Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (801)

Search Parameters:
Keywords = fifth generation 5G

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2345 KiB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

17 pages, 438 KiB  
Article
Analytic Solutions and Conservation Laws of a 2D Generalized Fifth-Order KdV Equation with Power Law Nonlinearity Describing Motions in Shallow Water Under a Gravity Field of Long Waves
by Chaudry Masood Khalique and Boikanyo Pretty Sebogodi
AppliedMath 2025, 5(3), 96; https://doi.org/10.3390/appliedmath5030096 - 31 Jul 2025
Viewed by 110
Abstract
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly [...] Read more.
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly and nonlinearly, acoustic waves on a crystal lattice, lengthy internal waves in density-graded oceans, and ion acoustic waves in plasma. The KdV equation is one of the most well-known soliton models, and it provides a good platform for further research into other equations. The KdV equation has several forms. The aim of this study is to introduce and investigate a (2+1)-dimensional generalized fifth-order KdV equation with power law nonlinearity (gFKdVp). The research methodology employed is the Lie group analysis. Using the point symmetries of the gFKdVp equation, we transform this equation into several nonlinear ordinary differential equations (ODEs), which we solve by employing different strategies that include Kudryashov’s method, the (G/G) expansion method, and the power series expansion method. To demonstrate the physical behavior of the equation, 3D, density, and 2D graphs of the obtained solutions are presented. Finally, utilizing the multiplier technique and Ibragimov’s method, we derive conserved vectors of the gFKdVp equation. These include the conservation of energy and momentum. Thus, the major conclusion of the study is that analytic solutions and conservation laws of the gFKdVp equation are determined. Full article
Show Figures

Figure 1

30 pages, 7092 KiB  
Article
Slotted Circular-Patch MIMO Antenna for 5G Applications at Sub-6 GHz
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Telecom 2025, 6(3), 53; https://doi.org/10.3390/telecom6030053 - 28 Jul 2025
Viewed by 273
Abstract
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input [...] Read more.
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input multiple-output (MIMO) systems to achieve adequate channel capacity. In this article, a 2-port MIMO system using two flipped parallel 1 × 2 arrays and a 2-port MIMO system using two opposite 1 × 4 arrays designed and fabricated antennas for 5G wireless communication in the sub-6 GHz band, are presented, overcoming the limitations of previous designs in gain, radiation efficiency and MIMO performance. The designed and fabricated single-element antenna features a circular microstrip patch design based on ROGER 5880 (RT5880) substrate, which has a thickness of 1.57 mm, a permittivity of 2.2, and a tangential loss of 0.0009. The 2-port MIMO of two 1 × 2 arrays and the 2-port MIMO of two 1 × 4 arrays have overall dimensions of 132 × 66 × 1.57 mm3 and 140 × 132 × 1.57 mm3, respectively. The MIMO of two 1 × 2 arrays and MIMO of two 1 × 4 arrays encompass maximum gains of 8.3 dBi and 10.9 dBi, respectively, with maximum radiation efficiency reaching 95% and 97.46%. High MIMO performance outcomes are observed for both the MIMO of two 1 × 2 arrays and the MIMO of two 1 × 4 arrays, with the channel capacity loss (CCL) ˂ 0.4 bit/s/Hz and ˂0.3 bit/s/Hz, respectively, an envelope correlation coefficient (ECC) ˂ 0.006 and ˂0.003, respectively, directivity gain (DG) about 10 dB, and a total active reflection coefficient (TARC) under −10 dB, ensuring impedance matching and effective mutual coupling among neighboring parameters, which confirms their effectiveness for 5G applications. The three fabricated antennas were experimentally tested and implemented using the MIMO Application Framework version 19.5 for 5G systems, demonstrating operational effectiveness in 5G applications. Full article
Show Figures

Figure 1

17 pages, 4473 KiB  
Article
Dual-Band Wearable Antenna Integrated with Glasses for 5G and Wi-Fi Systems
by Łukasz Januszkiewicz
Appl. Sci. 2025, 15(14), 8018; https://doi.org/10.3390/app15148018 - 18 Jul 2025
Viewed by 248
Abstract
This paper presents a dual-band antenna designed for integration into eyewear. The antenna is intended for a system supporting visually impaired individuals, where a wearable camera integrated into glasses transmits data to a remote receiver. To enhance system reliability within indoor environments, the [...] Read more.
This paper presents a dual-band antenna designed for integration into eyewear. The antenna is intended for a system supporting visually impaired individuals, where a wearable camera integrated into glasses transmits data to a remote receiver. To enhance system reliability within indoor environments, the proposed design supports both fifth-generation (5G) wireless communication and Wi-Fi networks. The compact antenna is specifically dimensioned for integration within eyeglass temples and operates in the 3.5 GHz and 5.8 GHz frequency bands. Prototype measurements, conducted using a human head phantom, validate the antenna’s performance. The results demonstrate good impedance matching across the desired frequency bands and a maximum gain of at least 4 dBi in both bands. Full article
(This article belongs to the Special Issue Antenna Technology for 5G Communication)
Show Figures

Figure 1

20 pages, 5781 KiB  
Article
Performance Evaluation of Uplink Cell-Free Massive MIMO Network Under Weichselberger Rician Fading Channel
by Birhanu Dessie, Javed Shaikh, Georgi Iliev, Maria Nenova, Umar Syed and K. Kiran Kumar
Mathematics 2025, 13(14), 2283; https://doi.org/10.3390/math13142283 - 16 Jul 2025
Viewed by 335
Abstract
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a [...] Read more.
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a large number of users at the same time. It has the ability to provide high spectral efficiency (SE) as well as improved coverage and interference management, compared to traditional cellular networks. However, estimating the channel with high-performance, low-cost computational methods is still a problem. Different algorithms have been developed to address these challenges in channel estimation. One of the high-performance channel estimators is a phase-aware minimum mean square error (MMSE) estimator. This channel estimator has high computational complexity. To address the shortcomings of the existing estimator, this paper proposed an efficient phase-aware element-wise minimum mean square error (PA-EW-MMSE) channel estimator with QR decomposition and a precoding matrix at the user side. The closed form uplink (UL) SE with the phase MMSE and proposed estimators are evaluated using MMSE combining. The energy efficiency and area throughput are also calculated from the SE. The simulation results show that the proposed estimator achieved the best SE, EE, and area throughput performance with a substantial reduction in the complexity of the computation. Full article
Show Figures

Figure 1

15 pages, 1816 KiB  
Article
A Framework for User Traffic Prediction and Resource Allocation in 5G Networks
by Ioannis Konstantoulas, Iliana Loi, Dimosthenis Tsimas, Kyriakos Sgarbas, Apostolos Gkamas and Christos Bouras
Appl. Sci. 2025, 15(13), 7603; https://doi.org/10.3390/app15137603 - 7 Jul 2025
Viewed by 464
Abstract
Fifth-Generation (5G) networks deal with dynamic fluctuations in user traffic and the demands of each connected user and application. This creates a need for optimized resource allocation to reduce network congestion in densely populated urban centers and further ensure Quality of Service (QoS) [...] Read more.
Fifth-Generation (5G) networks deal with dynamic fluctuations in user traffic and the demands of each connected user and application. This creates a need for optimized resource allocation to reduce network congestion in densely populated urban centers and further ensure Quality of Service (QoS) in (5G) environments. To address this issue, we present a framework for both predicting user traffic and allocating users to base stations in 5G networks using neural network architectures. This framework consists of a hybrid approach utilizing a Long Short-Term Memory (LSTM) network or a Transformer architecture for user traffic prediction in base stations, as well as a Convolutional Neural Network (CNN) to allocate users to base stations in a realistic scenario. The models show high accuracy in the tasks performed, especially in the user traffic prediction task, where the models show an accuracy of over 99%. Overall, our framework is capable of capturing long-term temporal features and spatial features from 5G user data, taking a significant step towards a holistic approach in data-driven resource allocation and traffic prediction in 5G networks. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

13 pages, 849 KiB  
Article
Beyond Pairwise Interactions: How Other Species Regulate Competition Between Two Plants?
by Wang-Xin Cheng, Wei Xue, Jie-Jie Jiao, Hao-Ming Yuan, Lin-Xuan He, Xiao-Mei Zhang, Tao Xu and Fei-Hai Yu
Plants 2025, 14(13), 2018; https://doi.org/10.3390/plants14132018 - 1 Jul 2025
Viewed by 264
Abstract
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) [...] Read more.
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) on these interactions. To assess the impacts, we grew one seedling of each of the five herbaceous plant species that are common in China (Cynodon dactylon, Plantago asiatica, Taraxacum mongolicum, Nepeta cataria, and Leonurus japonicus) alone (no competition) or with one seedling of one, two, three, or four of the other species. The presence of a neighbor plant generally reduced the growth of the target species, suggesting that the interspecific relationships were mostly competitive. The presence of other neighbor species (the third, fourth, and fifth species) could alter the interspecific interactions between two target species, but such effects varied depending on both the identity of the target species and the identity of the other species. Additionally, the effects of the third species depended little on the presence of the fourth and fifth species. We conclude that interspecific interactions between two plant species are commonly regulated by the presence of other species, facilitating species coexistence. However, our findings do not support the idea that the impacts of the fourth and fifth species on interactions among three plant species are common. This study highlights the complex interactions among multiple plant species within a community and also the importance of including these high-order interactions when modelling community dynamics and species coexistence. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 2973 KiB  
Article
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
by Oluwole John Famoriji and Thokozani Shongwe
Appl. Sci. 2025, 15(13), 7302; https://doi.org/10.3390/app15137302 - 28 Jun 2025
Viewed by 272
Abstract
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G [...] Read more.
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G services are able to meet serious demands for bandwidth. To evaluate the ground-plane radiation level of electromagnetics close to 5G base stations, we propose a unique machine-learning-based approach. Because a machine learning algorithm is trained by utilizing data obtained from numerous 5G base stations, it exhibits the capability to estimate the strength of the electric field effectively at every point of arbitrary radiation, while the base station generates a network and serves various numbers of 5G terminals running in different modes of service. The model requires different numbers of inputs, including the antenna’s transmit power, antenna gain, terminal service modes, number of 5G terminals, distance between the 5G terminals and 5G base station, and environmental complexity. Based on experimental data, the estimation method is both feasible and effective; the machine learning model’s mean absolute percentage error is about 5.89%. The degree of correctness shows how dependable the developed technique is. In addition, the developed approach is less expensive when compared to measurements taken on-site. The results of the estimates can be used to save test costs and offer useful guidelines for choosing the best location, which will make 5G base station electromagnetic radiation management or radio wave coverage optimization easier. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

38 pages, 15283 KiB  
Article
A Fast Convergence Scheme Using Chebyshev Iteration Based on SOR and Applied to Uplink M-MIMO B5G Systems for Multi-User Detection
by Yung-Ping Tu and Guan-Hong Liu
Appl. Sci. 2025, 15(12), 6658; https://doi.org/10.3390/app15126658 - 13 Jun 2025
Viewed by 398
Abstract
Massive multiple input–multiple output (M-MIMO) is a promising and pivotal technology in contemporary wireless communication systems that can effectively enhance link reliability and data throughput, especially in uplink scenarios. Even so, the receiving end requires more computational complexity to reconstitute the signal. This [...] Read more.
Massive multiple input–multiple output (M-MIMO) is a promising and pivotal technology in contemporary wireless communication systems that can effectively enhance link reliability and data throughput, especially in uplink scenarios. Even so, the receiving end requires more computational complexity to reconstitute the signal. This problem has emerged in fourth-generation (4G) MIMO system; with the dramatic increase in demand for devices and data in beyond-5G (B5G) systems, this issue will become yet more obvious. To take into account both complexity and signal-revested capability at the receiver, this study uses the matrix iteration method to avoid the staggering amount of operations produced by the inverse matrix. Then, we propose a highly efficient multi-user detector (MUD) named hybrid SOR-based Chebyshev acceleration (CHSOR) for the uplink of M-MIMO orthogonal frequency-division multiplexing (OFDM) and universal filtered multi-carrier (UFMC) waveforms, which can be promoted to B5G developments. The proposed CHSOR scheme includes two stages: the first consists of successive over-relaxation (SOR) and modified successive over-relaxation (MSOR), combining the advantages of low complexity of both and generating a better initial transmission symbol, iteration matrix, and parameters for the next stage; sequentially, the second stage adopts the low-cost iterative Chebyshev acceleration method for performance refinement to obtain a lower bit error rate (BER). Under constrained evaluation settings, Section (Simulation Results and Discussion) presents the results of simulations performed in MATLAB version R2022a. Results show that the proposed detector can achieve a 91.624% improvement in BER performance compared with Chebyshev successive over-relaxation (CSOR). This is very near to the performance of the minimum mean square error (MMSE) detector and is achieved in only a few iterations. In summary, our proposed CHSOR scheme demonstrates fast convergence compared to previous works and as such possesses excellent BER and complexity performance, making it a competitive solution for uplink M-MIMO B5G systems. Full article
Show Figures

Figure 1

59 pages, 4517 KiB  
Review
Artificial Intelligence Empowering Dynamic Spectrum Access in Advanced Wireless Communications: A Comprehensive Overview
by Abiodun Gbenga-Ilori, Agbotiname Lucky Imoize, Kinzah Noor and Paul Oluwadara Adebolu-Ololade
AI 2025, 6(6), 126; https://doi.org/10.3390/ai6060126 - 13 Jun 2025
Viewed by 1932
Abstract
This review paper examines the integration of artificial intelligence (AI) in wireless communication, focusing on cognitive radio (CR), spectrum sensing, and dynamic spectrum access (DSA). As the demand for spectrum continues to rise with the expansion of mobile users and connected devices, cognitive [...] Read more.
This review paper examines the integration of artificial intelligence (AI) in wireless communication, focusing on cognitive radio (CR), spectrum sensing, and dynamic spectrum access (DSA). As the demand for spectrum continues to rise with the expansion of mobile users and connected devices, cognitive radio networks (CRNs), leveraging AI-driven spectrum sensing and dynamic access, provide a promising solution to improve spectrum utilization. The paper reviews various deep learning (DL)-based spectrum-sensing methods, highlighting their advantages and challenges. It also explores the use of multi-agent reinforcement learning (MARL) for distributed DSA networks, where agents autonomously optimize power allocation (PA) to minimize interference and enhance quality of service. Additionally, the paper discusses the role of machine learning (ML) in predicting spectrum requirements, which is crucial for efficient frequency management in the fifth generation (5G) networks and beyond. Case studies show how ML can help self-optimize networks, reducing energy consumption while improving performance. The review also introduces the potential of generative AI (GenAI) for demand-planning and network optimization, enhancing spectrum efficiency and energy conservation in wireless networks (WNs). Finally, the paper highlights future research directions, including improving AI-driven network resilience, refining predictive models, and addressing ethical considerations. Overall, AI is poised to transform wireless communication, offering innovative solutions for spectrum management (SM), security, and network performance. Full article
(This article belongs to the Special Issue Artificial Intelligence for Network Management)
Show Figures

Figure 1

27 pages, 2162 KiB  
Review
Future of Telepresence Services in the Evolving Fog Computing Environment: A Survey on Research and Use Cases
by Dang Van Thang, Artem Volkov, Ammar Muthanna, Andrey Koucheryavy, Abdelhamied A. Ateya and Dushantha Nalin K. Jayakody
Sensors 2025, 25(11), 3488; https://doi.org/10.3390/s25113488 - 31 May 2025
Viewed by 785
Abstract
With the continuing development of technology, telepresence services have emerged as an essential part of modern communication systems. Concurrently, the rapid growth of fog computing presents new opportunities and challenges for integrating telepresence capabilities into distributed networks. Fog computing is a component of [...] Read more.
With the continuing development of technology, telepresence services have emerged as an essential part of modern communication systems. Concurrently, the rapid growth of fog computing presents new opportunities and challenges for integrating telepresence capabilities into distributed networks. Fog computing is a component of the cloud computing model that is used to meet the diverse computing needs of applications in the emergence and development of fifth- and sixth-generation (5G and 6G) networks. The incorporation of fog computing into this model provides benefits that go beyond the traditional model. This survey investigates the convergence of telepresence services with fog computing, evaluating the latest advancements in research developments and practical use cases. This study examines the changes brought about by the 6G network as well as the promising future directions of 6G. This study presents the concepts of fog computing and its basic structure. We analyze Cisco’s model and propose an alternative model to improve its weaknesses. Additionally, this study synthesizes, analyzes, and evaluates a body of articles on remote presence services from major bibliographic databases. Summing up, this work thoroughly reviews current research on telepresence services and fog computing for the future. Full article
Show Figures

Figure 1

50 pages, 2715 KiB  
Review
Interference Mitigation Strategies in Beyond 5G Wireless Systems: A Review
by Osamah Thamer Hassan Alzubaidi, Salah Alheejawi, Mhd Nour Hindia, Kaharudin Dimyati and Kamarul Ariffin Noordin
Electronics 2025, 14(11), 2237; https://doi.org/10.3390/electronics14112237 - 30 May 2025
Viewed by 1503
Abstract
Over the past few years, wireless communication has grown dramatically, and the consumer demand for wireless services has seen a significant jump. One of the main challenges for beyond fifth generation (B5G) networks is the increased capacity of the network. The continuously increasing [...] Read more.
Over the past few years, wireless communication has grown dramatically, and the consumer demand for wireless services has seen a significant jump. One of the main challenges for beyond fifth generation (B5G) networks is the increased capacity of the network. The continuously increasing number of network users and the limited radio spectrum in wireless technologies have led to severe congestion in communication channels. This issue leads to traffic congestion at base stations and introduces interference in the network, thereby degrading system capability and quality of service. Interference reduction has thus become a major design challenge in wireless communication systems. This review paper comprehensively explores interference management (IM) strategies in B5G networks. We critically analyze and summarize existing research on interference issues related to device-to-device communication, heterogeneous networks, inter-cell interference, and artificial intelligence (AI)-based frameworks. The paper reviews a wide range of methodologies, highlights the strengths and limitations of state-of-the-art approaches, and discusses standardized techniques such as power control, resource allocation, spectrum separation and mode selection, carrier aggregation, load balancing and cell range expansion, enhanced inter-cell interference coordination, coordinated scheduling and beamforming, coordinated multipoint, and AI-based interference prediction methods. A structured taxonomy and comparative summary are introduced to help categorize these techniques. Several related works based on their methodologies, shortcomings, and future directions have been critically reviewed. In addition, the paper identifies open research challenges and outlines key trends that are shaping future B5G IM systems. A comparative visualization is also provided to highlight dominant and underexplored optimization objectives across IM domains. This review serves as a valuable reference for researchers aiming to understand and evaluate current and emerging solutions for interference mitigation in B5G wireless systems. Full article
(This article belongs to the Special Issue Next-Generation Industrial Wireless Communication)
Show Figures

Figure 1

10 pages, 1745 KiB  
Proceeding Paper
Initial Experimentation of a Real-Time 5G mmWave Downlink Positioning Testbed
by José A. del Peral-Rosado, Ali Y. Yildirim, Auryn Soderini, Rakesh Mundlamuri, Florian Kaltenberger, Elizaveta Rastorgueva-Foi, Jukka Talvitie, Ivan Lapin and Detlef Flachs
Eng. Proc. 2025, 88(1), 61; https://doi.org/10.3390/engproc2025088061 - 29 May 2025
Viewed by 533
Abstract
This work presents the initial experimentation of a real-time 5G mmWave downlink positioning testbed deployed at Airbus premises. This experimentation is part of a first-of-a-kind testbed for hybrid Global Navigation Satellite Systems (GNSS), fifth-generation (5G) new radio (NR) and sensor positioning, called the [...] Read more.
This work presents the initial experimentation of a real-time 5G mmWave downlink positioning testbed deployed at Airbus premises. This experimentation is part of a first-of-a-kind testbed for hybrid Global Navigation Satellite Systems (GNSS), fifth-generation (5G) new radio (NR) and sensor positioning, called the Hybrid Overlay Positioning with 5G and GNSS (HOP-5G) testbed. The mmWave 5G base station (BS) exploits the 5G standard positioning reference signal (PRS) to support positioning capabilities within the 5G NR downlink transmissions. Outdoor field results are used to characterize the received power levels and beam-based angle-of-arrival (AoA) estimation accuracy of this 5G mmWave PRS platform. The goal is to assess the suitability of this platform to enhance the positioning performance thanks to the 5G downlink mmWave transmissions. To the best of the authors’ knowledge, this paper presents the first AoA results using OpenAirInterface (OAI) PRS mmWave signal transmissions at 27 GHz for positioning. These initial field results indicate a maximum coverage of 30 m and an AoA accuracy limited by the reduced array size. The limitations and potential enhancements of this platform are provided as future recommendations. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

35 pages, 3885 KiB  
Review
Supporting Global Communications of 6G Networks Using AI, Digital Twin, Hybrid and Integrated Networks, and Cloud: Features, Challenges, and Recommendations
by Shaymaa Ayad Mohammed, Sallar S. Murad, Havot J. Albeyboni, Mohammad Dehghani Soltani, Reham A. Ahmed, Rozin Badeel and Ping Chen
Telecom 2025, 6(2), 35; https://doi.org/10.3390/telecom6020035 - 27 May 2025
Viewed by 1318
Abstract
The commercial deployment of fifth generation (5G) mobile communication networks has begun, bringing with it novel offerings, improved user activities, and a variety of opportunities for different types of organizations. However, there still exist several challenges to implementing 5G technology. Sixth generation (6G) [...] Read more.
The commercial deployment of fifth generation (5G) mobile communication networks has begun, bringing with it novel offerings, improved user activities, and a variety of opportunities for different types of organizations. However, there still exist several challenges to implementing 5G technology. Sixth generation (6G) wireless communication technology development has begun on a worldwide scale in response to these challenges. Even though there have been many discussions on this topic in the past, many questions remain unanswered in the present literature. The article provides a comprehensive overview of 6G, including the common understanding of the concept, as well as its technical requirements and potential applications. A comprehensive analysis of the 6G network design, potential uses, and key elements are covered. This research article delineates future study topics and unresolved challenges to stimulate an ongoing global discourse. This analysis and content of this study supports the use of different applications and services that will benefit the community in the near future using the 6G technology. Subsequently, recommendations for each problem are provided, offering solutions to unresolved difficulties where functionalities are anticipated to improve, hence enhancing the overall user experience. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

Back to TopTop