Effect of Annealing on High Temperature Tensile Performance of 3D Printed Polyamide Carbon Fiber: A Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Properties
2.2. Tensile Specimen Design and Manufacturing
2.3. High-Temperature Tensile Testing Methodology
3. Results and Discussions
3.1. Influence of Annealing for Constant Infill Orientation
3.1.1. Fiber-Dominant Orientations
3.1.2. Matrix-Dominant and Shear-Driven Orientations
- For the 0° and 0/90° patterns, where the load mechanism is direct fiber tension, the strengthened matrix improved stress transfer to the fibers, resulting in the most pronounced strength gains (35–50%), especially below Tg.
- For the 90° orientation, where the matrix and inter-bead bonds are crucial due to the perpendicular load path, improvements were more moderate.
- For the 45° and ±45° infills, failure is governed by matrix-dominated shear and bead slipping. Consequently, annealing had a limited effect on these orientations, especially above Tg where the matrix softens [42].
3.2. Influence of Infill Orientation for Similar Thermal Conditions for Conditioned Specimens
4. Conclusions and Further Studies
- Annealing significantly improved strength and elastic modulus by enhancing matrix properties. The benefits were most pronounced and temperature-resistant in the 0° and 0/90° patterns, where the load is carried by the fibers.
- In contrast, matrix-dominated orientations (45°, ±45°) showed limited benefits, directly linking the printing scheme to the efficacy of the heat treatment.
- The annealing effect varied with temperature, with the most significant improvements observed below the glass transition temperature. Above Tg, the effects were less pronounced but still notable.
- Annealed PAHT-CF showed superior performance to other analyzed materials like Nylon-CF and PLA-CF at room-temperature and slightly inferior to PEEK-CF at elevated temperatures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Temperature | Annealed | Orientation | σUTS [MPa] | Standard Deviation | Reference Gap |
|---|---|---|---|---|---|
| 25 °C | non-annealed | 0° | 50.05 | 1.69 | Reference |
| 45° | 46.11 | 2.84 | −7.87% | ||
| 90° | 43.68 | 2.06 | −12.73% | ||
| 0/90° | 43.32 | 2.77 | −13.45% | ||
| ±45° | 49.29 | 2.8 | −1.52% | ||
| annealed | 0° | 62.51 | 4.8 | Reference | |
| 45° | 51.79 | 9.76 | −17.15% | ||
| 90° | 49.04 | 2.26 | −21.55% | ||
| 0/90° | 63.88 | 3.6 | 2.19% | ||
| ±45° | 58.91 | 3.44 | −5.76% | ||
| 50 °C | non-annealed | 0° | 37.73 | 3.27 | Reference |
| 45° | 37.37 | 1.59 | −0.95% | ||
| 90° | 32.9 | 2.2 | −12.92% | ||
| 0/90° | 35.35 | 1.02 | −7.23% | ||
| ±45° | 39.91 | 2.42 | 6.17% | ||
| annealed | 0° | 51.59 | 6.91 | Reference | |
| 45° | 43.35 | 2.06 | −15.97% | ||
| 90° | 37.04 | 4.57 | −28.20% | ||
| 0/90° | 47.79 | 0.72 | −7.37% | ||
| ±45° | 40.87 | 4.59 | −20.78% | ||
| 100 °C | non-annealed | 0° | 30 | 1 | Reference |
| 45° | 25.53 | 1.28 | −14.90% | ||
| 90° | 24.29 | 0.77 | −19.03% | ||
| 0/90° | 25 | 2.1 | −16.67% | ||
| ±45° | 26.29 | 1.39 | −12.37% | ||
| annealed | 0° | 32.27 | 7.11 | Reference | |
| 45° | 28.45 | 0.44 | −11.84% | ||
| 90° | 30.54 | 1.58 | −5.36% | ||
| 0/90° | 30.14 | 1.28 | −6.60% | ||
| ±45° | 29.64 | 0.72 | −8.15% | ||
| 150 °C | non-annealed | 0° | 19.59 | 0.89 | Reference |
| 45° | 19.17 | 0.41 | −3.98% | ||
| 90° | 15.68 | 0.73 | −19.96% | ||
| 0/90° | 18.13 | 1.1 | −7.45% | ||
| ±45° | 19.64 | 1.04 | 0.26% | ||
| annealed | 0° | 23.62 | 1.07 | Reference | |
| 45° | 18.81 | 1.04 | −27.10% | ||
| 90° | 17.22 | 0.58 | −18.84% | ||
| 0/90° | 21.32 | 1.21 | −9.74% | ||
| ±45° | 19.03 | 0.67 | −19.43% |
| Temperature | Annealed | Orientation | ε [%] | Standard Deviation | Reference Gap |
|---|---|---|---|---|---|
| 25 °C | non-annealed | 0° | 4.29 | 0.27 | Reference |
| 45° | 7.31 | 0.93 | 70.40% | ||
| 90° | 6.23 | 1.3 | 45.22% | ||
| 0/90° | 5.2 | 0.75 | 21.21% | ||
| ±45° | 7.18 | 1.33 | 67.37% | ||
| annealed | 0° | 2.75 | 1.45 | Reference | |
| 45° | 3.99 | 0.55 | 45.09% | ||
| 90° | 3.47 | 0.72 | 26.18% | ||
| 0/90° | 3.04 | 0.53 | 10.55% | ||
| ±45° | 4.99 | 0.81 | 81.45% | ||
| 50 °C | non-annealed | 0° | 6.28 | 1.76 | Reference |
| 45° | 10.23 | 1.69 | 62.90% | ||
| 90° | 9.86 | 0.84 | 57.01% | ||
| 0/90° | 8.09 | 0.77 | 28.82% | ||
| ±45° | 9.1 | 1.58 | 44.90% | ||
| annealed | 0° | 3.15 | 0.59 | Reference | |
| 45° | 7.42 | 0.6 | 135.56% | ||
| 90° | 6.3 | 1.69 | 100.00% | ||
| 0/90° | 5.94 | 0.38 | 88.57% | ||
| ±45° | 7.94 | 0.97 | 152.06% | ||
| 100 °C | non-annealed | 0° | 10.2 | 1.25 | Reference |
| 45° | 14.07 | 1.52 | 37.94% | ||
| 90° | 12.23 | 1.69 | 19.90% | ||
| 0/90° | 10.75 | 1.21 | 5.39% | ||
| ±45° | 12.65 | 1.28 | 24.02% | ||
| annealed | 0° | 7.37 | 1.9 | Reference | |
| 45° | 12.87 | 1.16 | 74.63% | ||
| 90° | 9.11 | 0.7 | 23.61% | ||
| 0/90° | 10.64 | 0.79 | 44.37% | ||
| ±45° | 13.01 | 1.05 | 76.53% | ||
| 150 °C | non-annealed | 0° | 12.46 | 1.55 | Reference |
| 45° | 18.07 | 2.11 | 45.02% | ||
| 90° | 15 | 0.92 | 20.39% | ||
| 0/90° | 14.49 | 1.5 | 16.29% | ||
| ±45° | 19.34 | 1.56 | 55.22% | ||
| annealed | 0° | 14.63 | 0.83 | Reference | |
| 45° | 16.7 | 0.86 | 14.15% | ||
| 90° | 12.77 | 2.05 | −12.71% | ||
| 0/90° | 13.86 | 0.6 | −5.26% | ||
| ±45° | 21.85 | 0.91 | 49.35% |
| Temperature | Annealed | Orientation | E [MPa] | Standard Deviation | Reference Gap |
|---|---|---|---|---|---|
| 25 °C | non-annealed | 0° | 2674.32 | 84.53 | Reference |
| 45° | 1973.85 | 117.56 | −26.19% | ||
| 90° | 1734.85 | 223.45 | −35.13% | ||
| 0/90° | 1897.22 | 348.03 | −29.06% | ||
| ±45° | 2064.35 | 200.32 | −22.81% | ||
| annealed | 0° | 3349.36 | 1148.72 | Reference | |
| 45° | 2548.18 | 965.46 | −23.92% | ||
| 90° | 2255.39 | 283.54 | −32.66% | ||
| 0/90° | 2938.59 | 463.68 | −12.26% | ||
| ±45° | 2773.4 | 409.63 | −17.20% | ||
| 50 °C | non-annealed | 0° | 1461.95 | 79.09 | Reference |
| 45° | 1181.37 | 191.39 | −19.19% | ||
| 90° | 970.04 | 81.27 | −33.65% | ||
| 0/90° | 1127.06 | 80.34 | −22.91% | ||
| ±45° | 1421.84 | 118.77 | −2.74% | ||
| annealed | 0° | 2599.33 | 428.65 | Reference | |
| 45° | 1871.5 | 154.53 | −28.00% | ||
| 90° | 1541.6 | 312.3 | −40.69% | ||
| 0/90° | 1664.33 | 173.71 | −35.97% | ||
| ±45° | 1518.18 | 265.06 | −41.59% | ||
| 100 °C | non-annealed | 0° | 1179.7 | 61.06 | Reference |
| 45° | 751.89 | 73.66 | −36.26% | ||
| 90° | 635.01 | 77.22 | −46.17% | ||
| 0/90° | 820.21 | 95.78 | −30.47% | ||
| ±45° | 818.65 | 49.22 | −30.61% | ||
| annealed | 0° | 1625.35 | 243.6 | Reference | |
| 45° | 964.35 | 37.21 | −40.67% | ||
| 90° | 821.85 | 126.23 | −49.44% | ||
| 0/90° | 852.14 | 276.25 | −47.57% | ||
| ±45° | 1020.1 | 51.39 | −37.24% | ||
| 150 °C | non-annealed | 0° | 708.16 | 55.88 | Reference |
| 45° | 465.38 | 96.06 | −34.28% | ||
| 90° | 455.3 | 46.52 | −35.71% | ||
| 0/90° | 495.03 | 61.42 | −29.22% | ||
| ±45° | 521.82 | 74.68 | −26.31% | ||
| annealed | 0° | 732.08 | 48.81 | Reference | |
| 45° | 590.44 | 25 | −19.35% | ||
| 90° | 477.12 | 47.16 | −34.83% | ||
| 0/90° | 501.25 | 66.6 | −32.38% | ||
| ±45° | 493.14 | 34.66 | −32.64% |
| Infill Orientation | η2 (σUTS) | Temperature Range | Cohen’s d on σUTS |
|---|---|---|---|
| 0° | 0.092 | 25–50 °C | 3 |
| 100 °C | 1 | ||
| 150 °C | 3.5 | ||
| 90° | 0.085 | 25–50 °C | 2.5 |
| 100 °C | 1.2 | ||
| 150 °C | 2.8 | ||
| 0/90° | 0.078 | 25 °C | 3.2 |
| 50 °C | 2.9 | ||
| 100–150 °C | 2.3 | ||
| 45° | 0.07 | 25–50 °C | 1.8 |
| 100 °C | 1.0 | ||
| 150 °C | −0.9 | ||
| ±45° | 0.065 | 25 °C | 2.2 |
| 50 °C | 1.5 | ||
| 100 °C | 2.5 | ||
| 150 °C | −0.8 |
| Infill Orientation | η2 (ε) | Temperature Range | Cohen’s d on ε |
|---|---|---|---|
| 0° | 0.02 | 25–50 °C | −2.0 |
| 100 °C | −0.9 | ||
| 150 °C | 3.0 | ||
| 90° | 0.025 | 25 °C | −2.8 |
| 50 °C | −1.5 | ||
| 100–150 °C | −1.0 | ||
| 0/90° | 0.018 | 25 °C | −3.0 |
| 50 °C | −2.0 | ||
| 100 °C | 0.1 | ||
| 150 °C | 1.1 | ||
| 45° | 0.015 | 25–50 °C | −1.5 |
| 100 °C | −0.8 | ||
| 150 °C | 0.7 | ||
| ±45° | 0.017 | 25 °C | −2.0 |
| 50 °C | −1.2 | ||
| 100–150 °C | 0.6 |
| Infill Orientation | η2 (E) | Temperature Range | Cohen’s d on E |
|---|---|---|---|
| 0° | 0.112 | 25–50 °C | 3.6 |
| 100 °C | 1.2 | ||
| 150 °C | 0.75 | ||
| 90° | 0.098 | 25–50 °C | 3.0 |
| 100 °C | 1.8 | ||
| 150 °C | 1.0 | ||
| 0/90° | 0.085 | 25 °C | 3.5 |
| 50 °C | 2.5 | ||
| 100–150 °C | 1.2 | ||
| 45° | 0.077 | 25–50 °C | 2.0 |
| 100 °C | 1.1 | ||
| 150 °C | 0.8 | ||
| ±45° | 0.073 | 25 °C | 2.5 |
| 50 °C | 1.5 | ||
| 100 °C | 0.9 | ||
| 150 °C | −0.9 |
References
- Zach, T.F.; Dudescu, M.C. The Three-Dimensional Printing of Composites: A Review of the Finite Element/Finite Volume Modelling of the Process. J. Compos. Sci. 2024, 8, 146. [Google Scholar] [CrossRef]
- Abdalla, H.M.A. Review of rules of mixture for effective elastic properties in fibrous and particulate composite materials. Compos. Struct. 2025, 367, 119216. [Google Scholar] [CrossRef]
- Oladele, I.O.; Oki, V.O.; Omotosho, T.F.; Adebanjo, M.B.; Ayanleye, O.T.; Adekola, S.A. Sustainable polymer and polymer-based composite materials for extreme conditions and demanding applications—A review on pushing boundaries in materials science. Next Mater. 2025, 8, 100775. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, G.; Wang, C.; Li, H.; Zhou, S. A review of structural topology optimization for fiber-reinforced composites. Compos. Part B Eng. 2025, 299, 112393. [Google Scholar] [CrossRef]
- Ajayi, N.E.; Rusnakova, S.; Ajayi, A.E.; Ogunleye, R.O.; Agu, S.O.; Amenaghawon, A.N. A comprehensive review of natural fiber reinforced Polymer composites as emerging materials for sustainable applications. Appl. Mater. Today 2025, 43, 102666. [Google Scholar] [CrossRef]
- Mylsamy, B.; Aruchamy, K.; Shanmugam, S.K.M.; Palanisamy, S.; Ayrilmis, N. Improving performance of composites: Natural and synthetic fibre hybridisation techniques in composite materials—A review. Mater. Chem. Phys. 2025, 334, 130439. [Google Scholar] [CrossRef]
- Wielhorski, Y.; Mendoza, A.; Rubino, M.; Roux, S. Numerical modeling of 3D woven composite reinforcements: A review. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106729. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Manalo, A.; Alajarmeh, O.; Sorbello, C.D.; Weerakoon, S.; Ngo, T.D.; Benmokrane, B. Advancing polymer composites in civil infrastructure through 3D printing. Autom. Constr. 2025, 177, 106311. [Google Scholar] [CrossRef]
- Ziegmann, G.; Oehl, G.; Hefft, L.T. 1—Recent trends in “conventional” manufacturing of composites. In Additive Manufacturing of Polymer-Based Composite Materials; Touchard, F., Sarasini, F., Eds.; Woodhead Publishing: Cambridge, UK, 2024; pp. 1–36. [Google Scholar] [CrossRef]
- Tuli, N.T.; Khatun, S.; Bin Rashid, A. Unlocking the future of precision manufacturing: A comprehensive exploration of 3D printing with fiber-reinforced composites in aerospace, automotive, medical, and consumer industries. Heliyon 2024, 10, e27328. [Google Scholar] [CrossRef]
- Blanco, I. The use of composite materials in 3D printing. J. Compos. Sci. 2020, 4, 42. [Google Scholar] [CrossRef]
- Bernatas, R.; Dagreou, S.; Despax-Ferreres, A.; Barasinski, A. Recycling of fiber reinforced composites with a focus on thermoplastic composites. Clean. Eng. Technol. 2021, 5, 100272. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, Y.; Zhou, L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications. Compos. Commun. 2021, 27, 100907. [Google Scholar] [CrossRef]
- Sun, B.; Dong, W.; Liu, C.; Xing, Y.; Sun, J.; Liang, X.; Duan, H.; Jia, X. A critical review on additive manufacturing of continuous fiber-reinforced polymer composites: Materials, fabrication, structural design and novel functions. Thin-Walled Struct. 2025, 215, 113491. [Google Scholar] [CrossRef]
- Racz, L.; Dudescu, M.C. Numerical evaluation of the infill pattern upon mechanical proprieties of 3D printed materials. Procedia Struct. Integr. 2024, 56, 3–10. [Google Scholar] [CrossRef]
- Yavas, D. High-temperature fracture behavior of carbon fiber reinforced PEEK composites fabricated via fused filament fabrication. Compos. Part B Eng. 2023, 266, 110987. [Google Scholar] [CrossRef]
- Grasso, M.; Azzouz, L.; Ruiz-Hincapie, P.; Zarrelli, M.; Ren, G. Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens. Rapid Prototyp. J. 2018, 24, 1337–1346. [Google Scholar] [CrossRef]
- Beyler, C.L.; Hirschler, M.M. Chapter 7: Thermal Decomposition of Polymers. In SFPE Handbook of Fire Protection Engineering; National Fire Protection Association: Quincy, MA, USA, 2002; pp. 111–131. [Google Scholar]
- Agarwal, N.; Rangamani, A.; Bhavsar, K.; Virnodkar, S.S.; Fernandes, A.A.A.; Chadha, U.; Srivastava, D.; Patterson, A.E.; Rajasekharan, V. An overview of carbon-carbon composite materials and their applications. Front. Mater. 2024, 11, 1374034. [Google Scholar] [CrossRef]
- Lv, X.; Yang, S.; Pei, X.; Zhang, Y.; Wang, Q.; Wang, T. Enhanced mechanical and tribological properties of 3D printed short carbon fiber reinforced polyether ether ketone composites. Polym. Compos. 2024, 45, 8840–8860. [Google Scholar] [CrossRef]
- Fu, Y.-T.; Li, J.; Guo, F.-L.; Li, Y.-Q.; Fu, S.-Y. Micro-structure and tensile property analyses of 3D printed short carbon fiber reinforced PEEK composites. Compos. Commun. 2023, 41, 101655. [Google Scholar] [CrossRef]
- Bright, B.M.; Binoj, J.S.; Abu Hassan, S.; Wong, W.L.E.; Suryanto, H.; Liu, S.; Goh, K.L. Feasibility study on thermo-mechanical performance of 3D printed and annealed coir fiber powder/polylactic acid eco-friendly biocomposites. Polym. Compos. 2024, 45, 6512–6524. [Google Scholar] [CrossRef]
- Bianchi, I.; Forcellese, A.; Simoncini, M.; Vita, A. Effect of in situ and furnace thermal annealing on the mechanical properties and sustainability of 3D printed carbon-peek composites. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 238, 1794–1804. [Google Scholar] [CrossRef]
- Nassar, A.; Younis, M.; Elzareef, M.; Nassar, E. Effects of heat-treatment on tensile behavior and dimension stability of 3D printed carbon fiber reinforced composites. Polymers 2021, 13, 4305. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Yoo, D.-H.; Song, J.-S.; Kim, H.-S. Effect of geometric configurations and heat treatment on the tensile properties, joint performance, and failure behavior of 3D-Printed carbon and glass fiber composites. Compos. Part B Eng. 2025, 304, 112693. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Pi, W.; Li, Y.; Fu, S. Improving mechanical performances at room and elevated temperatures of 3D printed polyether-ether-ketone composites by combining optimal short carbon fiber content and annealing treatment. Compos. Part B Eng. 2023, 267, 111067. [Google Scholar] [CrossRef]
- Yu, W.; Wang, X.; Yin, X.; Ferraris, E.; Zhang, J. The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts. Mater. Des. 2023, 226, 111687. [Google Scholar] [CrossRef]
- Zach, T.F.; Dudescu, M.C.; Bere, P. High-Temperature Tensile Performance of Fused Filament Fabricated Discontinuous Carbon Fiber-Reinforced Polyamide. Polymers 2025, 17, 1732. [Google Scholar] [CrossRef]
- ISO 527-4:2023; Plastics—Determination of Tensile Properties. Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. British Standards Institution: London, UK, 2023.
- Alarifi, I.M. A performance evaluation study of 3D printed nylon/glass fiber and nylon/carbon fiber composite materials. J. Mater. Res. Technol. 2022, 21, 884–892. [Google Scholar] [CrossRef]
- Bambulab. Technical Data Sheet—PAHT-CF. Available online: https://eu.store.bambulab.com/en-nl/products/paht-cf (accessed on 15 September 2025).
- CarbonX CF PEEK: Techincal Data Sheet. Available online: https://cdn.shopify.com/s/files/1/0625/4185/6821/files/CarbonX_CF_PEEK_TDS_v3.pdf (accessed on 15 September 2025).
- CarbonX CF PLA: Technical Data Sheet. Available online: https://cdn.shopify.com/s/files/1/0625/4185/6821/files/CarbonX_CF_PLA_TDS_v3.pdf?v=1723942765 (accessed on 15 September 2025).
- CarbonX CF-ABS: Technical Data Sheet. Available online: https://cdn.shopify.com/s/files/1/0625/4185/6821/files/CarbonX_CF_ABS_TDS_v3.pdf?v=1723942765 (accessed on 15 September 2025).
- ISO 23529:2016; Rubber—General Procedures for Preparing and Conditioning Test Pieces for Physical Test Methods. International Organization for Standardization: Vervier, Switzerland, 2024.
- Bambulab. Bambu Lab X1 Carbon. Available online: https://bambulab.com/en-eu/x1 (accessed on 15 September 2025).
- Friedrich, L.M.; Gunther, R.T.; Seppala, J.E. Suppression of Filament Defects in Embedded 3D Printing. ACS Appl. Mater. Interfaces 2022, 14, 32561–32578. [Google Scholar] [CrossRef]
- Told, R.; Kardos, K.; Paari-Molnar, E.; Szabo, G.; Ujfalusi, Z.; Sahai, N.; Szabo, P.; Maroti, P. Comparative Analysis of Mechanical and Thermal Characteristics of 3D-Printed Polyamide using Material Extrusion and Powder Bed Fusion Process with Industrial and Desktop Printers. Macromol. Mater. Eng. 2024, 310, 2400293. [Google Scholar] [CrossRef]
- ISO 37:2024; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. International Organization for Standardization: Vervier, Switzerland, 2024.
- Instron. 5900 Series—Premier Testing Solutions. 2016. Available online: https://www.instron.com/wp-content/uploads/2024/07/5900-series-general-brochure-3.pdf (accessed on 16 September 2025).
- Papon, E.A.; Haque, A. Fracture toughness of additively manufactured carbon fiber reinforced composites. Addit. Manuf. 2019, 26, 41–52. [Google Scholar] [CrossRef]
- Dress, G.A.; Woldemariam, M.H.; Redda, D.T. Influence of Fiber Orientation on Impact Resistance Behavior of Woven Sisal Fiber Reinforced Polyester Composite. Adv. Mater. Sci. Eng. 2021, 2021, 6669600. [Google Scholar] [CrossRef]
- Rodzeń, K.; McIlhagger, A.; Strachota, B.; Strachota, A.; Meenan, B.J.; Boyd, A. Controlling Crystallization: A Key Factor during 3D Printing with the Advanced Semicrystalline Polymeric Materials PEEK, PEKK 6002, and PEKK 7002. Macromol. Mater. Eng. 2023, 308, 2200668. [Google Scholar] [CrossRef]









| Property | PAHT-CF | PEEK-CF | PLA-CF | ABS-CF |
|---|---|---|---|---|
| Density (g/cm3) | 1.06 | 1.39 | 1.29 | 1.11 |
| CF Mass Content (%) | 15 | 10 | 15 | 10 |
| Glass Transition Temperature (°C) | 70 | 143 | 60 | 105 |
| Crystallization Temperature (°C) | 140 | 190 | 115 | - |
| Heat Deflection Temperature @ 0.45 MPa (°C) | 194 | 265 | 91 | 76 |
| Tensile Strength (Horizontal) (MPa) | 92 ± 7 | 105 | 47 | 46 |
| Failure Strain (Horizontal) (%) | 8.4 ± 1.8 | 3 | 2 | 2 |
| Elastic Modulus (Horizontal) (MPa) | 3860 ± 230 | 8100 | 4950 | 5210 |
| Cost (Euro/kg) | 102 | 508 | 44.5 | 65 |
| No. | Parameter | Value | Unit |
|---|---|---|---|
| 1. | Nozzle Diameter | 0.4 | mm |
| 2. | Layer Thickness | 0.2 | mm |
| 3. | Top/Bottom Layer Thickness | 0.16 | mm |
| 4. | Relative Infill Rate | 100 | % |
| 5. | Printing Speed | 100 | mm/s |
| 6. | Infill Orientations | 0°; 45°; 90°; 0/90°; ±45° | ° |
| 7. | Extrusion Temperature | 290 | °C |
| 8. | Building Plate Temperature | 100 | °C |
| 9. | Printing Chamber Temperature | 45 | °C |
| Temperature | Infill | ΔUTS | Δε | ΔE |
|---|---|---|---|---|
| 25 °C (<Tg) | 0° | 25% (d ≈ 3) | −35% (d ≈ −2) | 20% (d ≈ 3.6) |
| 0/90° | 50% (d ≈ 6.2) | −42.5% (d ≈ −3.2) | 50% (d ≈ 2.5) | |
| 50 °C (<Tg) | 0° | 37% (d ≈ 3) | −40% (d ≈ −2) | 37% (d ≈ 3.6) |
| 0/90° | 35% (d ≈ 2.9) | −27.5% (d ≈ −3.9) | 47.5% (d ≈ 3.3) | |
| 100 °C (>Tg) | 0° | 7.5% (d ≈ 1) | −37.5% (d ≈ −0.9) | 37% (d ≈ 1.2) |
| 0/90° | 20% (d ≈ 2.5) | −1% (d ≈ −0.1) | 0.5% (d ≈ 0.6) | |
| 150 °C (>Tg) | 0° | 20% (d ≈ 3.5) | 17.5% (d ≈ 3) | 3% (d ≈ 1.2) |
| 0/90° | 20% (d ≈ 2.5) | −15% (d ≈ −1.1) | 1.25% (d ≈ 1.2) |
| Temperature | Infill | ΔUTS | Δε | ΔE |
|---|---|---|---|---|
| 25 °C (<Tg) | 90° | 12.5% (d ≈ 2.5) | −45% (d ≈ −2.8) | 30% (d ≈ 3) |
| 45° | 12.5% (d ≈ 1.8) | −45% (d ≈ −1.5) | 30% (d ≈ 2) | |
| ±45° | 20% (d ≈ 2.2) | −30% (d ≈ −2) | 35% (d ≈ 2.5) | |
| 50 °C (<Tg) | 90° | 12.5% (d ≈ 2.5) | −35% (d ≈ −1.5) | 60% (d ≈ 3) |
| 45° | 16% (d ≈ 1.8) | −27.5% (d ≈ −0.8) | 60% (d ≈ 2) | |
| ±45° | 2.5% (d ≈ 1.5) | −12.5% (d ≈ −1.2) | 7.5% (d ≈ 2.5) | |
| 100 °C (>Tg) | 90° | 25% (d ≈ 1.2) | −25% (d ≈ −1) | 30% (d ≈ 1.8) |
| 45° | 12% (d ≈ 1) | −8.5% (d ≈ −0.7) | 27.5% (d ≈ 1.1) | |
| ±45° | 12.5% (d ≈ 2.5) | 3% (d ≈ 0.6) | 25% (d ≈ 1.5) | |
| 150 °C (>Tg) | 90° | 22.5% (d ≈ 2.8) | −15% (d ≈ −1) | 5% (d ≈ 1) |
| 45° | −8.5% (d ≈ −0.9) | −7.5% (d ≈ −0.7) | 27.5% (d ≈ 0.8) | |
| ±45° | −3% (d ≈ −0.8) | 10.5% (d ≈ 0.6) | −5.5% (d ≈ −0.9) |
| Infill Orientation | σUTS [MPa] | ε (%) | E [MPa] |
|---|---|---|---|
| 0° | 62.51 | 2.75 | 3349.36 |
| 45° | 51.79 | 3.99 | 2548.18 |
| 90° | 49.04 | 3.47 | 2255.39 |
| 0/90° | 63.88 | 3.04 | 2938.59 |
| ±45° | 58.91 | 4.99 | 2773.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zach, T.F.; Dudescu, M.C. Effect of Annealing on High Temperature Tensile Performance of 3D Printed Polyamide Carbon Fiber: A Comparative Study. J. Compos. Sci. 2025, 9, 624. https://doi.org/10.3390/jcs9110624
Zach TF, Dudescu MC. Effect of Annealing on High Temperature Tensile Performance of 3D Printed Polyamide Carbon Fiber: A Comparative Study. Journal of Composites Science. 2025; 9(11):624. https://doi.org/10.3390/jcs9110624
Chicago/Turabian StyleZach, Theodor Florian, and Mircea Cristian Dudescu. 2025. "Effect of Annealing on High Temperature Tensile Performance of 3D Printed Polyamide Carbon Fiber: A Comparative Study" Journal of Composites Science 9, no. 11: 624. https://doi.org/10.3390/jcs9110624
APA StyleZach, T. F., & Dudescu, M. C. (2025). Effect of Annealing on High Temperature Tensile Performance of 3D Printed Polyamide Carbon Fiber: A Comparative Study. Journal of Composites Science, 9(11), 624. https://doi.org/10.3390/jcs9110624

