Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,581)

Search Parameters:
Keywords = filament material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4550 KB  
Article
Effect of Annealing on High Temperature Tensile Performance of 3D Printed Polyamide Carbon Fiber: A Comparative Study
by Theodor Florian Zach and Mircea Cristian Dudescu
J. Compos. Sci. 2025, 9(11), 624; https://doi.org/10.3390/jcs9110624 - 10 Nov 2025
Abstract
Fused filament fabrication of thermoplastic composites, despite its recyclability, increased strength, and efficiency, faces structural limitations under elevated temperatures. The literature on heat treatments for improving the thermal resilience of accessible 3D printed composites is limited. Therefore, this study comprehensively presents the efficacy [...] Read more.
Fused filament fabrication of thermoplastic composites, despite its recyclability, increased strength, and efficiency, faces structural limitations under elevated temperatures. The literature on heat treatments for improving the thermal resilience of accessible 3D printed composites is limited. Therefore, this study comprehensively presents the efficacy of annealing on carbon fiber reinforced polyamide (PAHT-CF). The methodology includes uniaxial tensile testing of 200 samples across a wide temperature range (25–150 °C) and five different infill orientations, annealed as per the Technical Data Sheet (80 °C, 12 h). Scanning electron microscopy (SEM) of the fracture surfaces revealed the microstructural changes responsible for the improved properties after annealing. At 25 °C, annealing led to a 50% strength increase (63.88 MPa) and a 70% lower strain (2.65%). At 150 °C, the material maintained a 17.5% strength advantage (23.62 MPa) and a 17.5% reduction in strain (12.67%). The 0°, 90°, and 0/90° orientations exhibited the highest improvements, while the remainder displayed lower strengths and higher deformation beyond the glass transition temperature (70 °C). Overall, annealed PAHT-CF demonstrates high-temperature resilience, comparable to previously analyzed materials like carbon fiber reinforced polyether–ether–ketone (PEEK-CF). This makes it a potentially accessible alternative for the aerospace and automotive sectors. However, practical applications must consider the trade-off between its enhanced mechanical properties and the increased lead time from annealing. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

15 pages, 7009 KB  
Article
Low Coefficient of Thermal Expansion (CTE) Ceramic–Thermoplastic Composite for Fused Deposition Modelling of RF and Microwave Devices
by Vishvajitsinh Kosamiya, Liguan Li, Ioannis N. Gkikas, Juan D. Castro, Julia Oppenheimer, Ioannis Spanopoulos and Jing Wang
Crystals 2025, 15(11), 963; https://doi.org/10.3390/cryst15110963 - 7 Nov 2025
Viewed by 216
Abstract
Additive manufacturing (AM) has significant potential for rapid prototyping of intricate 3-dimensional geometries, yet its adoption in RF and microwave applications remains limited. Key barriers include inadequate material characterization, high dielectric losses, poor thermal stability, and challenges with multi-material integration. This work addresses [...] Read more.
Additive manufacturing (AM) has significant potential for rapid prototyping of intricate 3-dimensional geometries, yet its adoption in RF and microwave applications remains limited. Key barriers include inadequate material characterization, high dielectric losses, poor thermal stability, and challenges with multi-material integration. This work addresses these issues by developing a high-k, low-loss composite filament with a reduced coefficient of thermal expansion (CTE), specifically formulated for fused deposition modelling (FDM). By varying filler volume fractions (30%, 40%, and 50% v/v) and surfactant content, their impact on thermal stability and CTE was investigated and measured by thermomechanical analysis (TMA). XRD, Pycnometry, and EDS analysis were performed to verify the effect of the calcination process on ceramic microfillers. The B.E.T. method (Brunauer–Emmet–Teller) was utilized to calculate the specific surface area of the samples with N2 uptake. SEM images of the different composites were presented to visually demonstrate the homogeneous distribution of microfillers in the thermoplastic matrix. Titania was evaluated as the ceramic filler. Titania composites demonstrated decreased CTE values (35.93 ppm/°C at 50% v/v filler coated with surfactant) compared to composites without surfactant. A dielectric waveguide (DWG) printed with the T30S composite achieved an insertion loss of 0.46 dB at 17.23 GHz, significantly outperforming a commercially available ABS450-based DWG (0.95 dB at 16.88 GHz). Measurements aligned closely with 3D electromagnetic simulations, confirming dielectric properties (εr = 5.55, tan δ = 0.0009) suitable for advanced RF and microwave devices and advanced packaging applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 18580 KB  
Article
Optimization of Gamma Image Quality Through Experimental Evaluation Using 3D-Printed Phantoms Across Energy Window Levels
by Chanrok Park, Joowan Hong and Min-Gwan Lee
Bioengineering 2025, 12(11), 1211; https://doi.org/10.3390/bioengineering12111211 - 6 Nov 2025
Viewed by 262
Abstract
Energy window selection is a critical parameter for optimizing planar gamma image quality in nuclear medicine. In this study, we developed dedicated nuclear medicine phantoms using 3D printing technology to evaluate the impact of varying energy window levels on image quality. Three types [...] Read more.
Energy window selection is a critical parameter for optimizing planar gamma image quality in nuclear medicine. In this study, we developed dedicated nuclear medicine phantoms using 3D printing technology to evaluate the impact of varying energy window levels on image quality. Three types of phantoms—a Derenzo phantom with six different sphere diameters, a modified Hoffman phantom incorporating lead for attenuation, and a quadrant bar phantom with four bar thicknesses constructed from bronze filament—were fabricated using Fusion 360 and an Ultimaker S5 3D printer with PLA and bronze-based materials. Planar images were acquired using 37 MBq of Tc-99m for 60 s at energy windows centered at 122, 140, and 159 keV. Quantitative assessments included contrast-to-noise ratio (CNR), coefficient of variation (COV), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM), comparing all images with the 140 keV image as the reference. The results showed a consistent decline in image quality at 122 keV and 159 keV, with the highest CNR, lowest COV, and optimal PSNR/SSIM values obtained at 140 keV. In visual analysis using the quadrant bar phantom, thinner bars were more clearly discernible at 140 keV than at other energy levels. These findings demonstrate that the application of an appropriate energy window—particularly 140 keV for Tc-99m—substantially improves image quality in planar gamma imaging. The use of customized, material-specific 3D-printed phantoms also enables flexible, reproducible evaluation protocols for energy-dependent imaging optimization and quality assurance in clinical nuclear medicine. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

35 pages, 3549 KB  
Review
Multimatrix Composite Materials for Rocket Nozzle Manufacturing: A Comparative Review
by Mohammed Meiirbekov, Mukhammed Sadykov, Assem Kuandyk, Marat Nurguzhin, Marat Janikeyev, Partizan Gulmaira, Laura Mustafa and Nurmakhan Yesbolov
Polymers 2025, 17(21), 2946; https://doi.org/10.3390/polym17212946 - 4 Nov 2025
Viewed by 455
Abstract
Rocket engine nozzle blocks operate under extreme thermal and oxidative loads, requiring materials with high temperature resistance, dimensional stability, and a predictable lifetime without active cooling. This review provides a comparative overview of multimatrix composite materials-including C/C, C/SiC, SiC/SiC, MMC, and polymer-based ablative [...] Read more.
Rocket engine nozzle blocks operate under extreme thermal and oxidative loads, requiring materials with high temperature resistance, dimensional stability, and a predictable lifetime without active cooling. This review provides a comparative overview of multimatrix composite materials-including C/C, C/SiC, SiC/SiC, MMC, and polymer-based ablative systems-representing the full spectrum of materials used in non-cooled rocket nozzles. The study highlights the evolutionary continuum from polymeric ablative systems to carbon, ceramic, and metallic matrices, demonstrating how each class extends operational limits in temperature capability, reusability, and structural integrity. Polymer and ablative composites serve as the foundation of thermal protection through controlled ablation and insulation, while carbon- and ceramic-based systems ensure long-term performance at ultra-high temperatures (>1600 °C). MMCs bridge these classes by combining strength, impact toughness, and thermal conductivity in transition zones. Particular attention is given to manufacturing technologies such as PIP, CVI, LPI, RS, powder metallurgy, casting, diffusion bonding, and filament winding, emphasizing their effect on microstructure, porosity, and lifetime. A practical selection matrix linking nozzle zones, mission profiles, and composite types is proposed, outlining trade-offs among performance, mass, lifetime, and manufacturability, and guiding the design of next-generation thermal protection and propulsion systems based on the multimatrix concept. Full article
(This article belongs to the Special Issue Polymer Composites: Design, Manufacture and Characterization)
Show Figures

Figure 1

20 pages, 4301 KB  
Article
Chestnut Burr as a Multifunctional Filler for PLA-Based Bio-Composites: Processing, Characterization, and Antioxidant Functionality
by Tommaso Olmastroni, Simone Pepi, Milad Sarwari, Eugenio Paccagnini, Alfonso Trezza, Anna Visibelli, Pietro Lupetti, Agnese Magnani, Valter Travagli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(21), 11743; https://doi.org/10.3390/app152111743 - 4 Nov 2025
Viewed by 329
Abstract
This study explores the valorization of chestnut burrs (Castanea sativa), an abundant agro-industrial residue, as a natural filler for polylactic acid (PLA)-based biocomposites with potential applications in additive manufacturing. PLA/chestnut burr composite filaments were prepared by melt extrusion with filler contents [...] Read more.
This study explores the valorization of chestnut burrs (Castanea sativa), an abundant agro-industrial residue, as a natural filler for polylactic acid (PLA)-based biocomposites with potential applications in additive manufacturing. PLA/chestnut burr composite filaments were prepared by melt extrusion with filler contents of 2.5%, 5%, 10%, and 15% w/w, and their chemical, thermal, morphological, and mechanical properties were systematically characterized. ATR-FTIR confirmed the absence of major chemical modifications of the PLA matrix. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the latter performed on both the extruded filaments and the material after fused deposition modeling (FDM) 3D printing, revealed a slight decrease in thermal stability with increasing filler content, coupled with enhanced crystallinity. Mechanical properties analysis showed that the addition of chestnut burrs did not negatively impact the viscoelastic behavior of the filaments. Scanning electron microscopy (SEM) highlighted good filler dispersion up to 5% loading, while higher percentages led to increased surface roughness and microvoids. Importantly, antioxidant activity assays (DPPH, ABTS, FRAP, and Folin–Ciocâlteu) demonstrated that the incorporation of chestnut burr significantly enhanced the radical-scavenging capacity, reducing power, and total phenolic content (TPC) of PLA. These functionalities were preserved, and in some cases amplified, after FDM 3D printing, indicating that the processing conditions did not degrade the bioactive constituents. Overall, chestnut burrs are confirmed as an effective multifunctional filler for PLA, improving its antioxidant activity while maintaining structural and thermal performance, supporting the development of sustainable biocomposites for emerging applications. Full article
Show Figures

Figure 1

20 pages, 4491 KB  
Article
Experimental Study on the Effect of Humidity on the Mechanical Properties of 3D-Printed Mechanical Metamaterials
by Qian Sun, Xiaojun Tan, Jianhao Man, Shuai Li, Zeeshan Ali, Kaiyang Yin, Bo Cao and Christoph Eberl
Polymers 2025, 17(21), 2938; https://doi.org/10.3390/polym17212938 - 3 Nov 2025
Viewed by 614
Abstract
In this study, six common fused filament fabrication (FFF) polymers—PEEK, PLA, PETG, ABS, Nylon, and TPU—were acclimatized at 15%, 45%, and 95% relative humidity (RH) to characterize tensile behavior, including Young’s modulus, maximum strain, and ultimate tensile strength. Separately, mechanical metamaterial samples at [...] Read more.
In this study, six common fused filament fabrication (FFF) polymers—PEEK, PLA, PETG, ABS, Nylon, and TPU—were acclimatized at 15%, 45%, and 95% relative humidity (RH) to characterize tensile behavior, including Young’s modulus, maximum strain, and ultimate tensile strength. Separately, mechanical metamaterial samples at relative densities (RD) of 25%, 35%, and 45% were tested in compression at the same RH levels to evaluate stiffness, strength, and Poisson’s ratio. The water absorption process can generally be divided into different stages—rapid uptake (0–12 h), a plateau (12–60 h), and a late rebound (60–100 h)—with a total uptake ranking of Nylon > PETG > PLA ≈ ABS > TPU ≈ PEEK. Samples under tensile and compressive tests show a great difference between properties at different RD and RH levels. Poisson’s ratio indicates that material responses remain predictable at low-to-moderate RH, whereas high RH serves as a critical threshold inducing abrupt Poisson’s ratio behavioral shifts. This study provides systematic validation for the application of 3D-printed metamaterials under varying humidity conditions, such as biomedical implants in human body. Full article
(This article belongs to the Special Issue Smart Polymers and Mechanical Metamaterials)
Show Figures

Figure 1

15 pages, 3520 KB  
Article
Multi-Material Fused Filament Fabrication of TPU Composite Honeycombs Featuring Out-of-Plane Gradient Stiffness
by Savvas Koltsakidis, Konstantinos Tsongas, Nikolaos Papas, Eleftheria Maria Pechlivani and Dimitrios Tzetzis
J. Compos. Sci. 2025, 9(11), 588; https://doi.org/10.3390/jcs9110588 - 1 Nov 2025
Viewed by 330
Abstract
Gradient stiffness structures are increasingly recognized for their excellent energy absorption capabilities, particularly under challenging loading conditions. Most studies focus on varying the thickness of the structure in order to produce gradient stiffness. This work introduces an innovative approach to design honeycomb architectures [...] Read more.
Gradient stiffness structures are increasingly recognized for their excellent energy absorption capabilities, particularly under challenging loading conditions. Most studies focus on varying the thickness of the structure in order to produce gradient stiffness. This work introduces an innovative approach to design honeycomb architectures with controlled gradient stiffness along the out-of-plane direction achieved by materials’ microstructure variations. The gradient is achieved by combining three types of thermoplastic polyurethane (TPU) materials: porous TPU, plain TPU, and carbon fiber (CF)-reinforced TPU. By varying the material distribution across the honeycomb layers, a smooth transition in stiffness is formed, improving both mechanical resilience and energy dissipation. To fabricate these structures, a dual-head 3D printer was employed with one head printed processed TPU with a chemical blowing agent to produce porous and plain sections, while the other printed a CF-reinforced TPU. By alternating between the two print heads and modifying the processing temperatures, honeycombs with up to three distinct stiffness zones were produced. Compression testing under out-of-plane loading revealed clear plateau and densification regions in the stress–strain curves. Pure CF-reinforced honeycombs absorbed the most energy at stress levels above ~4.5 MPa, while porous TPU honeycombs were more effective under stress levels below ~1 MPa. Importantly, the gradient stiffness honeycombs achieved a balanced energy absorption profile across a broader range of stress levels, offering enhanced performance and adaptability for applications like protective equipment, packaging, and automotive structures. Full article
Show Figures

Figure 1

31 pages, 7615 KB  
Review
Electroconductive Thermosensitive Shape Memory Polymers Manufactured by Fused Filament Fabrication: A Critical Review
by Laurane Roumy, Fabienne Touchard, Thuy-Quynh Truong-Hoang and Francisca Martinez-Hergueta
Appl. Sci. 2025, 15(21), 11641; https://doi.org/10.3390/app152111641 - 31 Oct 2025
Viewed by 232
Abstract
The field of 4D printing has seen rapid advancement in recent years, making it a highly dynamic research domain. This new technology is promising for the development of brand-new lightweight, smart and reliable devices. This article is a literature review of the latest [...] Read more.
The field of 4D printing has seen rapid advancement in recent years, making it a highly dynamic research domain. This new technology is promising for the development of brand-new lightweight, smart and reliable devices. This article is a literature review of the latest research in 4D printing, focusing on electroconductive thermosensitive Shape Memory Polymers. They are promising thanks to their high strength-to-weight ratio and their large deformability. However, devices made of such materials are difficult to embed into larger systems because of the triggering mechanism needed to actuate them. Electroconductive Shape Memory Polymers can be stimulated by the Joule effect, but the intricacies and interdependence of their properties make them a great scientific challenge. The first part of this article provides a clear explanation of the main concepts of 4D printing. Afterwards, it focuses on Fused Filament Fabrication due to its high customisability and ease of use. A description of the properties of thermosensitive 4D printed specimens is provided in the third part. Finally, their main challenges and intricacies are discussed. Full article
(This article belongs to the Special Issue State of the Art in Smart Materials and Flexible Sensors)
Show Figures

Figure 1

18 pages, 3351 KB  
Article
Prediction of Fracture Loads in 3D-Printed ASA and Carbon-Fiber Reinforced ASA Notched Specimens Using the Calibrated ASED Criterion
by Sergio Arrieta, Sergio Cicero and José A. Álvarez
Materials 2025, 18(21), 4966; https://doi.org/10.3390/ma18214966 - 30 Oct 2025
Viewed by 249
Abstract
This paper presents an adapted methodology for the prediction of fracture loads in additively manufactured (fused filament fabrication) polymers that exhibit non-linear behavior. The approach is based on the Average Strain Energy Density (ASED) criterion, which is typically limited to materials which develop [...] Read more.
This paper presents an adapted methodology for the prediction of fracture loads in additively manufactured (fused filament fabrication) polymers that exhibit non-linear behavior. The approach is based on the Average Strain Energy Density (ASED) criterion, which is typically limited to materials which develop fully linear-elastic behavior. Thus, in those cases where the material has a certain (non-negligible) amount of non-linear behavior, the ASED criterion needs to be corrected. To extend its applicability, this work proposes a thorough calibration of the ASED characteristic parameters: the critical value of the strain energy and the volume of the corresponding control volume. This enables the extrapolation of the linear-elastic formulation to non-linear situations. The approach is validated using acrylonitrile-styrene-acrylate (ASA) and 10 wt.% carbon-fiber reinforced ASA specimens. Single-edge-notched bending (SENB) specimens with three different raster orientations (0/90, 45/−45, and 30/−60) and four U-notch radii (0.0 mm—crack-like, 0.50 mm, 1.0 mm, and 2.0 mm) were printed and tested. The results demonstrate that the proposed calibration of the ASED criterion allows for accurate predictions of failure loads, providing a reliable tool for the structural integrity assessment of 3D-printed components. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

7 pages, 977 KB  
Proceeding Paper
Toward Sustainable 3D Printing: Tensile Mechanical Comparison of PLA/PBAT Biopolymer Blend and TPU in MEX Additive Manufacturing
by Sándor Kálmán Jakab and László Lendvai
Eng. Proc. 2025, 113(1), 22; https://doi.org/10.3390/engproc2025113022 - 29 Oct 2025
Viewed by 374
Abstract
A biopolymer blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephtalate) (PBAT) in a 60/40 weight ratio was investigated as a potential green alternative to thermoplastic polyurethane (TPU) for material extrusion (MEX)-based additive manufacturing. A comparison of the two materials was conducted [...] Read more.
A biopolymer blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephtalate) (PBAT) in a 60/40 weight ratio was investigated as a potential green alternative to thermoplastic polyurethane (TPU) for material extrusion (MEX)-based additive manufacturing. A comparison of the two materials was conducted based on their tensile mechanical properties, evaluated using 3D-printed specimens fabricated with three distinct infill raster orientations (0°, ±45°, and 90°). The results showed that the tensile strengths of the two materials were relatively similar, ranging from 14.7 to 34.8 MPa, depending on the raster angle. However, the stiffness of PLA/PBAT was considerably higher than that of TPU, as reflected by Young’s modulus values an order of magnitude greater. While the elongation at break was comparable at 0° infill orientation (214% for PLA/PBAT and 265% for TPU), TPU exhibited better tolerance to increasing raster angles, with elongation only decreasing to 134% at 90°. In contrast, PLA/PBAT dropped drastically to 2%. Full article
Show Figures

Figure 1

8 pages, 2831 KB  
Proceeding Paper
Effect of Printing Parameters on the Tensile Mechanical Properties of 3D-Printed Thermoplastic Polyurethane
by Sándor Kálmán Jakab and László Lendvai
Eng. Proc. 2025, 113(1), 19; https://doi.org/10.3390/engproc2025113019 - 29 Oct 2025
Viewed by 386
Abstract
Thermoplastic polyurethane (TPU) filament was used to fabricate specimens through material extrusion (MEX)-based 3D printing technique with varying printing parameters. Nozzle diameters of 0.4 mm and 0.8 mm were used, while the printing infill orientation (also denoted as raster angle) was either parallel [...] Read more.
Thermoplastic polyurethane (TPU) filament was used to fabricate specimens through material extrusion (MEX)-based 3D printing technique with varying printing parameters. Nozzle diameters of 0.4 mm and 0.8 mm were used, while the printing infill orientation (also denoted as raster angle) was either parallel (0°) to the length of the specimens, perpendicular to it (90°), or at a 45° angle with alternating direction in each layer (±45°). Tensile tests were conducted to determine tensile strength, Young’s modulus, and elongation at break of the samples. The highest tensile strength was achieved using a 0.8 mm nozzle diameter and 0° raster angle, reaching 32.5 MPa, with a corresponding Young’s modulus of 145.8 MPa. Meanwhile, the sample with the lowest modulus (100.4 MPa) and tensile strength (17.8 MPa) was the one 3D-printed with a 0.4 mm nozzle and 90° raster angle. Full article
Show Figures

Figure 1

19 pages, 3492 KB  
Article
Physics-Based Predictive Modeling of Gravity-Induced Sagging in Support-Free Pellet Additive Manufacturing
by Alessio Pricci
Polymers 2025, 17(21), 2858; https://doi.org/10.3390/polym17212858 - 27 Oct 2025
Viewed by 339
Abstract
The fabrication of support-free structures in pellet additive manufacturing (PAM) is severely limited by gravity-induced sagging, a phenomenon lacking predictive, physics-based models. This study introduces and validates a numerical model for the thermofluid dynamics of sagging, aiming to correlate process parameters with filament [...] Read more.
The fabrication of support-free structures in pellet additive manufacturing (PAM) is severely limited by gravity-induced sagging, a phenomenon lacking predictive, physics-based models. This study introduces and validates a numerical model for the thermofluid dynamics of sagging, aiming to correlate process parameters with filament deflection. A predictive finite element (FE) model incorporating temperature-dependent non-Newtonian material properties and heat transfer dynamics has been developed. This was validated via a systematic experimental study on a desktop-scale PAM 3D printer investigating nozzle temperature, printhead speed, screw speed and fan cooling, using polylactic acid (PLA) as a printing material. Findings show that process parameter optimization can reduce bridge deflection by 64.91%, with active fan cooling being the most dominant factor due to accelerated solidification. Increased printhead speed reduced sagging, whereas higher screw speeds and extrusion temperature showed the opposite effect. The FE model accurately replicated these results and further revealed that sagging ceases once the filament cools below its minimum flow temperature (approximately 150–160 °C for PLA). This validated model provides a robust foundation for tuning process parameters, unlocking effective support-free 3D printing in PAM. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Graphical abstract

18 pages, 1017 KB  
Article
Circular Economy Model for Educational Plastics Reprocessing in College Town Communities
by Krista Belisle, Zachary Brown, Max Gonzales, Natalie Lott, Matthew Noti, Jared Stoltzfus and Hao Zhang
Environments 2025, 12(11), 400; https://doi.org/10.3390/environments12110400 - 24 Oct 2025
Viewed by 961
Abstract
Plastic recycling has been a challenge worldwide due to various reasons, including limited profit margins, the demand for high-quality plastic reprocessing techniques to make products comparable to those from virgin materials, and challenges in sorting and processing. This problem became particularly urgent in [...] Read more.
Plastic recycling has been a challenge worldwide due to various reasons, including limited profit margins, the demand for high-quality plastic reprocessing techniques to make products comparable to those from virgin materials, and challenges in sorting and processing. This problem became particularly urgent in the small towns in the U.S., where plastic waste was shipped overseas for treatment, but now it is not accepted in some countries. This study aims to understand the plastic value chain and find the necessary factors for a circular economy model of both environmental and economic settings. In this study, an educational plastics reprocessing workspace was developed with manufacturing processes such as shredding, filament extruding, 3D printing, and injection molding. A series of products was developed to increase the value of the recycled polymers. In addition, quality control of recycled polymers such as polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate (PET), and polyethylene terephthalate glycol (PETG) was examined. By collaborating with a university manufacturing lab, this work illustrates how plastics can be collected, prepared, and reprocessed, serving as a platform for student learning and community outreach. This study contributes to the body of knowledge by presenting a case-based educational model for community-level plastic recycling and reprocessing in a college town context. Full article
(This article belongs to the Special Issue Circular Economy in Waste Management: Challenges and Opportunities)
Show Figures

Figure 1

28 pages, 3481 KB  
Article
Development and Characterization of Scented PLA-Based Biocomposites Reinforced with Spent Coffee Grounds and Lignin for FDM 3D Printing
by Zeineb Siala, Ahmed Koubaa, Sofiane Guessasma, Nicolas Stephant, Ahmed Elloumi and Martin Beauregard
Polymers 2025, 17(21), 2836; https://doi.org/10.3390/polym17212836 - 24 Oct 2025
Viewed by 539
Abstract
This study investigates the development of biodegradable, scented bio-composite filaments incorporating industrial residues, specifically spent coffee grounds (SCG) and lignin (LI), into a PLA matrix for FDM 3D printing. Two fragrance additives, essential oil (EO) and microencapsulated fragrance powder (FP), were introduced (3%) [...] Read more.
This study investigates the development of biodegradable, scented bio-composite filaments incorporating industrial residues, specifically spent coffee grounds (SCG) and lignin (LI), into a PLA matrix for FDM 3D printing. Two fragrance additives, essential oil (EO) and microencapsulated fragrance powder (FP), were introduced (3%) to enhance sensory properties. The research investigates the effects of filler content (5%, 10%, and 15%) and fragrance additives on the surface chemistry (FTIR), thermal stability (TGA and DSC), mechanical properties (Tensile, flexural and impact), microstructure, and dimensional stability (Water absorption test and thickness swelling). Incorporating industrial residues and additives into PLA reduced the thermal stability, the degradation temperature and the glass transition temperature but increased the residual mass and the crystallinity. The effect of lignin was more pronounced than that of SCG, significantly influencing these thermal properties. Increasing the filler content of spent coffee grounds and lignin also led to a progressive decrease in tensile, flexural, and impact strength due to poor interfacial adhesion and increased void formation. However, lignin-based biocomposites exhibited enhanced stiffness at lower concentrations (≤10%), while biocomposites containing 15% SCG doubled their elongation at break compared to pure PLA. Adding fragrance reduced the mechanical strength but improved ductility due to plasticizer-like interactions. Microstructural analysis revealed heterogeneity in the biocomposites’ fracture surface characterized by the presence of pores, filler agglomeration, and delamination, indicating uneven filler dispersion and limited interfacial adhesion, particularly at high filler concentrations. The water absorption and dimensional stability of 3D-printed biocomposites increased progressively with the addition of residues. The presence of essential oil slightly improved water resistance by forming hydrogen bonds that limited moisture absorption. This article adds significant value by extending the potential applications of biocomposites beyond conventional engineering uses, making them particularly suitable for the fashion and design sectors, where multi-sensory and sustainable materials are increasingly sought after. Full article
Show Figures

Figure 1

20 pages, 8731 KB  
Article
Connecting with the Past: Filament Development and 3D Printing from Historical Wood Waste
by Aljona Gineiko
Sustainability 2025, 17(21), 9402; https://doi.org/10.3390/su17219402 - 22 Oct 2025
Viewed by 408
Abstract
Waste prevention is at the top of the EU Waste Framework directive hierarchy. With this in mind, this article considers the application of novel technologies in the Cultural Heritage Restoration and Conservation field through environmental and circular economy principles. While previous research has [...] Read more.
Waste prevention is at the top of the EU Waste Framework directive hierarchy. With this in mind, this article considers the application of novel technologies in the Cultural Heritage Restoration and Conservation field through environmental and circular economy principles. While previous research has explored the use of wood waste for composite materials such as building insulation and concrete additives, the suitability of degraded historical wood waste for filament production and 3D printing has not yet been addressed. This article contributes to this topic by studying the PLA/wood composite, material composed of a polylactic acid (PLA) polymer matrix reinforced with wood particles, produced from degraded historical construction materials. The paper describes the process of producing filament from bio- and moisture-damaged pine beam and oak parquet, followed by the 3D printing of historical platband replica. Research methods include photogrammetry, filament machine construction, filament production and 3D printing. The machines settings used in the process: heater temperatures were set to 140 °C, 90 °C and 105 °C; servo speed was 33 s; spool tension was 12.5; winding speed was 24 RPM; and screw speed was 9.2 RPM. For material preparation, a mixture containing 25% pine and oak sawdust and PLA dust was processed to achieve particle sizes of 312 μm, 471 μm, and 432 μm, respectively. Filament production was carried out with diameters of 2.85 mm for the pine/PLA composite and 1.75 mm for the oak/PLA composite. Finally, replica samples were fabricated using 3D printing. The dual objective of this research was to develop the method of 3D printing from degraded historical materials and introduce it to restoration practice as a wood waste minimization technique. Perspectives for further study include the testing of 3D-printed construction materials in outdoor conditions, and pellet production to achieve a higher wood content, compared to the filament thread. The processes described are adaptable to a variety of materials and disciplines. Full article
(This article belongs to the Special Issue Advances in Research on Sustainable Waste Treatment and Technology)
Show Figures

Figure 1

Back to TopTop