Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,706)

Search Parameters:
Keywords = fill stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 (registering DOI) - 2 Aug 2025
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

16 pages, 1388 KiB  
Article
Modeling and Load Capacity Analysis of Helical Anchors for Dam Foundation Reinforcement Against Water Disasters
by Dawei Lv, Zixian Shi, Zhendu Li, Songzhao Qu and Heng Liu
Water 2025, 17(15), 2296; https://doi.org/10.3390/w17152296 (registering DOI) - 1 Aug 2025
Abstract
Hydraulic actions may compromise dam foundation stability. Helical anchors have been used in dam foundation reinforcement projects because of the advantages of large uplift and compression bearing capacity, fast installation, and convenient recovery. However, the research on the anchor plate, which plays a [...] Read more.
Hydraulic actions may compromise dam foundation stability. Helical anchors have been used in dam foundation reinforcement projects because of the advantages of large uplift and compression bearing capacity, fast installation, and convenient recovery. However, the research on the anchor plate, which plays a key role in the bearing performance of helical anchors, is insufficient at present. Based on the finite element model of helical anchor, this study reveals the failure mode and influencing factors of the anchor plate and establishes the theoretical model of deformation calculation. The results showed that the helical anchor plate had obvious bending deformation when the dam foundation reinforced with a helical anchor reached large deformation. The helical anchor plate can be simplified to a flat circular disk. The stress distribution of the closed flat disk and the open flat disk was consistent with that of the helical disk. The maximum deformation of the closed flat disk was slightly smaller than that of the helical disk (less than 6%), and the deformation of the open flat disk was consistent with that of the helical disk. The results fill the blank of the design basis of helical anchor plate and provide a reference basis for the engineering design. Full article
(This article belongs to the Special Issue Disaster Analysis and Prevention of Dam and Slope Engineering)
23 pages, 2015 KiB  
Article
ASA-PSO-Optimized Elman Neural Network Model for Predicting Mechanical Properties of Coarse-Grained Soils
by Haijuan Wang, Jiang Li, Yufei Zhao and Biao Liu
Processes 2025, 13(8), 2447; https://doi.org/10.3390/pr13082447 (registering DOI) - 1 Aug 2025
Abstract
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, [...] Read more.
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, AI-based prediction models for these properties face persistent challenges, particularly in parameter tuning—a process requiring substantial computational resources, extensive time, and specialized expertise. To address these limitations, this study proposes a novel prediction model that integrates Adaptive Simulated Annealing (ASA) with an improved Particle Swarm Optimization (PSO) algorithm to optimize the Elman Neural Network (ENN). The methodology encompasses three key aspects: First, the standard PSO algorithm is enhanced by dynamically adjusting its inertial weight and learning factors. The ASA algorithm is then employed to optimize the Adaptive PSO (APSO), effectively mitigating premature convergence and local optima entrapment during training, thereby ensuring convergence to the global optimum. Second, the refined PSO algorithm optimizes the ENN, overcoming its inherent limitations of slow convergence and susceptibility to local minima. Finally, validation through real-world engineering case studies demonstrates that the ASA-PSO-optimized ENN model achieves high accuracy in predicting the mechanical properties of coarse-grained soils. This model provides reliable constitutive parameters for stress–strain analysis in earth–rock dam engineering applications. Full article
(This article belongs to the Section Particle Processes)
19 pages, 17315 KiB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 (registering DOI) - 31 Jul 2025
Viewed by 12
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

25 pages, 6179 KiB  
Article
The Impact of Different Parallel Strategies on the Performance of Kriging-Based Efficient Global Optimization Algorithms
by Hang Fu, Qingyu Wang, Takuji Nakashima, Rahul Bale and Makoto Tsubokura
Appl. Sci. 2025, 15(15), 8465; https://doi.org/10.3390/app15158465 (registering DOI) - 30 Jul 2025
Viewed by 91
Abstract
A parallel efficient global optimization (EGO) algorithm with a pseudo expected improvement (PEI) multi-point sampling criterion, proposed in recent years, is developed to adapt the capabilities of modern parallel computing power. However, a comprehensive and clear discussion on the impact of different point-filling [...] Read more.
A parallel efficient global optimization (EGO) algorithm with a pseudo expected improvement (PEI) multi-point sampling criterion, proposed in recent years, is developed to adapt the capabilities of modern parallel computing power. However, a comprehensive and clear discussion on the impact of different point-filling strategies on the optimization performance of the parallel EGO algorithm is still lacking, limiting its theoretical reference for practical applications and technological advancements. To address this gap, this study comprehensively investigates the optimization performance of the parallel EGO algorithm based on the PEI multi-point sampling criterion by analyzing the impact of different point-filling strategies under kriging surrogate models of varying fidelity. Therefore, nine benchmark test functions with different optimization problem characteristics were selected as optimization test objects, and the results were systematically analyzed from the perspectives of convergence performance, optimization efficiency, and algorithmic diversity. The analysis results indicate that the higher-fidelity kriging surrogate model enhances the stability of the parallel EGO algorithm in terms of convergence performance, optimization efficiency, and algorithmic diversity. Full article
Show Figures

Figure 1

21 pages, 2195 KiB  
Article
Physicochemical and Sensory Analysis of Apple Cream Fillings for Use in the Pastry Industry
by Marios Liampotis, Zacharias Ioannou, Kosmas Ellinas and Konstantinos Gkatzionis
Appl. Sci. 2025, 15(15), 8386; https://doi.org/10.3390/app15158386 - 29 Jul 2025
Viewed by 191
Abstract
The sensory and physicochemical properties of three different recipes for apple cream filling were investigated, focusing on their potential to enhance consumer appeal in pastry applications. Two of the recipes incorporate dried apple cubes (AP1, 48% and AP2, 38% w/w, respectively), while [...] Read more.
The sensory and physicochemical properties of three different recipes for apple cream filling were investigated, focusing on their potential to enhance consumer appeal in pastry applications. Two of the recipes incorporate dried apple cubes (AP1, 48% and AP2, 38% w/w, respectively), while the third recipe (PD) features a cube-free formulation with higher quantities of sugar, potato starch, xanthan gum, dextrose, cinnamon and malic acid. The study evaluated the impact of ingredient composition and processing techniques on sensory attributes. The results indicate that AP1 and AP2 resulted in higher moisture, ash and fiber content but lower viscosity, pH values and emulsion stability compared to PD. All samples exhibited pseudoplastic behavior. The AP2 sample exhibited the most hydrophilic behavior. FT-IR spectra have shown three main peaks, i.e., O-H (3300–3320 cm−1), C=O (1640–1730 cm−1) and C-O (1025–1030 cm−1) stretching vibrations. AP1 and AP2 significantly enhanced hardness and cohesion, providing a more engaging sensory experience. PD offers a smoother, creamier texture with lower inhomogeneity compared to AP1 and AP2 samples, making it ideal for consumers who prefer a uniform mouthfeel. This research demonstrates the critical role of formulation choices in tailoring sensory and physicochemical properties of apple cream fillings to meet diverse consumer preferences. Full article
Show Figures

Figure 1

11 pages, 1539 KiB  
Article
An Optimum Prediction Model for the Strength Index of Unclassified Tailings Filling Body
by Jian Yao, Shenghua Yin, Dongmei Tian, Chen Yi, Jinglin Xu and Leiming Wang
Processes 2025, 13(8), 2395; https://doi.org/10.3390/pr13082395 - 28 Jul 2025
Viewed by 212
Abstract
In order to improve the poor prediction effect of current filling body strength design, a support vector machine (SVM) and Lib Toolbox were used to build an optimal match model or strength index of unclassified tailings filling body. Eight main factors were analyzed [...] Read more.
In order to improve the poor prediction effect of current filling body strength design, a support vector machine (SVM) and Lib Toolbox were used to build an optimal match model or strength index of unclassified tailings filling body. Eight main factors were analyzed and screened as condition attributes, and backfill strength as a decision attribute. Next, we selected 72 groups of training samples and 6 groups of calibration samples. Our model adopts a radial basis function (RBF) as the kernel function and uses a grid search method to optimize parameters; it then tests the combination of optimal parameters by cross-validation. Results show that the mean error of regression prediction and verified predictions made by the SVM match model were 1.01%, which were more accurate than the BP neural network model’s predictions. On the premise that stope stability is ensured, the SVM match model may decrease cement consumption and the cost of backfill more effectively, and improve economic efficiency. Full article
Show Figures

Figure 1

27 pages, 5387 KiB  
Article
High Strength and Strong Thixotropic Gel Suitable for Oil and Gas Drilling in Fractured Formation
by Yancheng Yan, Tao Tang, Biao Ou, Jianzhong Wu, Yuan Liu and Jingbin Yang
Gels 2025, 11(8), 578; https://doi.org/10.3390/gels11080578 - 26 Jul 2025
Viewed by 308
Abstract
In petroleum exploration and production, lost circulation not only significantly increases exploration and development costs and operational cycles but may also lead to major incidents such as wellbore instability or even project abandonment. This paper constructs a polymer gel plugging system by optimizing [...] Read more.
In petroleum exploration and production, lost circulation not only significantly increases exploration and development costs and operational cycles but may also lead to major incidents such as wellbore instability or even project abandonment. This paper constructs a polymer gel plugging system by optimizing high-molecular-weight polymers, crosslinker systems, and resin hardeners. The optimized system composition was determined as 1% polymer J-1, 0.3% catechol, 0.6% hexamethylenetetramine (HMTA), and 15% urea–formaldehyde resin. Experimental studies demonstrated that during the initial stage (0–3 days) at 120 °C, the optimized gel system maintained a storage modulus (G′) of 17.5 Pa and a loss modulus (G″) of 4.3 Pa. When the aging period was extended to 9 days, G′ and G″ decreased to 16 Pa and 4 Pa, respectively. The insignificant reduction in gel strength indicates excellent thermal stability of the gel system. The gel exhibited superior self-filling capacity during migration, enabling complete filling of fractures of varying sizes. After aging for 1 day at 120 °C, the plugging capacity of the gel system under water flooding and gas flooding conditions was 166 kPa/m and 122 kPa/m, respectively. Furthermore, a complete gel barrier layer formed within a 6 mm wide vertical fracture, demonstrating a pressure-bearing capacity of 105.6 kPa. This system shows good effectiveness for wellbore isolation and fracture plugging. The polymer gel plugging system studied in this paper can simplify lost circulation treatment procedures while enhancing plugging strength, providing theoretical support and technical solutions for addressing lost circulation challenges. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

22 pages, 15042 KiB  
Article
Study on Optimization of Downward Mining Schemes of Sanshandao Gold Mine
by Weijun Liu, Zhixiang Liu and Zaiyong Li
Appl. Sci. 2025, 15(15), 8296; https://doi.org/10.3390/app15158296 - 25 Jul 2025
Viewed by 103
Abstract
To address the challenges associated with deep ground pressure control at the Sanshandao Gold Mine, a pre-controlled top-to-middle and deep-hole upper and lower-wall goaf subsequent filling mining method was proposed. Three distinct downward mining schemes were designed, the excavation procedure is systematically designed [...] Read more.
To address the challenges associated with deep ground pressure control at the Sanshandao Gold Mine, a pre-controlled top-to-middle and deep-hole upper and lower-wall goaf subsequent filling mining method was proposed. Three distinct downward mining schemes were designed, the excavation procedure is systematically designed with 18 steps, and the temporal and spatial evolution characteristics of stress and displacement were analyzed using FLAC3D. The results revealed that stress concentration occurred during excavation steps 1–3. As excavation progressed to steps 4–9, the stress concentration area shifted primarily to the filling zones of partially excavated and filled sections. By steps 10–12, the stress concentration in these areas was alleviated. Upon completion of all excavation and filling steps, a small plastic zone was observed, accompanied by an alternating distribution of high and low stress within the backfill. Throughout the excavation process, vertical displacement ranged from 4.42 to 22.73 mm, while horizontal displacement ranged from 1.72 to 3.69 mm, indicating that vertical displacement had a more significant impact on stope stability than horizontal displacement. Furthermore, the fuzzy comprehensive evaluation method was applied to optimize the selection among the three schemes, with Scheme 2 identified as the optimal. Field industrial trials subsequently confirmed the technical rationality and practical applicability of Scheme 2 under actual mining conditions. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

18 pages, 7515 KiB  
Article
Ecological Stability over the Period: Land-Use Land-Cover Change and Prediction for 2030
by Mária Tárníková and Zlatica Muchová
Land 2025, 14(7), 1503; https://doi.org/10.3390/land14071503 - 21 Jul 2025
Viewed by 275
Abstract
This study aimed to investigate land-use and land-cover change and the associated change in the ecological stability of the model area Dobrá–Opatová (district of Trenčín, Slovakia), where increasing landscape transformation has raised concerns about declining ecological resilience. Despite the importance of sustainable land [...] Read more.
This study aimed to investigate land-use and land-cover change and the associated change in the ecological stability of the model area Dobrá–Opatová (district of Trenčín, Slovakia), where increasing landscape transformation has raised concerns about declining ecological resilience. Despite the importance of sustainable land management, few studies in this region have addressed long-term landscape dynamics in relation to ecological stability. This research fills that gap by evaluating historical and recent LULC changes and their ecological consequences. Four time horizons were analysed: 1850, 1949, 2009, and 2024. Although the selected time periods are irregular, they reflect key milestones in the region’s land development, such as pre-industrial land use, post-war collectivisation, and recent land consolidation. These activities significantly altered the structure of the landscape. To assess future trends, we used the MOLUSCE plug-in in QGIS to simulate ecological stability for the future. The greatest structural landscape changes occurred between 1850 and 1949. Significant transformation in agricultural areas was observed between 1949 and 2009, when collectivisation reshaped small plots into large block structures and major water management projects were implemented. The 2009–2024 period was marked by land consolidation, mainly resulting in the construction of gravel roads. These structural changes have contributed to a continuous decrease in ecological stability, calculated using the coefficient of ecological stability derived from LULC categories. To explore future trends, we simulated ecological stability for the year 2030 and the simulation confirmed a continued decline in ecological stability, highlighting the need for sustainable land-use planning in the area. Full article
Show Figures

Figure 1

17 pages, 3791 KiB  
Article
Loading Response of Segment Lining with Pea-Gravel Grouting Defects for TBM Tunnel in Transition Zones of Surrounding Rocks
by Qixing Che, Changyong Li, Xiangfeng Wang, Zhixiao Zhang, Yintao He and Shunbo Zhao
Eng 2025, 6(7), 166; https://doi.org/10.3390/eng6070166 - 21 Jul 2025
Viewed by 236
Abstract
Pea-gravel grouting, which fills the gap between the lining of tunnels and the surrounding rock, is crucial for the structural stability and waterproofing of water delivery TBM tunnels. However, it is prone to defects due to complex construction conditions and geological factors. To [...] Read more.
Pea-gravel grouting, which fills the gap between the lining of tunnels and the surrounding rock, is crucial for the structural stability and waterproofing of water delivery TBM tunnels. However, it is prone to defects due to complex construction conditions and geological factors. To provide practical insights for engineers to evaluate grouting quality and take appropriate remedial action during TBM tunnel construction, this paper assesses four types of pea-gravel grouting defects, including local cavities, less density, rich rock powder and rich cement slurry. Detailed numerical simulation models comprising segment lining, pea-gravel grouting and surrounding rock were built using the 3D finite element method to analyze the displacement and stress of the segments at the transition zone between different classes of surrounding rocks, labeled V–IV, V–III and IV–III. The results indicate that a local cavity defect has the greatest impact on the loading response of segment lining, followed by less density, rich rock powder and rich cement slurry defects. Their impact will weaken with better self-support of the surrounding rocks in the order of V–IV, V–III and IV–III. The tensile stress of segment lining is within the limit of concrete cracking for combinations of all four defects when the surrounding rock is of the class IV–III, and it is within this limit for two-defect combinations when the surrounding rock is of classes V–III and V–IV. When three defects or all four defects are present in the pea-gravel grouting, the possibility of segment concrete cracking increases from the transition zone of class V–III surrounding rock to the transition zone of class V–IV surrounding rock. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

12 pages, 3174 KiB  
Article
Modeling and Control for an Aerial Work Quadrotor with a Robotic Arm
by Wenwu Zhu, Fanzeng Wu, Haibo Du, Lei Li and Yao Zhang
Actuators 2025, 14(7), 357; https://doi.org/10.3390/act14070357 - 21 Jul 2025
Viewed by 240
Abstract
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian [...] Read more.
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian energy conservation principle is adopted. By treating the quadrotor and robotic arm as a unified system, an integrated dynamic model is developed, which accurately captures the coupled dynamics between the aerial platform and the manipulator. The innovative approach fills the gap in existing research where model expressions are incomplete and parameters are ambiguous. Next, to reduce the adverse effects of the robotic arm’s motion on the entire system stability, a finite-time disturbance observer and a fast non-singular terminal sliding mode controller (FNTSMC) are designed. Lyapunov theory is used to prove the finite-time stability of the closed-loop system. It breaks through the limitations of the traditional Lipschitz framework and, for the first time at both the theoretical and methodological levels, achieves finite-time convergence control for the aerial work quadrotor with a robotic arm system. Finally, comparative simulations with the integral sliding mode controller (ISMC), sliding mode controller (SMC), and PID controller demonstrate that the proposed algorithm reduces the regulation time by more than 45% compared to ISMC and SMC, and decreases the overshoot by at least 68% compared to the PID controller, which improves the convergence performance and disturbance rejection capability of the closed-loop system. Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
Show Figures

Figure 1

24 pages, 5801 KiB  
Article
A Study on the Performance of Gel-Based Polyurethane Prepolymer/Ceramic Fiber Composite-Modified Asphalt
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Hao Huang, Zhi Li, Haijun Chen and Jiachen Wang
Gels 2025, 11(7), 558; https://doi.org/10.3390/gels11070558 - 20 Jul 2025
Viewed by 238
Abstract
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide [...] Read more.
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide elasticity and gel-like behavior, while CFs contribute to structural stability and high-temperature resistance, making them ideal for enhancing asphalt performance. PUPs, a thermoplastic and elastic polyurethane gel material, not only enhance the flexibility and adhesion properties of asphalt but also significantly improve the structural stability of composite materials when synergistically combined with CF. Using response surface methodology, an optimized preparation scheme for PUP/CF composite-modified asphalt was investigated. Through aging tests, dynamic shear rate (DSR) testing, bending rate (BBR) testing, microstructure scanning (MSCR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and infrared spectroscopy (IR), the aging performance, rheological properties, permanent deformation resistance, microstructure, and modification mechanism of PUP/CF composite-modified asphalt were investigated. The results indicate that the optimal preparation scheme is a PUP content of 7.4%, a CF content of 2.1%, and a shear time of 40 min. The addition of the PUP and CF significantly enhances the asphalt’s aging resistance, and compared with single-CF-modified asphalt and base asphalt, the PUP/CF composite-modified asphalt exhibits superior high- and low-temperature rheological properties, demonstrating stronger strain recovery capability. The PUP forms a gel network structure in the material, effectively filling the gaps between CF and asphalt, enhancing interfacial bonding strength, and making the overall performance more stable. AFM microscopic morphology shows that PUP/CF composite-modified asphalt has more “honeycomb structures” than matrix asphalt and CF-modified asphalt, forming more structural asphalt and enhancing overall structural stability. This study indicates that the synergistic effect of PUP gel and CF significantly improves the macro and micro properties of asphalt. The PUP forms a three-dimensional elastic gel network in asphalt, improving adhesion and deformation resistance. Using response surface methodology, the optimal formulation (7.4% PUP, 2.1% CF) improves penetration (↓41.5%), softening point (↑6.7 °C), and ductility (↑9%), demonstrating the relevance of gel-based composites for asphalt modification. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

18 pages, 451 KiB  
Article
Distinctive LMI Formulations for Admissibility and Stabilization Algorithms of Singular Fractional-Order Systems with Order Less than One
by Xinhai Wang, Xuefeng Zhang, Qing-Guo Wang and Driss Boutat
Fractal Fract. 2025, 9(7), 470; https://doi.org/10.3390/fractalfract9070470 - 19 Jul 2025
Viewed by 208
Abstract
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full [...] Read more.
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full rank matrices. This admissibility criterion does not involve complex variables and is different from all previous results, filling a gap in this area. Based on the LMIs in the generalized condition, the improved criterion utilizes a variable substitution technique to reduce the number of matrix variables to be solved from one pair to one, reflecting the admissibility more essentially. This improved result simplifies the programming process compared to the traditional approach that requires two matrix variables. To complete the state feedback controller design, the system matrices in the generalized admissibility criterion are decoupled, but bilinear constraints still occur in the stabilization criterion. For this case, where a feasible solution cannot be found using the MATLAB LMI toolbox, a branch-and-bound algorithm (BBA) is designed to solve it. Finally, the validity of these criteria and the BBA is verified by three examples, including a real circuit model. Full article
Show Figures

Figure 1

31 pages, 9878 KiB  
Article
Shallow Sliding Failure of Slope Induced by Rainfall in Highly Expansive Soils Based on Model Test
by Shuangping Li, Bin Zhang, Shanxiong Chen, Zuqiang Liu, Junxing Zheng, Min Zhao and Lin Gao
Water 2025, 17(14), 2144; https://doi.org/10.3390/w17142144 - 18 Jul 2025
Viewed by 226
Abstract
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes [...] Read more.
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes of highly expansive soils induced by rainfall, using model tests to explore deformation and mechanical behavior under cyclic wetting and drying conditions, focusing on the interaction between soil properties and environmental factors. Model tests were conducted in a wedge-shaped box filled with Nanyang expansive clay from Henan, China, which is classified as high-plasticity clay (CH) according to the Unified Soil Classification System (USCS). The soil was compacted in four layers to maintain a 1:2 slope ratio (i.e., 1 vertical to 2 horizontal), which reflects typical expansive soil slope configurations observed in the field. Monitoring devices, including moisture sensors, pressure transducers, and displacement sensors, recorded changes in soil moisture, stress, and deformation. A static treatment phase allowed natural crack development to simulate real-world conditions. Key findings revealed that shear failure propagated along pre-existing cracks and weak structural discontinuities, supporting the progressive failure theory in shallow sliding. Cracks significantly influenced water infiltration, creating localized stress concentrations and deformation. Atmospheric conditions and wet-dry cycles were crucial, as increased moisture content reduced soil suction and weakened the slope’s strength. These results enhance understanding of expansive soil slope failure mechanisms and provide a theoretical foundation for developing improved stabilization techniques. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

Back to TopTop