.; Nguyen, T.T.T.; Le, O.T.K.; Cao, T.N.M.; Truong, T.T.C.; Phan, N.T.T.; Le Thi, A.P. Colorimetric chitosan/polyvinyl alcohol composite membrane incorporated with anthocyanins as pH indicator for monitoring fish freshness. J. Appl. Polym. Sci. 2024, 142, e56333. [Google Scholar] [CrossRef]
- He, Y.; Li, B.; Du, J.; Cao, S.; Liu, M.; Li, X.; Ren, D.; Wu, X.; Xu, D. Development of pH-responsive absorbent pad based on polyvinyl alcohol/agarose/anthocyanins for meat packaging and freshness indication. Int. J. Biol. Macromol. 2022, 201, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M.; et al. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Chen, J.; Feng, J.; Lian, R.; Fu, L.; Wang, Y. Colorimetric indicator based on zwitterionic anti-freezing hydrogel and alizarin for visual monitoring of salmon fillets freshness. J. Future Foods 2024, 4, 135–141. [Google Scholar] [CrossRef]
- Mirzaei, A.; Jorshari, Y.B.; Jananshir, S.; Noori, M.; Mahdavi, M. Colorimetric pH-sensitive hydrogel film based on kappa-carrageenan containing quercetin or eucalyptus leaf extract for freshness monitoring of chicken meat. Food Chem. X 2024, 22, 101307. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Lan, W.; Xie, J. Colorimetric freshness indicators in aquatic products based on natural pigments: A review. Food Biosci. 2024, 58, 103624. [Google Scholar] [CrossRef]
- Baniasadi, H.; Abidnejad, R.; Fazeli, M.; Lipponen, J.; Niskanen, J.; Kontturi, E.; Seppälä, J.; Rojas, O.J. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 2024, 324, 103095. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Wu, X.; Zhang, Y.; Wu, D.; Meng, L.; Chen, Y.; Tang, X. Recent applications of hydrogels in food safety sensing: Role of hydrogels. Trends Food Sci. Technol. 2022, 129, 244–257. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Jensen, I.-J.; Kurek, M.; Lerfall, J. Novel colorimetric indicators based on alginate hydrogel beads containing anthocyanin for visual freshness monitoring of shrimp and minced chicken. LWT 2024, 199, 116127. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Zou, X.; Shi, J.; Zhai, X.; Liu, L.; Li, Z.; Holmes, M.; Gong, Y.; Povey, M.; et al. A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp. J. Food Eng. 2021, 292, 110290. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, S.; Jia, J.; Cui, J. Resource efficiency and environmental impact of juglone in Pericarpium Juglandis: A review. Front. Environ. Sci. 2022, 10, 999059. [Google Scholar] [CrossRef]
- Xu, Z.H. Extraction and physicochemical properties of natural edible pigment from walnut hulls. J. Sichuan Norm. Univ. 2006, 29, 488–490. [Google Scholar] [CrossRef]
- Tang, Y.T.; Li, Y.; Chu, P.; Ma, X.D.; Tang, Z.Y.; Sun, Z.L. Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed. Pharmacother. 2022, 148, 112785. [Google Scholar] [CrossRef] [PubMed]
- GB 5009.228-2016; National Food Safety Standard for the Determination of Total Volatile Basic Nitrogen in Foods. National Health Commission, State Administration for Market Regulation: Beijing, China, 2016.
- GB 4789.2-2016; National Food Safety Standard for Microbiological Examination of Foods—Determination of Total Number of Colonies. National Health Commission, State Administration for Market Regulation: Beijing, China, 2016.
- Yu, K.; Yang, L.; Zhang, S.; Zhang, N.; Xie, M.; Yu, M. Stretchable, antifatigue, and intelligent nanocellulose hydrogel colorimetric film for real-time visual detection of beef freshness. Int. J. Biol. Macromol. 2024, 268, 131602. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Hu, J.; Liu, F.; Gui, X.; Tu, Y. Preparation of a colorimetric hydrogel indicator reinforced with modified aramid nanofiber employing natural anthocyanin to monitor shrimp freshness. J. Food Sci. 2024, 89, 5461–5472. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Hu, J.; Li, S.; Lin, S.; Tu, Y.; Gui, X.; Dong, Y. Preparation of an aramid nanofiber-reinforced colorimetric hydrogel employing natural anthocyanin as an indicator for shrimp and fish spoilage monitoring. Eur. Polym. J. 2023, 187, 111889. [Google Scholar] [CrossRef]
- Hao, H.; Duan, B.; Zhang, L.; Wang, L.; Zhang, L.; Wang, Y.; Li, Y.; Zhao, C.; Jia, G.; Li, Y.; et al. Fabrication and characterization of polyvinyl alcohol/sodium alginate loaded carvacrol/silica hollow microspheres composite hydrogel as a colourimetric freshness indicator. Food Biosci. 2024, 57, 103474. [Google Scholar] [CrossRef]
- Su, M.; Qin, H.; Tang, Q.; Peng, D.; Li, H.; Zou, Z. Colorimetric ammonia-sensing nanocomposite films based on starch/sodium alginate and Cu-Phe nanorods for smart packaging application. Int. J. Biol. Macromol. 2024, 282, 137470. [Google Scholar] [CrossRef]
- Forghani, S.; Almasi, H. Characterization and performance evaluation of colorimetric pH-sensitive indicator based on Ҡ-carrageenan/quince seed mucilage hydrogel as freshness/spoilage monitoring of rainbow trout fillet. Food Chem. 2024, 457, 140072. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; Zhan, S.; Lu, Q.; Yang, W.; Jia, R.; Li, G.; Huang, T. Polysaccharide modified fish gelatin intelligent hydrogels for reliable monitoring freshness of shrimp. Food Hydrocoll. 2025, 159, 110699. [Google Scholar] [CrossRef]
- Dikmetas, D.N.; Uysal, E.; Karbancioglu-Guler, F.; Gurmen, S. The production of pH indicator Ca and Cu alginate ((1,4)- β -d-mannuronic acid and α -l-guluronic acid) cryogels containing anthocyanin obtained via red cabbage extraction for monitoring chicken fillet freshness. Int. J. Biol. Macromol. 2023, 231, 123304. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Dong, S.; Zhang, Y.; Lu, D.; Lin, J.; Zhao, Q.; Shi, X. Portable silver-doped prussian blue nanoparticle hydrogels for colorimetric and photothermal monitoring of shrimp and fish freshness. Sens. Actuators B-Chem. 2022, 363, 131811. [Google Scholar] [CrossRef]
- Pirayesh, H.; Park, B.-D.; Khanjanzadeh, H.; Park, H.-J.; Cho, Y.-J. Nanocellulose-based ammonia sensitive smart colorimetric hydrogels integrated with anthocyanins to monitor pork freshness. Food Control 2023, 147, 109595. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Liu, R.; Du, J.; Liu, Q.; Wang, T.; Wang, Y.; Wang, H. Intelligent double-layer pads containing blueberry anthocyanins/citric acid/tricolor lake for chilled pork real-time freshness monitoring. Food Chem. 2025, 476, 143372. [Google Scholar] [CrossRef] [PubMed]
Samples | TVB-N (mg/100 g, n = 3) | Recovery (%) | RSD (%) | ||
---|---|---|---|---|---|
Addition Levels | Measured Amount | Intraday (n = 3) | Interday (n = 3) | ||
Spiked pork | 5 | 4.56 ± 0.56 | 91.26 | 7.35 | 8.16 |
20 | 17.54 ± 1.10 | 87.72 | 6.18 | 8.56 | |
50 | 46.27 ± 2.65 | 92.53 | 8.02 | 9.36 | |
Spiked fish | 5 | 4.65 ± 0.35 | 93.08 | 5.87 | 7.37 |
20 | 18.27 ± 1.5 | 91.35 | 6.57 | 9.05 | |
50 | 48.08 ± 2.05 | 96.17 | 7.22 | 8.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yan, W.; Li, A.; Zhang, H.; Xu, Q. Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel. Foods 2025, 14, 2505. https://doi.org/10.3390/foods14142505
Wang L, Yan W, Li A, Zhang H, Xu Q. Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel. Foods. 2025; 14(14):2505. https://doi.org/10.3390/foods14142505
Chicago/Turabian StyleWang, Lanjing, Weiyi Yan, Aijun Li, Huayin Zhang, and Qian Xu. 2025. "Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel" Foods 14, no. 14: 2505. https://doi.org/10.3390/foods14142505
APA StyleWang, L., Yan, W., Li, A., Zhang, H., & Xu, Q. (2025). Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel. Foods, 14(14), 2505. https://doi.org/10.3390/foods14142505