Red Sea Bream Iridovirus Stability in Freeze–Thaw Cycles: Quantitative Assays of Infectious Particles
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Viral Production
2.2. Virus Titration
2.3. Viral DNA Extraction and Quantitative PCR Assay
2.4. Viability Quantitative PCR Assay
2.5. Preparation for Virus Stability Evaluation
2.6. Statistical Analysis
3. Results
3.1. Effect of Freeze–Thaw Cycles on Viruses in Different Virus Storage Solutions
3.2. Correlation Analysis Between Virus Stability Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WOAH (World Organisation for Animal Health). Red Sea Bream Iridoviral Disease. In Manual of Diagnostic Tests for Aquatic Animals; WOAH: Paris, France, 2021; Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/aahm/current/2.3.07_RSIVD.pdf (accessed on 23 April 2025).
- Inouye, K.; Yamano, K.; Maeno, Y.; Nakajima, K.; Matsuoka, M.; Wada, Y.; Sorimachi, M. Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathol. 1992, 27, 19–27. [Google Scholar] [CrossRef]
- Kurita, J.; Nakajima, K. Megalocytiviruses. Viruses 2012, 4, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Sohn, S.G.; Choi, D.L.; Do, J.W.; Hwang, J.Y.; Park, J.W. Mass mortalities of cultured striped beakperch, Oplegnathus fasciatus by iridoviral infection. J. Fish Pathol. 2000, 13, 121–127. [Google Scholar]
- Kim, Y.J.; Jung, S.J.; Choi, T.J.; Kim, H.R.; Rajendran, K.V.; Oh, M.J. PCR amplification and sequence analysis of irido-like virus infecting fish in Korea. J. Fish Dis. 2002, 25, 121–124. [Google Scholar] [CrossRef]
- USDA (United States Department of Agriculture). Red Sea Bream Iridoviral Disease Rapid Risk Assessment; Animal and Plant Health Inspection Service. 2022. Available online: https://www.aphis.usda.gov/sites/default/files/rsiv-rapid-risk-assess.pdf (accessed on 23 April 2025).
- Evans, R.K.; Nawrocki, D.K.; Isopi, L.A.; Williams, D.M.; Casimiro, D.R.; Chin, S.; Chen, M.; Zhu, D.M.; Shiver, J.W.; Volkin, D.B. Development of stable liquid formulations for adenovirus-based vaccines. J. Pharm. Sci. 2004, 93, 2458–2475. [Google Scholar] [CrossRef]
- Rexroad, J.; Evans, R.K.; Middaugh, C.R. Effect of pH and ionic strength on the physical stability of adenovirus type 5. J. Pharm. Sci. 2006, 95, 237–247. [Google Scholar] [CrossRef]
- Thorat, A.A.; Suryanarayanan, R. Characterization of phosphate buffered saline (PBS) in frozen state and after freeze-drying. Pharm. Res. 2019, 36, 98. [Google Scholar] [CrossRef]
- Joshi, P.U.; Meingast, C.L.; Xu, X.; Holstein, M.; Feroz, H.; Ranjan, S.; Ghose, S.; Li, Z.J.; Heldt, C.L. Virus inactivation at moderately low pH varies with virus and buffer properties. Biotechnol. J. 2022, 17, e2100320. [Google Scholar] [CrossRef]
- Wiethoff, C.M.; Wodrich, H.; Gerace, L.; Nemerow, G.R. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J. Virol. 2005, 79, 1992–2000. [Google Scholar] [CrossRef]
- Arkush, K.D.; Mendonca, H.L.; McBride, A.M.; Yun, S.; McDowell, T.S.; Hedrick, R.P. Effects of temperature on infectivity and of commercial freezing on survival of the North American strain of viral hemorrhagic septicemia virus (VHSV). Dis. Aquat. Organ. 2006, 69, 145–151. [Google Scholar] [CrossRef]
- Gupta, C.K.; Leszczynski, J.; Gupta, R.K.; Siber, G.R. Stabilization of respiratory syncytial virus (RSV) against thermal inactivation and freeze-thaw cycles for development and control of RSV vaccines and immune globulin. Vaccine 1996, 14, 1417–1420. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Z.; Liu, C.Y.Y.; Kost, T.A.; Chao, Y.C. Sucrose and fetal bovine serum maintain stability and activity of the budded baculovirus during dehydration. Eur. J. Pharm. Sci. 2012, 45, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Correia, R.; Meneses, L.; Richheimer, C.; Alves, P.M.; Carrondo, M.J.T.; Duarte, A.R.C.; Paiva, A.; Roldão, A. Improved storage of influenza HA-VLPs using a trehalose-glycerol natural deep eutectic solvent system. Vaccine 2021, 39, 3279–3286. [Google Scholar] [CrossRef]
- Hauptmann, A.; Hoelzl, G.; Loerting, T. Optical cryomicroscopy and differential scanning calorimetry of buffer solutions containing cryoprotectants. Eur. J. Pharm. Biopharm. 2021, 163, 127–140. [Google Scholar] [CrossRef]
- Mohr, P.G.; Moody, N.J.G.; Williams, L.M.; Hoad, J.; Cummins, D.M.; Davies, K.R.; StJ Crane, M. Molecular confirmation of infectious spleen and kidney necrosis virus (ISKNV) in farmed and imported ornamental fish in Australia. Dis. Aquat. Organ. 2015, 116, 103–110. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kang, G.; Woo, W.-S.; Sohn, M.-Y.; Son, H.-J.; Yun, D.; Kim, D.-H.; Park, C.-I. Development and validation of a multiplex quantitative polymerase chain reaction assay for detecting and genotyping red sea bream iridoviral disease. Aquaculture 2024, 580, 740358. [Google Scholar] [CrossRef]
- Hewitt, J.; Greening, G.E. Survival and persistence of norovirus, hepatitis A virus, and feline calicivirus in marinated mussels. J. Food Prot. 2004, 67, 1743–1750. [Google Scholar] [CrossRef]
- Baert, L.; Wobus, C.E.; Van Coillie, E.; Thackray, L.B.; Debevere, J.; Uyttendaele, M. Detection of murine norovirus 1 by using plaque assay, transfection assay, and real-time reverse transcription-PCR before and after heat exposure. Appl. Environ. Microbiol. 2008, 74, 543–546. [Google Scholar] [CrossRef]
- Butot, S.; Putallaz, T.; Sánchez, G. Effects of sanitation, freezing and frozen storage on enteric viruses in berries and herbs. Int. J. Food Microbiol. 2008, 126, 30–35. [Google Scholar] [CrossRef]
- Kim, K.H.; Kang, G.; Woo, W.S.; Sohn, M.Y.; Son, H.J.; Park, C.I. Development of a propidium monoazide-based viability quantitative PCR assay for red sea bream iridovirus detection. Int. J. Mol. Sci. 2023, 24, 3426. [Google Scholar] [CrossRef]
- Veugen, J.M.J.; Schoenmakers, T.; van Loo, I.H.M.; Haagmans, B.L.; Leers, M.P.G.; Lamers, M.M.; Lucchesi, M.; van Bussel, B.C.T.; van Mook, W.N.K.A.; Nuijts, R.M.M.A.; et al. Advancing COVID-19 diagnostics: Rapid detection of intact SARS-CoV-2 using viability RT-PCR assay. Microbiol. Spec. 2024, 12, e0016024. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.J.; Kim, M.J.; Min, J.G.; Kim, K.I. Development of viability-quantitative PCR with propidium monoazide for assessment of white spot syndrome virus structural integrity and viability. Aquaculture 2025, 602, 742317. [Google Scholar] [CrossRef]
- Kwon, W.J.; Yoon, M.J.; Jin, J.W.; Kim, K.I.; Kim, Y.C.; Hong, S.; Jeong, J.B.; Jeong, H.D. Development and characterization of megalocytivirus persistently infected cell cultures for high yield of virus. Tissue Cell 2020, 66, 101387. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Choi, K.M.; Joo, M.S.; Kang, G.; Woo, W.S.; Sohn, M.Y.; Son, H.J.; Kwon, M.G.; Kim, J.O.; Kim, D.H.; et al. Red sea bream iridovirus (RSIV) kinetics in rock bream (Oplegnathus fasciatus) at various fish-rearing seawater temperatures. Animals 2022, 12, 1978. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Kim, K.-H.; Choi, K.-M.; Kang, G.; Woo, W.-S.; Sohn, M.-Y.; Son, H.-J.; Yun, D.; Kim, D.-H.; Park, C.-I. Development and validation of a quantitative polymerase chain reaction assay for the detection of Red Sea bream Iridovirus. Fishes 2022, 7, 236. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Gamble, A.; Fischer, R.J.; Morris, D.H.; Yinda, C.K.; Munster, V.J.; Lloyd-Smith, J.O. Heat-treated virus inactivation rate depends strongly on treatment procedure: Illustration with SARS-CoV-2. Appl. Environ. Microbiol. 2021, 87, e0031421. [Google Scholar] [CrossRef]
- Olitsky, P.K.; Yager, R.H.; Murphy, L.C. Preservation of neurotropic viruses. U.S. Armed Forces Med. J. 1950, 1, 415–417. [Google Scholar]
- Rightsel, W.A.; Greiff, D. Freezing and freeze-drying of viruses. Cryobiology 1967, 3, 423–431. [Google Scholar] [CrossRef]
- Adams, M.H. Surface inactivation of bacterial viruses and of proteins. J. Gen. Physiol. 1948, 31, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Farrant, J. Mechanisms of injury and protection in living cells and tissues at low temperatures. In Current Trends in Cryobiology; Smith, A.U., Ed.; Plenum: New York, NY, USA, 1970; pp. 139–152. [Google Scholar]
- Heber, U.W.; Santarius, K.A. Loss of adenosine triphosphate synthesis caused by freezing and its relationship to frost hardiness problems. Plant Physiol. 1964, 39, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Loewe, D.; Häussler, J.; Grein, T.A.; Dieken, H.; Weidner, T.; Salzig, D.; Czermak, P. Forced degradation studies to identify critical process parameters for the purification of infectious measles virus. Viruses 2019, 11, 725. [Google Scholar] [CrossRef]
- Quinlivan, M.; Cullinane, A.; Nelly, M.; Van Maanen, K.; Heldens, J.; Arkins, S. Comparison of sensitivities of virus isolation, antigen detection, and nucleic acid amplification for detection of equine influenza virus. J. Clin. Microbiol. 2004, 42, 759–763. [Google Scholar] [CrossRef]
- Lashmar, U.T.; Vanderburgh, M.; Little, S.J. Bulk freeze–thawing of macromolecules. BioProcess Int. 2007, 5, 44–54. [Google Scholar]
- Pikal-Cleland, K.A.; Cleland, J.L.; Anchordoquy, T.J.; Carpenter, J.F. Effect of glycine on pH changes and protein stability during freeze–thawing in phosphate buffer systems. J. Pharm. Sci. 2002, 91, 1969–1979. [Google Scholar] [CrossRef]
- Parshionikar, S.; Laseke, I.; Fout, G.S. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Appl. Environ. Microbiol. 2010, 76, 4318–4326. [Google Scholar] [CrossRef]
- Leifels, M.; Jurzik, L.; Wilhelm, M.; Hamza, I.A. Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV- exposure and chlorine. Int. J. Hyg. Environ. Health 2015, 218, 686–693. [Google Scholar] [CrossRef]
- Fuster, N.; Pintó, R.M.; Fuentes, C.; Beguiristain, N.; Bosch, A.; Guix, S. Propidium monoazide RTqPCR assays for the assessment of hepatitis A inactivation and for a better estimation of the health risk of contaminated waters. Water Res. 2016, 101, 226–232. [Google Scholar] [CrossRef]
- Prevost, B.; Goulet, M.; Lucas, F.S.; Joyeux, M.; Moulin, L.; Wurtzer, S. Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes. Water Res. 2016, 91, 68–76. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, H.M.; Yoon, S.R.; Kim, S.H.; Ha, J.H. Pretreatment with propidium monoazide/sodium lauroyl sarcosinate improves discrimination of infectious waterborne virus by RT-qPCR combined with magnetic separation. Environ. Pollut. 2018, 233, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.J.; Kim, K.I. A new cell line derived from the caudal fin of the dwarf gourami (Trichogaster lalius) and its susceptibility to fish viruses. Biology 2023, 12, 829. [Google Scholar] [CrossRef] [PubMed]
- Oidtmann, B.; Dixon, P.; Way, K.; Joiner, C.; Bayley, A.E. Risk of waterborne virus spread—Review of survival of relevant fish and crustacean viruses in the aquatic environment and implications for control measures. Rev. Aquac. 2017, 10, 641–669. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.-M.; Kang, G.; Kim, J.-O.; Lee, J.-T.; Park, C.-I.; Kim, K.-H. Red Sea Bream Iridovirus Stability in Freeze–Thaw Cycles: Quantitative Assays of Infectious Particles. Animals 2025, 15, 1699. https://doi.org/10.3390/ani15121699
Jeong J-M, Kang G, Kim J-O, Lee J-T, Park C-I, Kim K-H. Red Sea Bream Iridovirus Stability in Freeze–Thaw Cycles: Quantitative Assays of Infectious Particles. Animals. 2025; 15(12):1699. https://doi.org/10.3390/ani15121699
Chicago/Turabian StyleJeong, Ji-Min, Gyoungsik Kang, Jae-Ok Kim, Jeong-Tae Lee, Chan-Il Park, and Kyung-Ho Kim. 2025. "Red Sea Bream Iridovirus Stability in Freeze–Thaw Cycles: Quantitative Assays of Infectious Particles" Animals 15, no. 12: 1699. https://doi.org/10.3390/ani15121699
APA StyleJeong, J.-M., Kang, G., Kim, J.-O., Lee, J.-T., Park, C.-I., & Kim, K.-H. (2025). Red Sea Bream Iridovirus Stability in Freeze–Thaw Cycles: Quantitative Assays of Infectious Particles. Animals, 15(12), 1699. https://doi.org/10.3390/ani15121699